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EXACT BRANS-DICKE-BIANCHI TYPE-VI, SOLUTIONS
By D. LORENZ-PETZOLD
Fakultdt fir Physik, Universitit Konstanz*
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We investigate the Brans-Dicke-Bianchi type-VI, (nz = 0, & # 0, —1/9) field equations.
We present the general vacuum solutions as well as the general stiff matter solution. In addi-
tion we derive some special BDT-dust solutions and some special perfect fluid solutions
with 1 <y < 2.

PACS numbers: 04.50.+h, 98,80.Dr

1. Introduction

In the present paper we consider the Bianchi type-VI, (ng =0, h # 0, —1/9) space-
-time in the Brans-Dicke theory of gravitation (BDT). The Bianchi type-VI, metric is
given by

ds? = —dt*+ Ridx*+exp (—2g(1+k)x)R2dy* +exp (—2q(1 —k)x)R3dz%, (1)

where k2 = —1/h and g = const. Without loss of generality we may put ¢ = 1. (Note
that the symbol x has been omitted in the last term in the paper by Collins (1971)). This
“diagonal” metric belongs to Class B (nﬁ = 0) models in the Bianchi classification of spa-
tially homogeneous space-times (Ellis and MacCallum, 1969) and includes the axisymmetric
type-VI, models of Class A. The BDT-Bianchi type-VI, model has been already discussed
by us (Lorenz-Petzold, 1984c). In general we have A < 0 (including VI_, = III). We
use the notation of our paper (Lorenz-Petzold, 1984a).

2. Field equations
The BDT perfect fluid field equations to be considered are
Ry = [Ty~ ((1+0)/(3+20))g, T1d ™' +0¢™2¢ 0, + ™ b ui0s )
O¢ = (1/3+20)T, 3)
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where R,, denotes the Ricci tensor, T, the energy-momentum tensor, T its trace, g,, the
metric tensor, [] the wave operator, ¢ = ¢(t) the BDT-scalar field and w the BDT-coupling
constant. A subscript , or ; after the unknown variable denotes partial or covariant differen-
tiation. The energy momentum-tensor 7, is given by

'I:uv = (€+p)uuuv+pguw (4)

where u, is the velocity four-vector. An observer comoving with the fluid is assumed to
have u, = dp, i.e. we are considering only non-tilted models. The perfect fluid matter
is characterized by the equation of siate

p={@—-1e 1<y=<2 (5)

where ¢ and p are, respectively, the density and pressure of the fluid.
From the conservation law Ty, = 0 we obtain

e =MR™3 R?®=R,R,R,, 6)

where M = const. and R; = R{t) are the cosmic scale-functions. The corresponding
BDT-Bianchi type-VI, (f # 0, —1/9) field equations to be solved are

H,+3HH, +H,(In ¢y =201+ k3)/R? = e[1+02—1)]/(3+20)p, (Ta)
H,+3HH,+Hy(In ¢y —2(1+k)/R? = e[1+w(2—)]/(3+2w)¢, (7b)
Hy+3HH 4+ Hy(In ¢)'—2(1—k)/R} = e[1 +0(2~7)]/(3+2w)¢, (7¢)
2H, = (1+k)H,+(1—k)H,, (7d)
H,H,+H,H;+H,H;+3H(In ¢) —(3+k*)/R3—(w/2) (In ¢)* = &/, (7e)
(R%) = eR*(4~37)(3+20), ()

where H; = R;/R; are the Hubble-parameters, 3H = LH,; and () = d/dt.
By setting g = R,R3¢ and dt = R,dn the ficld equations can be decoupled to give

g''—4g = MQ2-y)RI(g/9)' 7, (8a)
y'+y(ng) = 2(1+k)+MRI'¢" g7 [1 +0(2-7)]/(3+20), (8b)

T +RH;+1 (1 —k)H 4+ 2H,Hy+[2 B+ k)Hy+1 B—k)H;] (In ¢)’

~(3+k)—(0f2)(In ¢)'* = MR} T¢" " 'g 77, CY)
(g(n ¢))" = MR{™"(g/¢)' ~"(4—3y)/(3+2w), (8d)
Rf — R(21+k)Rgl~k), (86)

where y = (In R,;)’ and ()’ = d/dy. It follows that Eq. (8a) can be solved simultaneous
in the vacuum case (M = 0) as well as in the stiff matter case (7 = 2). Furthermore, Eq.
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(8a) is independent of ! By setting ¢ = const. and w — oo we thus rediscover the GRT-
-Bianchi type-VI, solutions. After solving Eq. (8a) for g = g() we obtain from Eq. (8b)
R, = R,(n). Introducing the new variable T by gdt = ¢dn we obtain ¢ = ¢(7) from Eq. (8d)
(this procedure is necessary only in the stiff matter case) which may be reexpressed in terms
of the variable 5 via the knowledge of g = g(n). It is now an easy matter of calculation
to estimate the function R; = g/R,¢ from which we obtain R, with the aid of Eq. (8e).
All solutions must satisfy the constraint equation (8c).

