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A method of calculating energy levels of heavy quarkonium interacting with vacuum
gluon fields is described and tested on a simple, exactly solvable, quantum-mechanical
model, which was originally proposed by Zalewski to illustrate some features of the theory
of heavy quarkonia. Inferences relevant for calculations of toponium properties are drawn
from model results.
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1. Introduction

Quarkonia, bound states of heavy quarks and antiquarks, have added a great deal
of support to the widespread belief in the correctness of the foundations of quantum
chromodynamics (QCD; for a review see e. g. [1]). However, the existing heavy quarkonium
families have not become “the hydrogen atom of strong interaction physics”, as it was
anticipated in early papers dealing with the subject [2]. The reason is that neither the long-
-distance confining force between the quark and the antiquark, nor their short-range
interaction force are directly and unambiguously reflected in properties of the - and
T-families; they occupy the intermediate distances (~0.1 to 1 fermi) where the interquark
force is poorly known theoretically [3]. The discovery of one more heavy quarkonium
family, presumably consisting of top quarks and antiquarks, is therefore eagerly awaited:
one could finally probe the short-distance Coulomb-like interaction between quarks and
antiquarks, following from the asymptotic freedom of QCD [4].

In QCD the ground-state, the vacuum, is expected to have a rich structure not under-
standable within the standard weak-coupling perturbation theory (see e. g. [5]). This should
be responsible for instance for the permanent quark confinement and low-energy properties
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of hadrons. Without its detailed knowledge, properties of the QCD vacuum are usually
parametrized through values of the so called vacuum condensates [6].

Very heavy quarkonia, besides being essentially non-relativistic and Coulomb-like
systems, are advantageous in another point: non-perturbative effects are expected to show
up relatively simply here. The calculation of gluon condensate effects on heavy quarkonia
was pioneered by Voloshin [8] and Leuiwyler [9] (see also [10]). They show that the effects
can be calculated very simply: if the characteristic length of vacuum fluctuations is large
compared to the QQ bound state dimensions (i.e. if the quarks are very massive), one
assumes in the firsi approximaiion that the heavy QQ pair is immersed in the constant
(random) vacuum gluon field characterized by the value of the gluon condensate
G? = (0| (a,/n)G,,G™"|0>. The whole system must be in a colour-singlet state, hence
either the pair and the surrounding medium are both colour singlets, or both octets. The
‘QQ pair lives therefore a part of time in an ociet siate in which the QQ interaction is repul-
sive (instead of being attractive as in singlet siates), and this changes substantially the heavy
quarkonium properties.

If the quark mass is large enough (radius of the bound state very small) the QQ interac-
tion can be considered Coulomb-like in both singlet and octet siates, and the interaciion
of the pair with the vacuum field 4 can be treated using the QCD multipole expansion
(including only the electric-dipole-like term). It is easy to estimate e.g. the relative shift
of the n, I-th heavy quarkonium level, due to the condensate G?: the problem is analogous
‘to the quadratic Stark effect in the hydrogen atom. The result must be proportional to:

(/) G* coming from E/E" ihrough Lorentz and colour invariance of the vacuum;

(i) r?2 ~ (n?/mo)? from the dipole-like interaction in the second order;

(iii) (ma2/n®)~! originating from the energy denominator in the second -order perturba-
tion formula; and

(iv) (ma2/n?)-1, the reciprocal value of the unperturbed energy. One thus gets

AE,, 1

~ 6, 4
IEnl] asm

GZnS

in accord with the Leuiwyler-Voloshin formula [8, 9]

A4E,;
lEnll

8

(pGZn s §))

‘where ¢ = 4n2/m*B®, B = 4uf3, o, is obviously the QCD fine-structure constant, and a,,
is a factor O(1).

However, a more general treatment than that of Leutwyler and Voloshin is necessary
.at least for two reasons. First, their results are inapplicable to existing heavy quarkonia.
The calculation uses the quantum-mechanical perturbation theory, that would be justified
if AEJ|E| were small. Even an optimistic guess gives 4E/|E| > 1 for charmed and = 1 for

1 Actual values of these parameters (especially that of the gluon condensate) extracted using the QCD
sum rule approach have been a subject of lively discussions recently; the dust seems not to have completely
-settled yet (see papers quoted in [7]). I shall briefly return to this point in the concluding Section.
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bottom quarks. (Attempts to find bottomonium properties for which the effective perturba-
tion parameter would be smaller have failed, see [11].) Second, even for toponia one shall
need some control over corrections to the lowest approximation. It would be interesting
to see whether there are some situations in which substantial corrections to the Leutwyler-
-Voloshin formula could exist.

