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WHERE TO LOOK FOR CRITICAL TESTS OF THE
PHENOMENOLOGY BEHIND THE SVZ APPROACH TO HEAVY
QUARKONIA*

By K. ZALEWSKI
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The point of view is presented that, while the mathematical method used by the ITEP
group (SVZ) is very nice, the purely phenomenological model for the gluon condensate,
which they use in order to calculate the nonperturbative contributions, is open to doubt.
It is suggested that fine splittings in the spectra of heavy quarkonia provide crucial tests
for this phenomenology. Present data cast some doubt on the validity of the model, but
a deeper analysis and/or data for toponia are necessary, in order to draw final conclusions,

PACS numbers: 11.15.—q., 11.15.Tk

1. Introduction

The SVZ sum rules, known also as QCD sum rules, or ITEP sum rules, provide the
estimate [1]
G = (o

Here the summation over the Lorentz indices uv and over the colour index g is under-
stood. Tensor G}, is the chromoelectromagnetic field, and the factor a/n is introduced
in order to make G renormalization group invariant. The averaging is over the physical
vacuum state, with the counter-terms chosen so that the corresponding average for the
perturbative vacuum vanishes. Estimate (1) has been obtained using experimental daia
for the y resonances as input. The experimental error in the input introduces an error
of about 20 per cent [2]. Since the numerical value of the matrix elemem (1) is of great
interest, and since many physicists consider that estimate (1) is the best available, it may
be useful to analyse teh SVZ argument.

We propose to discuss first the mathematical method of the ITEP group, and then
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the phenomenological model used to calculate the non-perturbative contributions. We
shall present the point of view that the mathematics is very nice, but the phenomenology
is somewhat controversial. We suggest that studies of fine splittings in the spectra of heavy
quarkonia can provide crucial tests for this phenomenology.

2. Mathematical method

The mathematical method used by the ITEP group is most easily explained on exam-
ples from nonrelativistic quantum mechanics. Among the many versions of the method,
we choose that from Ref. [3]. The analysis from this and the following Section has been
partly presented by the author at the 1983 Smolenice conference [4].

Consider a particle of mass m in a potential field of forces. Suppose for simplicity
that all the ene1gy levels are discrete. Define two Euclidean Green functions

G(ﬁ) = ;0 11/’"(0)129“‘“‘:"’ (2)
GAp) = ; lpa(0)|2e™PEn, (3)

By construction
G(B) = |po(0)i’e™ PEo+ Go(B). C))

The SVZ idea is to evaluate G(8) and G () in some weak coupling approximation and
then to find |94(0)}* and E, from formula (4).
In order to find both |9(0)|? and E, there must be a window (fiducial region)

Bi < B < B )

where the approximations for both G(8) and G(f) are sufficiently good. For f too large,
the weak coupling approximation breaks down. For f too small, G(8)—G(f) becomes
the difference of two large almost equal terms, and again the result is unreliable. Conse-
quently, two questions must be answered before applying formula (4):

1. Is there a window with f§; < f3,?

2. How to fird B, and 8,?
We present the ITEP answer to these questions in the following Scction.

We refer to the weak coupling approximation and not to perturbation theory. Indeed,
it has been found in practice (cf. e.g. [1] and following Section) that the leading nonpertur-
bative term often is important and should be included.

Note that the method described here can be used to solve rather unusual problems.
It is well known that weak coupling metheds are good for scattering problems (e.g. Born
approximations). Here, however, the knowledge of the weak coupling approximation
is seen to yield information about the ground state, which is a bound state. Usually, weak
coupling approximations are presented as useless for the study of bound states. The
ITEP group has convincingly demonstrated that this in general is not true.
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3. Example

Consider a one-dimensional Schrddinger equation for one particle of mass m moving
in the field of forces corresponding to the potential

n ¥V for xj <1
Vx) = {oo for |x|>1 (6)

where V is a constant. It is convenient to choose the units so that 2m = h2n2. Then
o
G(p)y = e 3 o7 PreS (7)
n=0

Expanding exp (— BV) into a power series in  and performing the Poisson transformation
of the sum over n, we find

€

G(B) = Z(_:) B3 ;—:[l+2 Z(—l)"e“"’"”ﬂ]. (8)

v=0

We now make the usual replacement of the weak coupling by the small § (short time)
approximation and obtain the estimaics

7 B
6B =4 \/ SV, (9a)

G(p) = \/ %(1 —VB+L Vg —2e7™P), (9b)

The ITEP au hors suggest to estimate f8,, the upper bound for the fiducial region, from the
requirement that neither the first periurbative, nor the first nonperturbative correction
should exceed 30 per cent of the leading term. From (9a) this yields

B <03/[Vi; B <52 (10)

