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We examine the quantum mechanics of an isospinor scalar in the background of a one
parameter family of solutions of SU(2) Yang-Mills-Higgs system. The Hamiltonian is self-
-adjoint if one imposes ordinary boundary conditions at the origin. The exact solution is
presented for the asymptotic singular monopole when the electric charge is conserved. There
exist bound states with an extra degeneration indicating a dynamical symmetry.

PACS numbers: 11.15.-—q, 03.65.-w, 12.10-g

1. Introduction

There is an increasing interest in the dynamics of the fermion-monopole system [1],
the second quantized structure of which may be of phenomenological importance [2]. An
exact solution of the Jackiw-Rebbi equations [3] has been presented recently [4] for an
isospinor fermion in the background of a singular SU(2) Yang-Mills-Higgs (Y-M-H)
monopole. One can imagine that the quantum mechanics of a colored scalar also could
have some importance. (For example in disappearance of Higgs like scalars from the GUTs
via scalar-monopole bound state production.) Besides, this is an interesting problem on
its own right which can be solved exactly in the singular monopole case. The classical
motion of a colored spinless test particle in the Prasad-Sommerfield (P-S) monopole
field [5] has been treated recently and in non-relativistic, large distance limit bounded
orbits have been found [6]. Here the quantum analogue of this result will be given. Let us
consider as background the monopole solution [7] of the SU(2) Y-M-H model in the P-S
limit with gauge field 4 and Higgs field ¢* given by:
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Here r, > 0 is arbitrary, g > 0 is the gauge coupling constant and F > 0 characterizes
the symmetry breaking boundary condition. The r, = oo singular monopole can be used
for asymptotical approximation of the ro = 0 P-S solution. We set up the quantum mechan-
ical equations in the background field (1.1) and find complete solution for the r, =
asymptotical singular case. The Hamiltonian is self-adjoint for the whole family (1.1)
with ordinary boundary condition at the origin. The long range Higgs field gives rise to
fermionic monopole-scalar bound states. There is an extra degeneration in the bound
state spectrum, similar to that of the non-relativistic Coulomb problem. The electric charge
of the test particle is conserved only when r, = 0.

2. Quantum mechanical equations from dimensional reduction

There are several attempts to derive the symmetry breaking Higgs field as part of
a higher dimensional, space-time symmetrical Y-M field [8]. The simplest and almost
trivial example is the Y-M-H system in the P-S limit considered as pure Y-M field in five
dimensional flat space-time, which has a translational invariance with respect to the fifth
direction. Taking this into account the quantum mechanical equation of a Lorentz scalar
which belongs to some irreducible representation of SU(2) is given by the usual minimal
substitution in the corresponding five dimensional gauge field. Let us denote the coordi
nates in the five dimensional space-time M5 = M*x S} by z%; B,C = 0, ..., 4. Here M*
= {x} is the four dimensional Minkowski space and S} is a circle of radius A, z% = x* if
B=p=0,..3;z*=yel0, 2n)), x° = ct and g*® = diag (-1, 1,1, 1, 1). The above
mentioned equation for the ¥ wave function is

sc K2 2 - 3
¢*DaDc~ - | ¥(2) = 0, @.1)
where
Dy = VB+gAB’ Ag = Ang Ta+ = "T;n [Tm Tb] = Egpc I
We remark that if one had taken the classical Wong’s equation [9], i.e. the geodesic equation
of the underlying metrized SU(2) fibre bundle [10], as starting point, and had tried to work
with the corresponding scalar Klein-Gordon equation of the bundle then an infinite tower

of interacting particle fields belonging to irreps of SU(2) would have been obtained [11].
If Ag is translational invariant in the fifth direction then we can reinterpret it as

A“(Z) = Au(x)! Au(2) = ¢(x), z=(x,y) (2.2
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Y-M and Higgs fields over M*. Using the Fourier expansion of ¥ on S}

o]

P(x, y) = Z W (%) exp (iN —j:) (2.3)

=—-w

the following equation is obtained for the N-th component:
Vs a . b h a : 2.2
gV (ihv,+gA,Q,) (ihv,+84,0))+ ( N 7 T8¢ txe” ¥y =0 (2.4)

Here @, = ihT, are Hermitian generators of the Lie algebra of SU(2). In the case of the
monopole field (1.1) let us introduce the following notations:
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These definitions will be convenient since the potential ¥y approaches to zero at the infinity.
With the above formulae we are looking for stationary states

- Ex°
Yn(x) = pu(r) exp (“i ?f'l“) 2.7
of the equation
(8" (hV,+gA4;0,) (ihv,+ gA)0,) +myc”+ Vy} ¥y = 0. (2.8)
This gives rise to
. EN? -
Hyyw(n) = [(—c—) —«’c? ] ¥, 2.9
where the formal Hamiltonian witK (1.1) is
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. 1 h
Here W= (7, 0) = — x Q,, Zis the usual orbital angular momentum %; = — e,,,_x"a

and
i=2+0 @.11)

is the combined angular momentum of the monopole-test particle system. J is conserved
as a result of the SO(3) symmetry of the monopole [8]. When the particle carries a half
integer SU(2) charge we get just the famous “spin from isospin” phenomenon [12]. To
solve (2.9) the standard quantum mechanical methods will be applied. For simplicity in the
following we are going to deal with an isospinor scalar. This means that now

Q. = 1 heo, (2.12)
and with the Pauli matrices g, the identity
W? = 1h? (2.13)

is obtained.