The purpose of the present paper is three-fold: For the sake of completeness I first
want to sketch a method of calculating non-perturbative energy-level shifts in heavy quarko-
nia [12] which, though not fully general, is more general than that of Leutwyler and Volo-
shin and contains their results as a natural first approximation (Sec. 2). Then (Sec. 3),
I illustrate problems of the method on a simple, exactly solvable, quantum-mechanical
model proposed by Zalewski [13]. Finally, some conclusions are drawn which could be
of relevance for later calculations of heavy quarkonium (toponium) properties (see Sec. 4).

2. A method of calculating non-perturbative energy-level shifts in heavy quarkonia

In this Section I shall sketch an approach to the calculation of QCD-vacuum-structure
effects on energy levels of heavy quarkonia that is slightly more general than {hat of Volo-
shin and Leutwyler (for a more detailed exposition see [12]). Physical assumptions behind
the method are roughly identical to Leutwyler’s and Voloshin’s:

(i) the possibility of separating the total Hamiltonian of the singlet system consisting
of the quark, the antiquark and the surrounding medium into three parts: the Hamiltonian
of the QQ pair (with their Coulomb-like interaction potential due to the exchange of short-
-wavelength gluons included), that of the gluonic medium, and the interaction Hamilto-
nian (containing the interaction of the pair with long-wavelength gluonic fluctuations); i.e.

H= HQ6+HG+Hlnt; (2)

(i) the QQ bound state radius (of the order of rq~ (ma?)~) and period of motion
(of the order of £, ~ (ma2)~t) are small compared to characteristic space-time dimensions
of non-perturbative vacuum fluctuations. One can then in the first approximation neglect
the temporal dependence of the fields, and make use of the QCD multipole expansion
[8, 9, 14] of the interaction of quarks with the constant (but random) gluon field ; the lowest
terms give [8]

Hy, = —Q°A%(0)—d° - E(0), )

where E° is the chromoelectric field, Q° d° are colour charge and colour electric dipole
moment of the pair, and the centre of mass of the pair is placed in the origin of coordinates.
(The latter assumption has been questioned by Baier and Pinelis [15]. However, recent
results on the correlation length of the gluon condensate [16] seem to support the above-
~-described point of view.)
The total Hamiltonian can be separated also in a different way

H = H,+Hg+H’, 4
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where H, (H,) is the piece of H that does not mix singlet and octet QQ-pair and gluonic
states, and H’ is the part of H that does mix them. Obviously, H, gets contributions from
Hug and Hg only, Hg from Hyg, Hg, and H,, too, while H' comes solely from Hiy,.

The quarkonium energy levels in the vacuum field can be found from the “pure
quarkonium” Green function, the projection of the full Green function on colour singlet
quarkonium states, averaged over the gluonic vacuum [0,

Go(E) = {0,|P,(H—E)™'P,0,). &)

(P, (Pg) projects on singlet states of the system that consist of the singlet (octet) QQ pair
and the singlet (octet) medium). For this a closed equation can be derived (using a single
additional assumption, see Eq. (8) below)

Go(E) = GYUE)+GYE)K(E)G(E), 6)
where
K(E) = <0,|P,H'Pg(Hg—E)™'PsH'P,|0,> ™)
and G’ is the Green function for Hé% = —A[m—40,(r)/3r, the singlet part of Hyg.

Instead of giving details of the derivation of Eq. (6) (see [12]) let me explain its content
using simple pictures. The notation is fixed in Fig. 1. Fig. 2 shows an identity satisfied
by the pure quarkonium Green function G(E). Its meaning is the following: The parts
(QQ pair + gluonic medium) either propagate without interacting, or spend some time
in singlet states, then jump due to the interaction that mixes singlets and octets to an (overall
colour-singlet) state in which the pair is octet and so is the medium, propagate for some
time in octet states, and finally jump back to singlet states. Stars at 1’s and 8’s in Fig. 2
are to remind of the possibility of jumps into virtual excited intermediate states.

The last ingredient of Eq. (6) is explained pictorially in Fig. 3. The equation illus-
trated in Fig. 2 is not closed. A possibility leading to the closed equation is to assume

1* = 1, or Py ~ PJ0,> <O,/Ps ®)

(Pg is the projector on singlet QQ-pair states) i. €. to neglect higher singlet gluonic excita-
tions in intermediate states. We then immediately get Eq. (6) (Fig. 3). Of course, some
ambiguity is introduced by using the assumption (8); we believe it not to be crucial: the
essential point of the situation, the singlet-octet transitions caused by the interaction of
the QQ pair with vacuum fluctuations, has still survived. Moreover, Eq. (8) is the simplest
possibility, and any more sophisticated assumption is hard to justify taking into account
our ignorance of the QCD vacuum. (See also [17].)