These bourds are expected to ensure that G(ff) is correct within some 10 per cent, when

calculated from (9a). The second perturbative correction is about 4.5 per cent of the main

term, thus in this case the bound is very reasonable. The second nonperturbative correc-

tion, however, is below 0.11 per cent. Thus, the second bound (10) is much too restrictive.
The recommended approximaiion for G.(f) is [3]

G = | o(E)e~""dE, an
Ec

where E, is a free parameter to be found from identity (4) and the density of states o(E)
is found from the “free motion” case

o

j o(E)e PP dE = 1 \/g : (12)
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Inverting this relation, one finds o(E) = E~ Y 2/2. Substituting this result into (11)

T e
Gp) =% \/B (1—erfVBE,), (13)

where erf(x) derotes the standard error function (cf. e.g. [5]). This approximation is re-
commended, when G,(B) does not exceed 30 per cent of |9o(0)°e” %, Directly from (3)
we find numerically

B> 0.64 = B,. (14)

Approximation (13) again is much better than could have been expected frem its deriva-
tion. It can be shown [4] that it follows from the following two assumptions

1. WKB approximaidon for the energy levels E, - ,.

2. Conversion of the sum over »n in (3) into an integration.

The size of the wirdcw defined by formulae (10) ard (14) deperds on V). For
|¥] > 0.3/0.64 there is no window at all. When thereis a wirdow, we find E; and E, (|y0(0)}
does not occur in our simple example) from formula (4) with (9) and (13) substituted
for G(B) and G.(f) at B = B, and ai B = B,. The relative exvorr SEy/(E,—E,) does not
exceed 7.3 per cent for |¥| < 0.35, when formula (9a) is used. The use of formula (9b)
reduces the error to less than 1.5 per cent. Thus the methcd works very well indeed.

In the example discussed here, the validity of the SVZ method has been checked by
comparing the approximation with known exact results. It is controversial (cf. e.g. [3],
[6]), whether it is possible to predict a priori 1he applicability of this method to specific
cases. Let us note, however, 1hat even in simple perturbation theory the usual thumb-rule:
the methed works, when the first nonvanishing correction is small, often fails. For imstance
consider the effect of a periurbation /¥ (x) on the grourd state of a harmonic oscillator.
For V(x) = const, the result is exact, however large is |4], while for ¥(x) = —x* the re-
sult is ccmpletely wrong, however small is |A|, provided that 1 > 0.

4. Phenomenology

In order to use the SVZ methcd it is necessary to know a reliable weak coupling
approximation for the Euclidean Green function. The calculation of perturbative contri-
butions in the framcwork of QCD is.a well established algorithm. It may cost much work,
but if done properly it is not controversial. The calculation of nonperturbative corrections,
on the other hard, is still a kird of art.

Experts agree that in the limit m, — co the qq system beccmes coulembic. The ques-
tion is: what are the leading corrections? The ITEP group proposed that the leading
corrections are due to the interaction of the quarks with the gluon condensate filling the
physical vacuum. Practical calculations are performed for the model (SVZ model),
where the qq system moves in a uniform, stochastically varying chromoelectric field.
Thus one calculates the Stark shifts of the energy levels ard averages the result over
the external fie!d. The leadirg order corrections to Green furctions [1] and to the energy
levels [7, 8] are proportional to the matrix element (1). We interpret the SVZ model as
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pure phenomenology ard we will discuss what we think are the crucial experimental tests
for it. The ITEP authors, however, present arguments in favour of their model. In the follow-
ing Section we report these arguments and explain, why we do not find them conclusive.
As a test of the SVZ medel, we propose to discuss fine splittings in the spectra of heavy
quarkonia. According to Voloshin [7] and Leutwyler [8] for very large quark masscs this
splitting is proportional to n®, where # is the principal quantum number of the coulombic
system. The ¢ and b quarks are too light to expect quantitative agreement between the
Voloshin-Leutwyler formulae ard data for the p and Y families. The qualitative result
that fine splittings rapidly increase with n should have, however, a much wider validity
range. On the other hand, simple potential mcdels (cf. e.g. [9]) ascribe fine splittings to
a perturbing potential linear in r. This leads to fine splittings, which do not depend on n.
The experimental data are [10]

4,(cc) = (161 +0.6) MeV;
A,(bb) = (122+3) MeV;  4,(bb) = (94+3) MeV. 15

Here 4, = E,(3S)— E,(P), where n denotes the principal quantum number of the cor-
responding coulomb system and P stands for the centre of gravity of the ’p states. Data
(15) seem to favour the potential picture. This observation should be perhaps correlated
with Voloshin’s result [11]. Using the SVZ mcdel he found 4,(bb) = (190430) MeV.
Since there was no difficulty with the n = 0 states (where of course there is no fine split-
ting), this overestimate of 4; may reflect a systematic overestimate of the effect on fine
splittings of increasing n. This according to potential models should be a characteristic
feature of the SVZ mcdel.