3. Exact solution for the asymptotical singular monopole

Now K(r) = 0 which is equivalent to the factthat W= 1 h U-U = (7, 6)— commutes
with the Hamiltonian (2.10). It is easy to see in an Abelian gauge [13] that Wis the charge
operator. So the electric charge is conserved only in the r, = co case. For N = 0 one can
choose as a complete system of commuting variables

Hy, 72,15, &%, a.n
where #? characterizes the parity too or another one
Hy, J%, 73, 0, (3.2)

but for N # O only the second works. It is natural to use spherical coordinates (r, 3, ¢).
Denote y; ;, (9, ¢) and y, ;, (9, @) the elements of the complete orthonormal systems
of L*(S?, C?) corresponding to the angular parts of (3.1) and (3.2) respectively. Let C? be
the isospinor space with standard basis vectors 7., 1—. Then [ = J+% and we can use

for (3.1)
J+J J—J\}
XJ'13~‘=J"i=< 3 13) Yik +(—2J_’) Y2 e, (3.3)
J+1-J\' J+1+J
x“”:”*:( ZJ+2*3> ViviTes ( 2J+2;> Y.

Here J = 1,3,%,...; J; = —J,(=J+1), ..., J and for the spherical harmonics ¥;"(3, ¢)
the phase convention is

Y778, ¢) = (=D, @) 34
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The reader can readily verify that with the U pseudoscalar operator

1
X143,0 = :/’5 {rgsams-3+ Ui gpa=14+4}3 (U = £1) (3.5)

is applicable for (3.2). We can use the following relations:

fJXJ,J;,lz.H:{- = X1ds0=d34 3.6

(&L, D10 = —Xrasu+T + Dt -v-
We remark that in the case of ro # o (3.1) is 2 good observable system for N == 0 and
Hy, J*, 7, @37

can be chosen at N # 0, which leads to two coupled radial equations. As in the present.
case r, = o we look for eigenstates of the following form

RJ,u(r)
r

YN o) = 21.05.0(%: @), (3.8)

(1.1), (2.10) with r, = o0 give rise to the radial equation

d*R JU+1) ¢
where
N
dny = %‘(‘j‘ U“%OK),
1 [E? _h 2 1 [E?
s i S R e R B

This is just like the radial equation of the non-relativistic Coulomb problem but J runs
through the half integers now. At least one of the “effective coupling constants™ gy ¢
(U= %1)is surely negative and produces bound states. It is clear from the radial equation
(3.9) that the Hamiltonian is self-adjoint with the usual R; ;(0) = 0 boundary condition
at the origin as it happened for fermionic test particle too [4]. This is true for the whole

family (1.1) as well. The general solution of (3.9) is easily obtainable for arbitrary N but
2

let us investigate the N = 0 case only. For N 3 0 very large = mass terms appear (2.5)

which underlines the exceptional role of the N = 0 symmetrical wave function case. The
allowable (R,,(o0) = 0) negative values of S give a discrete spectrum with bound states.
These can be characterized by a half integer ““principal quantum number” ne {3, 3, 7, ...}.
For fixed n >4 Jruns from L to (n—1) and U = 1. S and so the energy depend only on n

a\? 1

S, = — (E) 5 (3.11)
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The extra degeneration in the discrete spectrum (3.11) is very similar to that of the non-
relativistic Coulomb problem. So we can point out a dynamical symmetry of the quantum
mechanical equation (2.1) in the r, = oo singular monopole background [14]. The wave
function is given in terms of the confluent hypergeometrical function

-2
R,,(r) =c¢,;0' e 2F(J+1—n,2J+2, ), (3.12)

where ¢ = 2(—2S,)* - r and C,, 5 1s a normalization constant. Each S, is doubly degenerate
with respect to U therefore we can use these radial funciions with the basis y; ;, ; as well.
The multiplicity of S, equal to

n—1

M, =253 (2J+1) =2(n*~1). (3.13)
I=%

This is the multiplicity of the +E, energy eigenvalues

he 1 ahe)? 1

2 2.4, (% 2 4

E : ] m i 3.14
m =K ( 2 ) ( (211)2> oc ( 2 ) (2n)* (3.14)

at the same time. There is a gap in the energy spectrum even in the case of k = 0. For
S > 0 a continuous spectrum is present. With the aid of the k = (25)* wave number the
scattering solutions apart from normalization can be writien as

Ry(r) = ciy(2kry e¥¥F (i T —1-(— +J+1,2J+2, +1kr> (3.15)

corresponding to in- and ouigoing spherical waves.

4. Concluding remarks

For arbitrary r, and N = 0 using the angular basis (3.3) we get the radial equation

d’R
7* +2[S- V(DR = 0;

et = J(J+1) %[( ) i2 _ 2] - 515.[1(”1) I(+1)+2— I;] @.1)

Neglecting the exponentially descending terms the large distance asymptotic form of

off ; JU+1)  « . . C
Vi — — |, this appeared exactly in (3.9). Close to the origin in the most

2r2 4r
interesting case of the P-S monopole one can use

1(z+ b,

Vit = [J(J+ D-II+1)—2]+0(). .2)
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The self-adjointness of the Sturm-Liouville problem of (4.1) is ensured for arbitrary partial
wave by (4.2) but it allows only a numerical study. It would be interesting to see how the
dynamical symmetry does work if r, = oo and what kind of splitting appears in the spectrum
of (2.10) when r, # 0. As it have been remarked W is not conserved for ro # 0. The
charge exchange processes between the test particle and the monopole (dyon) can be traced
properly within the framework of the second quantized theory. We shall investigate the
general case of (1.1) and give a detailed investigation of the scattering phenomena with
incorporation of dyons elsewhere.

1 would like 10 thank Z. Horvdth and L. Palla for many enlightening comments and
for reading the manuscript. I am indebied to P. T. Nagy for some discussions and encour-
agement.
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