The approximate operator equation for Go(E) can be used for finding quarkonium
energy levels in a straightforward way. Formally, these energies can be found by solving
the equation?

det [(E—&{P)3um+ Kum(E)] = 0, ®

2 For obvious reasons, this equation is reminiscent of the secular equation for finding eigenvalues
of a Hamiltonian; the only difference is that K., themselves depend on E.
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Fig. 1. Elements entering Figs. 2-5: a) pure quarkonium Green function; b) propagation of the quarkonium

and the gluonic medium in singlet states (without interacting); <) the interaction of quarkonium with the

condensate in which gluonic quantum numbers are transferred; d) propagation of the singlet quarkonium;

and similar symbols. (/, I*, 8* denote the states of the gluonic background (gluonic vacuum, singlet gluonic

excitation, octet gluonic excitation respectively), while 1 and 8 denote the QQ-pair colour state (singlet
and octet))

Fig. 2. Pictorial representation of an identity for the pure quarkonium Green function
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K(E)

Fig. 3. Taking I* =~ I at intermediate stages leads to the closed equation for Go(E)

where n represents the set of all quantum numbers characterizing the unperturbed
(Coulomb-like) singlet state with energy &', K, is {n|K(E)|m), the matrix element of
K (Eq. (7)) between two such states.

The Leutwyler-Voloshin formula, Eq. (1), is a result of the natural and straightforward
first approximation to Eq. (9). One just has

(7)) to linearize Eq. (9) by neglecting all non-diagonal elements of K(E) and putting
K.(E) ~ K,,(¢""); the energy shifts are then simply

AE, = —{n| {O|P H'Ps(Hg—&")"*PgH'P,|0;) n); (10)

and

(if) to neglect all except the quarkonium part of Hg: Hg =~ Hé% = —A/m+o,f6r.
This, after using colour and rotation invariance of the gluonic vacuum [(O,IE;'E,"IO,)
~ —G25®5,;] and after straightforward calculating of the relevant matrix element, leads
to Eq. (1). The essence of the Leutwyler and Voloshin approximation is illustrated in Fig. 4.

In trying to further exploit Eq. (9) one shall have to encounter two problems:

(A) to reasonably truncate the (formally) infinite determinant in Eq. (9);

(B) to make some reasonable guess or model of the octet Hamiltonian Hg, which
enters K(E) and is not fully known:

Hy = HQ+HG +H{). (11)

One will have to find a compromise between two extreme possibilities indicated in Fig. 5:
to take the minimum of information on Hg, but take into account the coupling to other
singlet states (Fig. 5a), or to forget completely about the coupling and try to consider
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Fig. 4. The content of the Leutwyler-Voloshin approximation. Only diagonal elements of K(E) are nonzero,
E is replaced by &), Hg ~ H‘Q% (see arrows)

1
W
1n

g S

H\| 1m

a
1 b & & 31
1, H’X8 8 NH\] 1,
A
b

Fig. 5. Two extreme possibilities in solving Eq. (9): a) minimum information on Hjg, non-diagonal elements
of K included, b) more information on Hsg, coupling to other singlet states neglected

in more detail the behaviour of the system during the time when the QQ pair and the
gluon medium are in octet states (Fig. 5b).

It is not a priori self-evident which of the problems (A), (B) is more important for an
improved calculation of toponium properties. In the next section I shall therefore study
an exactly solvable model in which different approximations (including the two above-
-mentioned ones) can be used and results can be compared with the exact solution.
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3. The two-channel harmonic oscillator model

Zalewski [13] has recently used an illustrative (one-dimensional) generalized harmonic
oscillator model to pin-point some controversial moments in the theory of heavy quarkonia.
I shall not try to resolve the controversy; instead I shall make use of the model to shed
some light on problems in calculating heavy quarkonium energy levels.