3. Exact solutions

We now present our new solutions. The BDT-Bianchi type-VI, vacuum solutions
are given by

?)
R? = (sinh 27t *¥)(tanh y)™e "1 /2,
R2 = (sinh 27)"* *P(tanh ¢)™,
R} = (sinh 27)* "M(tanh n)~ "™,
¢ = ¢o(tanh n)""?,
6+2k*—2m*+n(Q+w)n+2m) = 0, {9a)
(i)
R? = (cosh 27)* ™ exp ((m/2k — n(1 —k)/2) arcsin (tanh 2n)),
R3 = (cosh 2n)* *¥ exp (m arcsin (tanh 2x)),
R?% = (cosh 2i)"* " exp (—(n+ m) arcsin (tanh 27)),
¢ = ¢y exp ((n/2) arcsin (tanh 27)),
642k +2m* +n((2+m)n+2m) = 0, (9b)
(i)

RY = exp (2(1 +Kk*)n —(mk —n(1-k)[2) exp (—2n)),
R; = exp ((L+k)n—mexp (—2n)),
R3 = exp (2(1 —k)n+(n+m) exp (=2n)),
¢ = bo exp ((—n/2) exp (—2n)),
2m* +n((2+w)n+2m) = 0, (%¢)

where m, n = const.
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By seiting n =0, i.e. ¢ = const., our solution (9a) reduces to the GRT-Bianchi
type-VI, vacuum solution first given by Ellis and MacCallum (1969) (see also MacCallum
(1971) and Kramer et al. (1980)). If k=0, n # 0, we obtain from (9a)~(9c) the BDT-
-Bianchi type-V vacuum solutions discussed by us recently (Lorenz-Petzold, 1984a, 1984b).
The GRT-limit £k = n = 0 of (9a) is nothing but the Joseph (1966) solution. However,
our solution (9b) has no GRT-limit. This is in contrast to the case (9¢), from which we
obtain the GRT-limit (n = m = 0) first given by Collins (1971, 1977), Ruban (1977b)
(see also Ruban et al. (1981)) and Belinskii et al. (1982) in a somewhat different form.
This special case was noted earlier by Lifshitz and Khalatnikov (1963a, 1963b), without
reference to homogeneous models (see also Evans (1974, 1978), Siklos (1978, 1980, 1981a,
1981b) and the recent paper by Wainwright (1983)).

The case k = m = n = 0 gives the “open” FRW (k = —1) vacuum solutions (Lorenz-
-Petzold, 1984d), the particular case k? = 1 corresponds to the Bianchi type-III mcdel.
By replacing the hyperbolic functions by trigonometric one obtains the BDT-Kantowski-
-Sachs (Kantowski, 1966; Kantowski and Sachs, 1966) vacuum solutions.

We now turn to the stiff matter case (y = 2). The corresponding solutions are given by

@
R? = (sinh 2 *¥)(tanh n)"/mp 1,
R3 = (sinh 2" *P(tanh n)""¢p~*,
R3 = (sinh 29" "M(tanh n) "¢,
where
¢ = ¢,(In(tanh n))™?, 4 =0,
¢ = ¢o{cos (In (tanh ry)‘/‘—”'z"')_2 4 >0,
¢ = ¢o(cosh (In (tanh i) ¥ ~42™M~2 4 <0,
m*(3+kH)—n*+4(3+420) = 0, (10a)
(1)
R? = (cosh 2)* *¥" exp [(nk/m) arctan (sinh 2n)}¢ ™",
RZ = (cosh 2n)"* *¥ exp [(n/m) arctan (sinh 2n)]¢ ',

R% = (cosh 2)* " exp [ — (n/m) arctan (sinh 2n)]¢ ',
where

¢ = Po[cos ((/4/2m) arctan (sinh 27))] "%, 4 > 0,
¢ = ¢o[cosh (—,/=4/2m) arctan (sinh 29))] 7%, 4 <0,
m*(3+ k¥ +n*—4(3+20) = 0, (10b)
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(i)
R? = exp [2(1 +k®)n—(nk[m) exp (—=2m)]¢ ™",
R} = exp [2(1+k)n—(n/m)exp (—2m)]¢ ™",
R} = exp [2(1—k)n+(n/m) exp (=2m)]¢ ",
where

¢ = ¢ exp(—4n), 4=0,
¢ = dolcos (VAi2m)exp (=2q)]7%, 4 >0,
¢ = ¢ [cosh (Y =4j2m)exp (—=2))]"%, 4 <0,
n*—4G+2w)s =0, s=1(4>0), s=—1(4<0). (10c)
In addition we have the relations
4 = —(B+2w)b*+4Mc)|(34+2w), ¢o = —(3+2w)4/4M,
¢, = —4G+2w)M, ¢, = —(3+2w)M, (10d)

where b, ¢ are constants arising from the solution of Eq. (8d).