It should be stressed again at this point that b-quarks are too light to make the data
(15) conclusive. Data for 4,(cc) would show the trend with increasing quark mass, but the
data on 4,(tt) seem necessary to reach a fim conclusion.

We conclude that present data cast some doubt on the SVZ model used to evaluate
the nonperturbative contributions to the SVZ sum rules. In order to make a stronger
statement, however, it would be necessary to make a more quantitative analysis of the fine
splittings predicted by the SVZ mcdel for moderate quark masses. Data for it systems
would make this task much easier.

5. The SVZ arguments

The SVZ proccdure for charmonia involves the following steps.
1. From experiment one finds the sum

Zri/(Mi H+l; n = 1’ 2,"" (16)
i
where the sum extends over all the cc resonances coupled to the photon, ['; is (approxi-

mately) the cleptronic width of the resonance and M; its mass. Sum (16) corresponds
to |(0)2e™#E° from Section 2. The parameter n corresponds to f.
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2. From perturbation theory one finds the moments

=]

R{s)ds
M, = e n=12.. : 7
s

0

where s is the centre of mass energy squared and R, is the ratio of the cross-section e¥e~ — cc
to the cross-section ete~ — ptp~ calculated in the lowest Born approximation. This cor-
responds to G(B). Also from perturbation theory one finds the contributions to M, from
the continuum. This corresponds to G(8).

3. One tests an equation analogous to (4) and finds that it is good for low n, but
fails for larger n. The range of n, where the equation is approximately satisfied, can be
significantly increased by including into the calculated M, nonperturbative terms proportio-
nal to G. This is one argument in favour of the SVZ model. Another argument is that
according to the principles of the operator product expansion (OPE) method, the leading
nonperturbative corrections should be those, which contain the matrix elements of lowest
dimension. The dimension of G is m*, while other matrix elements, which one could 1ry,
have dimensions m® with a > 4.

In order to see that the improved fit does not necessarily show that the correction
term is correctly introduced, let us consider the funciion f = (1 —x)~!. As seen from Fig. 1,
the truncated power series (perturbative) approximations rapidly deteriorate with increas-
ing x and little is gained by small increases of the degree of the polynomial. On the other
hand the “nonperturbative erm” 70.6 exp (—2.475/x) improves the fit very significantly.
The reason for this success, however, is not the analytic structure of f, but the two free
parameters in the “nonperturbative” term. Thus, also in the SVZ case the improvement
may well be due to the new free parameter G and not to the realism of their model.

The OPE argument is applicable for § — 0. This, however, is outside the fiducial region
and has no obvious relevance for the situation considered by the ITEP group.

There has been much work showing that the extension of the OPE argument to the
region of interest fails. Thus, Nikolaev and Radyushkin [12] estimated the terms of dimen-
sion m® and found that for the vy family their contribution is comparable 1o that of the
ierm proportional to G. The ITEP group pointed out [3] that the result [12] cannot be rigor-
ously derived, this, however, is a long way from proving that the m® terms are negligible
as assumed by SVZ. The importance of these terms has been confirmed by Shuryak [13]
in a paper supporting SVZ, but advising against the use of OPE. The m® corrections are
reduced by a factor of about 100, when going from the cc to the bb family. There, however,
the SVZ method gives for G results contradicting those for the y family and unplausible [14].

By consiruction, the SVZ model may work, if the gluon condensate has only low
frequency oscillations. It must fail, when the oscillation frequencies are high. The important
question, of course, is where is the border line between “low” and “high” frequencies.
According to Gromes [15], a frequency 100 MeV is enough to invalidate the SVZ picture.
Since it is difficult to believe that all the fluctuations of the gluon condensate have frequen-
cies much smaller than m,, it seems that a theoretical derivation of the SVZ model would
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Fig. 1. Function (1—x)! and its perturbative and nonperturbative approximations

be difficult. Results similar to those of Gromes have been derived using a different method
by Baters and Pinelis [16].

For all these reasons we prefer to discard the presently available theoretical arguments
in favour of the SVZ model and to consider this model as a purely phenomenological
guess, which needs support from experiment to become credible,

6. Conclusion

The SVZ method of estimating the matrix element (1) is based on a very nice mathemat-
ical idea and on very controversial phenomenology. A study of fine splittings in the spectra
of heavy quarkonia seems particularly suitable to setile che point, whether or not the SVZ
model is realistic. Present data on fine splittings in the cc and bb spectra give no support
for the model, but a good quantitative analysis of the problem would be of great interest
and should be able to eliminate: either the model, or one of its mosc siriking difficulties.
For an attempt in this direction cf. [17].
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