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A programme investigating particle creation in a black hole by the application of flat-
-spacetime, quantum-field results is carried out. The utilization of the Casimir-effect results
and those of accelerated mirrors reveals that a black hole should produce blackbody radiation
that exactly coincides with Hawking’s. An important difference between the vacuum stress-
tensors of scalar and electromagnetic fields is found. The blackbody spectrum of Hawking
radiation is due to the interaction of the radiation with a “cavity” formed by the potential
barrier of the gravitational field. The consideration of the potential-barrier finite conductivity
makes it possible to eliminate the pathology of the vacuum stress-tensor on the horizon
and to reveal that the blackbody radiation should be created in the whole region [3M, =].

PACS numbers: 04.60.+n

1. Introduction; the insufficiency of existing accounts

The generalizations of quantum-field theory to Riemannian spacetimes have begun
to be applied seriously to various cosmological and astrophysical problems. In consequence
the processes of creation of particles have been predicted in a variety of general relativistic
situations (see, for example, De Witt,.1975, and references cited therein). But the careful
study of gravitational problems has puzzled the researchers with paradoxes and questions
which have so far been successfully evaded in other applications of quantum field theory.
A major stumbling block appears to be the inability to extract from the mathematical
formalism of Riemannian-spacetime generalizations any correlate of the intuitive notion
of particles. Indeed, according to some scholarly notions, elementary particles are certain
representations of the Poincare group. But there is no global Killing vector at all in curved
spacetime generic situation. Hence quantum field theory cannot ultimately be based on the
Poincare group. What is needed is a theory that takes into account the full covariance
of Einstein’s view of spacetime as a Riemannian manifold.

In particular, it was discovered that, because of quantum-field effects, a black hole,
formed by gravitational collapse, has to emit particles-thermal blackbody radiation (Haw-
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king, 1975). However, the fact that quantum field theory in curved spacetimes does not
yet exist, at least as a coherent discipline, induces severe ambiguities in the description of
important aspects of this effect.

First, it has never been clear where the Hawking radiation is being created. At least
three schools of thought have emerged (Fulling, 1977). According to one group of thinkers,
thermal radiation must originate even in the collapsing matter.

Secondly, it has never been distinctly known what®happens near the horizon of the
evaporating black hole. The clarification of the situation depends on the knowledge of the
energy-momentum tensor of the quantum field in the vicinity of the horizon. But this
quantity is formally divergent, and the meaningful component must be extracted by a regu-
larization procedure. Such procedures always involve ambiguities which must be resolved
by the application of additional criteria, e.g. of “physical reasonableness”, Different pro-
cedures hinge on different assumptions, and it is difficult to find compelling justification
for any of them. Moreover, the published literature on particle creation by a black hole
is mathematically too sophisticated without providing any easy physical insight as to what
is involved. And what is the physical explanation as to why a distant stationary observer
will find thermal radiation with a temperature that is inversely proportional to hole mass?

In view of the above, it seems reasonable not to increase the number of treatises based
on “more physically significant definitions”, but to look instead for a way (i.e. method)
of reducing black-hole evaporation effect to beiier understood effects observed in the labora-
tory. This should enable us to give either experimental, or less ambiguous theoretical
answers to the questions put above. At least part of the task can be fulfilled by the reduction
of the effect of particle creation in the gravitational field of a black hole to quantum-field
effects in flat spacetime. This programme can be carried out by looking for means of
approximating the gravitational field of the black hole by something more convenient.

This paper sketches the programme of reduction of the black-hole-evaporation effect
to the Casimir effect and to the effect of particle creation by accelerated mirrors. The
influence of a spherically-symmetric gravitational field on the propagation of massless
waves is taken into account with the help of a spherical conducting barrier. The first ideal
model of evaporation process was constructed with the help of the Casimir effect (Nugayev
and Bashkov, 1979). As is well-known, the gravitational field of a black hole acts as a barrier
to propagation of massless waves. Viewing the peak of the barrier (r = 3M; ¢ = G = 1)
as the surface of a refleciing sphere permitted us to apply to a black hole the results of
various calculations of the Casimir effect. It appeared that the flow of negative Casimir
energy should cause the area of the horizon to shrink at a rate consistent with the energy
flux observed at future infinity. But the model was too primitive since it provided only
qualitative agreement with Hawking’s result.