The model Hamiltonian

2

H =~} — +1x*—} 0’0, —i0’s%0, 12

2dx
(64, 05 are standard Pauli matrices) bears much resemblance to the situation encountered
in the previous section. It can be separated into the “singlet”, the “octet” and the interaction
pieces

H=H,+Hg+H', (13)
where
hy O\, _ {0 0
m=(g of (o 0)
d2
hl 8 — Z 5.2 +-}w3.8x29
w5 = VIFo?, (14)
and
' 0 -V _ 2.2
,(_V 0), V(x) = dw®x>. @15)

H' represents the “interaction with the condensate” that mixes “singlet” (upper) and
“octet” (lower) components. Without the interaction (4 = 0) the model Hamiltonian
has two sets of eigenfunctions:

() “pure singlet” ones:

(o5)
PV(x) = (g”' (x) ) with energies &) = (n+3)w,; (16a)

and
(i) “pure octet” ones:

0 . .
E(x) = ( (8), ) with energies €’ = (N +3)ws. (16b)
yy (%)
Here %{”)(x) are normalized wave-functions of the one-dimensional linear harmonic
oscillator with frequency w, see e. g. [18].
After turning on the interaction in the original “pure singlet” states an “octet” admix-
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ture evolves

569 = (Vs g ) (172)
and their energies change to
E® = (n+1H)0,, (17b)
while “pure octets” become
$x) = (‘%:8 z‘O“S %) with E = (N +1)2, (17)
where
Q15 = (1 F0 Vi+1g726)'7? (18)
and
0 = % arctg 24. 19)

P(x), ¢ (x) are exact eigenfunctions of the model Hamiltonian, EY, E® are the

corresponding exact energy eigenvalues.

One can try to solve the model along the lines of the method described in Sec. 2. The
analogon of the pure quarkonium Green function (see Eq. (5)) is the “‘singlet” Green
function

G(E) = P(H—E)"'P;; P, = (3 g) 20)

for which an exact equation holds (cf. Eq. (6))
G(E) = G(E)P,+ G (E)K(E)G(E), @n
where
Gy(E) = (h,~E)™',
K(E) = P,V(hg—E)"'VP,. (22)
“Singlet” energies can be found from Eq. (21) by solving
det [(E—&{")8,,, + K,m(E)] = O, (23)
in full analogy with Eq. (9)°. Here

Kon(E) = § dxdyy{®(x)V(x)Ga(x, y; EYV()eS(»), 24

3 Tt is necessary to stress, however, that in contrast to Egs. (6) and (9), Egs. (21) and (23) are exact.
No additional assumption like (8) is needed in the oscillator model.
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and @®

Gg(x, y; E) = (x| (hg—E) '|y> = Z

N=0

P PO)
e (25)
ey —E
Again two problems arise (cf. (A), (B) at the end of Sec. 2)
(A) that of truncating the infinite determinant;
(B) that of approximating the “octet” Green function.
To investigate their importance and to find the more serious of them, I tried the follow-
ing approximations:
(1) to take the lowest term in Gg(x, y; E), and
(Ia) linearize Bq. (23) (this mimics what Leuwtwyler and Voloshin did for heavy
quarkonia, see Fig. 4);
(Ib) calculate with it X, (E), and then soive Eq. (23) for finite determinant size
N (see Fig. 5a)*;
(ID) to neglect all non-diagonal elements of K(E) and take into account more (M > 2)
terms in the “octet” Green function Gg (see Fig. 5b); one then solves

(E—&)+K,(E) = 0; (26)

ib.. .N =4
... M=5
Hi. . N=2 M5
—a g A

0 | 2

Fig. 6. The ground-state ‘‘singlet” energy in the Zalewski model for w = 0.5, Full lines represent the exact

ground state energy (a) and its expansion around A = 0 (up to terms ~ 42, (b)). Broken lines correspond

to different approximations and are denoted Ia, Ib, II and III in accord with Sec. 3 (in fact, (b) coincides
with Ia on the plot)

anad

4 Matrix elements of K necessary for this analysis are listed in the Appendix.
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TABLE I
@ (b)
Approximation Ib Approximation 11
Dependence on the determinant size N Dependence on the number of terms M in Gg

(both for w == 0.5, 1 = 1.0)

N E) M EM
1 0.3556 1 | 0.3556
2 0.3524 2 0.3422
3 0.3523 5 0.3418
6 0.3523 30 0.3418
1
exact 1 0.3320 l exact 1 0.3320

(I to retain M > 2 terms in Gg(x, y; E) and solve Eq. (23) for finite determinant

size N (ir. fact I took N = 2 only)*.

Results of the calculation of the ground state energy in the model of Zalewski are
summarized in Fig. 6 for an illustrative value of &» = 0.5. The following is clearly visible:

1. The “Leuiwyler-Voloshin” approximation (Ia) leads to rather poor results except
for small values of A, in fact, it coincides with what one gets from expanding the exact
ground statc energy around A = 0.

2. Taking higher size of the determinant in Eq. (23) does not help to improve the
agreement with the exact solution if one neglects all higher terms in the “octet” Green
function Gg (approximation (Ib)). This is further illustrated in Table Ia.