The GRT-limit ¢ = const. of (10a) was first given by Ruban (1978) (see also Collins
(1971) and Wainwright et al. (1979) and Kramer et al. (1980)). The GRT-Bianchi type-V
(k = 0) stiff matter solution was found by Ruban (1977a, 1977b) (note that these papers
are not quoted in Ref. Kramer et al. (1980)) and later by Maartens and Nel (1978) (in the
locally rotationally symmetric (LRS)-case with tilt; note however that their solution is valid
only if b = 0 (see also Kramer et al. (1980), (12.16)). Our solution (10b) has no analogy
in the GRT. However, the GRT-limit of (10c) is well defined and seems to be new! By
taking k = 0 our solutions (10a)-(10c) reduce to the BDT-Bianchi type-V stiff matter
solutions obtained by us recently (Lorenz-Petzold, 1984a). The k? = 1 solutions are of
Bianchi type-IIl and can be extended to the BDT-Kantowski-Sachs space-times.

It follows from Eq. (8a) that it is impossible (at least with the aid of the method describ-
ed in this paper) to obtain the general radiation (y=4/3) BDT-Bianchi type-VI, (2 # —1)
solution (see also Collins (1971)). This is in contrast to the Bianchi type-V model where
such a general solution is allowed (Lorenz-Petzold, 1984a, 1984¢). The corresponding
GRT-Bianchi type-V radiation solution was first given by Ruban (1977a, 1977b). The
k? = 1 Bianchi type-III (Kantowski-Sachs) radiation solution is due to Kantowski (1966)
(see also Collins (1971), MacCallum (1971)).

We now consider the dust case (y = 1). By setting

y=g"-4 (1

we obtain from equations (7a) and (84)

(Iny)'+(n y)' (In g)" = ((1 +w){(3+2w)) (y/g)+2(1 +K%). (12)
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After solving this complicated fourth-order differential equation the most general Bianchi
type-VI, dust solution would arise, both in the GRT (w — o) as well as in the BDT. The
only known general GRT-dust solutions of Eq. (11) and (12) are the Bianchi type-III
solutions (k* = 1):

y = MR, = 2aM(cosh 2n—1),
g = (Ma/4) [2 sinh 2n—2(cosh 2 —1)+sinh 25], (13)

where a = const. (see Vajk and Eltgroth (1970) and Lorenz (1983)) and the Bianchi type-V
(k = 0) solution first given by Heckmann and Schiicking (1958, 1962) (see also Ellis and
MacCallum (1969)) in terms of elliptic functions. There is also the special GRT-Bianchi
type-III dust solution found by Ftaclas and Cohen (1978) (see also Lorenz (1983)):

y = 8bexp 21, = b exp 2n[In (c exp 2n)], (14

where b, ¢ = const.
To proceed in the more complex BDT-Bianchi type-VI, (k* # 1) case we assume the
special relation y/g = const. Equation (12) can be rewritten as

Y =2(1+k*y = y[(In y)"*—(In )’ (In g)’ +((1+w)/(3 +20)) (¥/g)], (15)
which in the present case may be reduced to
y'=2by =0, b= ((K*(3+2w)+1)/(2+w)). (16)
We obtain the following solutions
k2 # 1:
Ry =riexp(nn), ¢ = ¢oexp(mn),
n} = (2/2+w)) [K*(3+30)+1],
ny = (2/n;(2+w)) [K*(1 + @)+ k2 +w)+1],
ny = (2/n,2+)) [K*(1 +w)— k2 +w)+1],
m = (2/n,(2+®)) (k*~1). )

If kK = 0 we obtain the BDT-Bianchi type-V (FRW) solution discussed by us recently
(Lorenz-Petzold, 1984a).

We finally consider some special power type solutions in case of 1 <y <2. By setting
R, =ag®, ¢ = ¢ot’, a;,p;, g, r = const. (18)

it follows from (7a){(7f) (after somewhat lengthy calculations)
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pi=1,
p2 = (1/2ky) [(k—1) @—r—7)+27],
Py = (12ky) [(k+1) Q—r—y)-27],
ai = 4’k [2—y+r(y—1]"' [By—2+1]7",
(M/$o(a1a,a3)") = (1/2k*%) 3+20) [1+0(2—-7)] !
x[2—y+rG-D][K*Q—y—r)—Gy—2+n)],
ry—1) 2k*[1+0Q2-9]+1+k%) (439}
+r{(2=y) [2k*(1 + 02 —) + (1 +£) (4—3)]

+o=1) (4=3y) [3y~2+ K- +2-7) (4=3y) [By-2+k*(3=-2)] = 0. (19)

If r = 0 we obtain the special GRT-Bianchi type-VI, perfect fluid solutions first
given by Collins (1971). In particular, we have the following simple expression in the dust
case (y = 1):

= ((k*—=1)/[K*(3 +2w)+1]). (20)

The dust solution (20) turns out to be identical with our solution (17). The GRT-Bianchi
type-VI space-time has been recently reviewed by Rosquist (1984). For the sake of com-
pleteness we mention also the works of Batakis (1981), Carmeli and Charach (1980},
Carmeli et al. (1981) and MclIntosh (1978) of Bianchi type-VI, cosmologies.
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