Hence, the second stage of the programme had to be realized. It consisted in the
construction of a more sophisticated model capable of demonstrating that the mere existence
of a spherical barrier and of the horizon is sufficient to compel the black hole to produce
thermal radiation of a temperature that exactly coincides with the result of Hawking
(Nugayev, 1982). That was done by means of reducing the black-hole-evaporation effect
to the effect of particle creation by accelerated mirrors. The connection between these
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effects made it possible to find an important difference between the vacuum expectation
values of the energy-momentum tensors of scalar and electromagnetic fields in the vicinity
of the horizon (Nugayev, 1983). But even the second model appears to be too primitive
to provide a satisfactory description of the particle-creation process since the vacuum stress-
-tensor diverges in the reference frame of a freely falling observer as r — 2M. The pathol-
ogy of the second model is due to the assumption of ideal conductivity, which is obviously
not the case for the spherical potential barrier of a black hole. The purpose of this paper
is to carry out the ncXt stage of the programme and to take into account the potential-
-barrier-finite-conductivity term. It helps to reveal that particles are created in the [3M, o]
region. A complete plan of the reductionist programme is drawn up which can show the
way of solving of the above questions. The identity of the reduction method to that of
Hawking is established and an astonishing coincidence of his and of our results is explained.

2. The potential barrier

The possibility of application of quantum-field results to the case of ‘the black hole
is based on the following fact.

Considering the behaviour of massless integer spin waves in the gravitational field
of a nonrotating black hole Price (1972) discovered that the curvature of spacetime creates
an effective potential barrier penetrable for high-frequency waves and impenetrable for
waves with low frequency. In particular, the Klein-Gordon equation in spherical coordi-
nates with 9 having an angular dependence of a spherical harmonic can be reduced to the
equation

Yot — Y e +Fe(r)'|0 =0 (2 1)

Here the comma denotes differentiation with respect to time 7 and Regge-Wheeler “tortoise”
coordinate r* = r+2M In (r[2M—1) + const (¢ = G = 1); M is the black hole’s mass,
r is the space coordinate of the Schwarzschild frame of reference {t,r, 0, ¢}.

The equaiion has the same form as the Schrddinger equation in one dimension for
a particle of energy W2 in the potential F(r) = (1-2M/r)xI({+ 1)/r? The useful and
interesting property of the curvature potential F(r) consists in that it is a localized barrier
for massless waves. The numerical calculations (Price, 1972; Page, 1975, Sanchez, 1978)
indicate that the barrier is so well-localized near r = 1.5 R, (R, = 2M) that for the propa-
gation of scalar and electromagnetic waves we can consider the regions quite near the
horizon and far away from it as “flat”. Almost all the scattering takes place in the small
region near the peak of the potential barrier.

Fabbri (1975) evaluated the absorption cross section for the absorption of electro-
magnetic waves by a Schwarzschild black hole. Having imposed purely ingoing (on the
horizon) and outgoing (far away from it) boundary conditions, he estimated the transmission
coefficients 7; of the barrier first. For frequencies less than

(I+D(I-1)! ]Z(W Ry,

W, =2/J2TR,; T, =~
V<l T ’[(21)1(21+1)u
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For W > W,
T,=0 for I>1I,

Ti,=1 for 1<,

When the frequency W is smaller than the critical frequency W, turning points exist for
all partial waves, that is, for all values of /. When W > W, turning points exist only for
high / waves; more precisely, they exist if / is greater than the critical parameter /, given
by L(.+1) = 2TW*M>.

o«

=
am=:;—2 E QI+ 1T,

i=1

In the high-frequency limit {3, = 4~ nR2. In the low-frequency limit a,4,, = ¥ T(R,)*W2.
Consequently, 6,,, ~ o' under W > W,, and o,,, < 0ls) at W < W,. The black hole
is almost unable to absorb electromagnetic waves at W < W_. Hence W, (or something
not very different from it) is the cutoff frequency for the absorption of electromagnetic
waves by a Schwarzschild black hole.

The cases of scalar fields (Starobinsky, 1973) and gravitational fields (not affecting
the background metric) (Fackerell, 1971) are analogous to the electromagnetic case. In
particular, Fackerell found that the transmission coefficient of gravitational radiation for
/> 2 vanishes at W — 0 as Ww¥*2’

Thus, the potential barrier of the black hole acts as a real conducior which conducts
well at low frequencies, but as the frequencies increase, its conductivity diminishes. That
is why for the purpose of investigating the propagation of massless waves in Schwarzschild
background we can replace the gravitational field of the black hole by a real conduciing
shell with properties described below. The radius of the shell is R = 1.5 R,.

It appears that the mere existence of the conducting shell near the horizon is sufficient
to compel the black hole to emit black-body radiation of a temperature inversely propor-
tional to M. The purpose of the remaining parts is to show that the evaporation can be
described by two effects familiar fraom quantum electrodynamics: the Casimir effect (the
rough estimate) and the effect of particle creation by accelerating mirrors (a more precise
account).