3. However, taking account of a few higher terms in the Green function Gg (see Eq.
(25)) brings a considerable improvement even if non-diagonal elements of K(E) are neglec-
ted. Five terms are quite enough; then the value of ES" stops improving, see Table Ib,

4. A few terms in the “octet” Green function together with coupling to the nearest
level provides almost the exact ground state energy even for high values of 4.

To conclude: io get satisfactory agreement beiween the ground state energy and the
value obtained from Eq. (23) one inevitably needs some information on the *“octet” sector
of the model. Coupling to higher “singlet” states plays a relatively minor role in the calcula-
tion. Conclusions following from this result will be discussed in Sec. 4.

4. Discussion

In Sec. 2 I described a method of caleculating QCD vacuum condensate effects on heavy
quarkonium energy levels. It contains the resulis of Voloshin and Leutwyler, obtained using
different approaches, as a first approximation. The starting point is similar as theirs: char-
acteristic space-time dimensions of vacuum fluciuations are assumed large compared
to characteristic dimensions of the QQ bouxnd state. A naiural procedure leads to an
equation for finding quarkonium energy levels (Eq. (9)). The price to pay is only an additio-
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nal simplifying assumption that neglects the influence of singlet gluonic excitations on
quarkonium states. As discussed in Sec. 2, I believe this assumption not to be crucial,
since it does not spoil the physical picture of the interaction of the QQ pair with the vacuum
condensate.

A few remarks concerning the method are necessary:

— Since the starting point is similar to Leutwyler’s and Voloshin’s, 1 also completely
neglect the finite correlation lengih of the vacuum condensates [16, 19]. This is a serious
flaw of the method which has to be improved in a fully realistic calculation.

— A better understanding or a model of the QCD vacuum and its cxcitations
is urgently nceded for finding corrections to the results of Voloshin and Leutwyler. One
lacks more detailed information on the dynamics of quarkonium when the QQ pair and
the surrounding gluon medium are both in octet states (problem (B) of Sec. 2).

The model of Zalewski is ideal for illustrating the above poin. While for small values
of A (the parameter controlling the strength of interaction beiween “‘singlet” and “octet”
states in the model) all approximations we tried in Sec. 3 (including that analogous to
Leuiwyler’s and Voloshin’s) give values of the ground state energy of the model in accordance
with the exact solution, for higher values of A the situation is different. The “Leutwyler-
-Voloshin” approximation becomes poor for higher A’s, and to get a reasonable agreement
between approximate and exact values of the ground state energy one necessarily needs
some information on the “octet” states (on the Green function corresponding to the
“octet” Hamiltonian Hy). Taking account of the coupling of the ground state to higher
“singlet” states helps to improve the agreement, but plays a subdominant role.

Of course, there is no direct way of relating the value of 4 in the model of Zalewski
to the gluon condensate G2, and the similarity of the model with essential features of heavy
quarkonia may well turn to be illusive. The model results can thus be considered only
a warning that if the value of G? were high enough (see Footnote 1) then one could expect
sizeable corrections to the simple Leuiwyler-Voloshin formula (Eq. (1)) even for toponia.

I thank Prof. Jdn Pi¥dt for a lot of helpful discussions, and for critical reading of the
manuscript of this paper. My thanks are further due to Prof. K. Zalewski for introducing

me to his model, and both to him and to Prof. A. Di Giacomo for discussions about heavy
quarkonia.

APPENDIX

Here I list some necessary matrix elements of K(E) (Eq. 24)). The notation is fixed
as follows:

M-1
1 b @ L4 @y
Kim(E) = E B E J dxdyy™ () V()PP NV (en(9)- (A1)
N
N=0

The following formulae were used in solving Eq. (23):
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(i) in the approximations (Ia), (Ib)
-2

A /

1

K%;Zz:(E) =1 & E 4“"“602 \//wzws (wg—wy)
7 Wg—

k+1 ﬂ Wg— W, ktl
x(—%) <k><l>(w8+wl) [wg—(4k+ Dw,] [ws— @&+ Do, ]; (A2)

(if) in the approximations (II) and (II)

(M
K3, )21(L) = 2 it \/w1w (wg—wy)

Z IN\T, (@s—o\ T/ 1\
(4N+1)w8_2E< >I: (‘” +0)8>] <_ _273-)

- wg o, P+ 3 w,0?
xL(4N+1)E - (4N+1) —(32N*+16N+T7) —
w

olog o
+11@N+1) 208 52 (A3)
o o

for k, 1€ {0, 1}.

Only “even-even” matrix elements are listed above; the odd-even and even-odd ones
vanish (because of parity), the odd-odd elements were not necessary for finding the ground
state energy in the model, the problem I concentrated on.
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