3. Particle creation by a black hole as a consequence of the Casimir effect

3A. Vacuum fluctuations of the electromagnetic field give rise to an attractive force
between a pair of neutral parallel, flat conducting plates (Casimir, 1948, 1949).- When
one quantizes the field subject to the appropriate boundary conditions on the plates and
calculate the vacuum energy with a wavelength cutoff, one finds that as the separation
between the plates changes, the vacuum energy per unit area changes by a finite, cutoff-
-independent amount. So, in spite of the formal divergence of vacuum energy, a change
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in the configuration of the plates causes a finite shift in the vacuum-state energy, described
by the expression

AE = —n*hcA[720d°. 3.1

Here A denotes the area of each plate, and d is a finite separation between them.

It should be specially pointed out that the Casimir energy is of pure vacuum origin.
No real particles are involved, only virtual ones. But the experiments (Deryagin, Abriko-
sova, Lifshitz, 1956; Sparnaay, 1958) encourage us to take it seriously.

For the electromagnetic field' the stress-tensor of the vacuum between the plates
was calculated by De Wiit (1975):

2 2
n*h
T‘” vac = T“: +Tpv = e dla —1, 1, 1,3
T T = 50 g( )
3A%hc?
nzc diag (1, §, 1, %), (3.2)

where A is the frequency cutoff that cuts off the high-frequency waves.

T{Z, can be interpreted as corresponding to a gas with rather “bizarre” (De Witt)
properties: negative energy and pressure in the direction perpendicular to the plate surfaces,
but positive pressure in the other iwo directions. The “‘gas’ satisfies the thermodynamical
law dE = TdS—pdV. Hence if one slowly (dS = 0) pulls the conductors apart, the work
done against the tension shows up exacily as an increase in the vacuum energy.

The cutoff-dependent term T}, has the same form as the stress tensor of an ordinary
photon gas. This term is identical with the expression for the uncluttered vacuum, so it is
said not to have any connection with the effect observed in the laboratory. Being universal,
it i1s usually discarded.

The works of Boyer (1968, 1970) offer a method for calculating the vacuum energy
inside the uncharged sphere made from a physically realizable conductor. (A real conductor
conducts well at low frequencies, but as the frequencies increase its conductivity diminishes
considerably.)

Let us approximate a sphere of radius d by two parallel plates of area nd? at a distance
d apart. With the help of (3.1) and (3.2) we can obtain

AE = ~7*hc/120d + 3heA*d’ n, (-3)

where the second part is a correction for finite conductivity of the plates. The approxima-
tion is justified by the exact caiculations of Boyer (1968) and Davies (1972) performed
independently. Having computed the vacuum energy of a sphere with ideal conductivity,
they demonstrated that 4E exactly coincides in magnitude with the cutofl-independent
part of Eq. (3.3). Only the sign changes. So, for finite conductivity

AE = n*hcj720d —3heAd?[n.

! The expression for the stress tensor of vacuum in the case of massiess scalar field differs from that
for the electromagnetic field only by the factor (1/2).
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Let us now turn to the case of a Schwarzschild black hole for an application of the
obtained results.

3B. Considering the peak of the potential barrier (r = 1.5 R,) as the surface of a Casimir
conducting sphere, we can calculate the energy of the vacuum between the barrier and the
horizon®. Yet, to choose a correct sign we have to consider the process of black-hole forma-
tion. At the very beginning the surface of a collapsing star R, and the peak of the potential
barrier R, can be approximated by Casimir spheres. First the negativity of the vacuum
energy between the barrier and the star is determined by the comparability of R, and R,
(Boyer, 1968). Then the negative flow is strengthened by the formation of the horizon.
It should be pointed out that the negativity of the finite amount of vacuum energy inside
the sphere with R = 3M does not violate the positive-energy conditions (R. Penrose and
S. Hawking) crucial to the very existence of black holes because of a certain amount
of particles created by time-dependent gravitational field. The resulting positive flow de-
pends on the details of the collapse. At late times (essential for Hawking radiation) the
particles will disperse.

Thus, we must utilize (3.3) with d = 1.5 R,:

nhe he
AE =% —13 ———— +26 —————;
3R,-720 xR, 729
the energy density

2he 4 1.2he
720R;  T29R}

(3.4)

The positive cutoff-dependent term &, cannot be discarded in accordance with usual
practice, for it depends now on A = o, = /2/\/27R,~ d-1, i.e. on the distance between
the plates. Both parts of the vacuum energy T°° have the same order of magnitude and the
same dependence on R,. The first part £_, represents the flux of negative virtual energy
flowing into the horizon of the black hole and diminishing its mass according to the law
dM|dt = — const.[M?. It can be shown that the negative energy flux should cause the area
of the horizon to shrink at a rate consistent wich the energy flux observed at infinity (Sciama,
Candelas, Deutsch, 1980). That is why the cutoff-dependent part ¢,), having the same
form as the stress-tensor of an ordinary photon gas, must be considered as representing
the flux of real particles ““created” per unit of the barrier’s surface.

It is quite reasonable to admit that, because of the interaction with “walls”, the ther-
modynamic equilibrium installs itself inside the cavity formed by the surfaces of the barrier
and of the collapsing star. Consequently, the radiation there should be blackbody radiation.
For a distant stationary observer at I+ the surface of the collapsing star reaches the horizon
during the infinite time interval. So the blackbody spectrum of Hawking radiation at
future infinity is, perhaps, due to the peculiarities of interaction of the “walls” with radia-
tion in the black-hole-formation process.

2 The region under the horizon is inaccessible to a distant observer.
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According to the Stefan-Boltzmann law, ce = ¢T*, hence

he

T —
n k'R,

I

(3.5)

This expression coincides in the order of magnitude with the result of Hawking (1975).
The qualitative agreement of (3.5) with Hawking’s formulae should not surprise us since
2
27 R,
of the peak of the barrier at all.

Secondly, the real potential barrier owes by a considerable depth, consisting of various
strata, each with a cutoff frequency of its own.

Thirdly, the uniformity of vacuum-energy distribution between parallel flat plates
(Ford, 1974) is obviously not the case inside the spherical potential barrier.

All these indicate (hat the Casimir model of black-hole evaporation is too rough to
reproduce the important features of Hawking radiation. That is why a more precise account
of this process must hinge on a model that is less dependent on these features of the potential
barrier. The model should produce a more adequate account of the situation in the region
between the peak of the barrier and the horizon. This can be done by applying accelerated-
-mairror resulis.

is not an exact cutoff frequency just as d = 1.5 R, is not an exact radius

4. Utilizing the accelerated mirrors

4A. Both for scalar and for electromagnetic fields the vacuum stresses induced by
uniform acceleration of a perfect plane conductor correspond to the absence from the
vacuum of blackbody radiation (Cardelas and Deutsch, 1977). Calculating the physically
significant or renormalized stress energy tensor {T"'(x))> as the difference between the
vacuum expectation value of the stress energy tensor {7"*>,,. and the value it would have
with the plane conductor at rest, one finds that in the £/b — oo limit (far from conductor)
for scalar field

ax

1 w’dw
(T} ~ — 2;2%4}‘«22 dtag( L343 #.D
o
For electromagnetic field
do(w”+w
T~ = f—f—--—’d B-L 4 @2)

Here accelerated (Rindler) coordinates are introduced:
t=¢sht, x=2¢cht, do? = =& +dEt+dy? +dz”

In this system of reference the curves £ = const, (), z) = const are worldlines of constant
proper acceleration {-'. The surface ¢ = b represents the trajectory of the barrier.
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The asymptotic forms (4.1)-(4.2) are independent of Neumann or Dirichlet boundary
conditions on the barrier. They are also independent of the acceleration b-! of the barrier.
They depend on the acceleration of the local Killing trajectory only.

The temperature of the blackbody radiation (in the frame of an observer with proper
acceleration &-') is T = (2rné)~!. It means that if thermal radiation of temperature (2r&)-!
was added, the resuliing state would be indistinguishable, under ¢/b — oo, from the usual
Minkowski vacuum (Unruh, 1976; Candelas and Raine, 1976).

For treating the more important case of an accelerating plane barrier made from
a physically realizable conducior we have to consider the 2-dimensional results first. In
the case of a barrier at rest the vacuum tensor reduces to that of uncluttered- Minkowski
space. Because of the conformal invariance of the 2-dimensional theory one expects the
same to be true for an accelerated barrier, and so it is (De Witt, 1975). Yet here a problem
occurs: if we insert an oscillating factor exp (iw/A) into the expression for vacuum energy,
we find that

(T e = ¢7° “ <1 ° (4.3)
we = ¢ \o 1) '
But this means that the vacuum stress iends to zero as £ — oo, something it does not do
in the unaccelerated case. The cause of this phenomenon is that o has the significance
of a local particle frequency only at £ = 0 (on the surface of the conductor). Anywhere
else the local frequency is &-'w. The cutoff A in (4.3) refers not to a local frequency but
to a Doppler shifted one. If we agree to use a A that varies with position in such a way
as to give always the same local cutoff frequency, then (4.3) should be replaced by

e —ﬁ(‘ 0 44
>vac"‘ 1z \0 1) ()

Nevertheless, calculations performed with the help of covariant point-separaiion technique
(Fulling and Davies, 1975) disclose that (4.4) is only a finite-conductivity correction. The
complete 2-dimensional stress-tensor expression is

T e 1 (10 +A2 10 5)
Vo T AT T a4ge2\0 1) T 2 \0 1) ‘
Let us compare (4.1) and T¢Z, of (4.5). While passing to four dimensions the &2
term transforms to £-%. The dimension arguments provide also the transformation of A2
term to A* Hence in the 4-dimensional case we obtain the following finite-conductivity
correction:

4

34
TE) = 5 diag (1, 5.5, %), (4.6)

where the coefficient behind A* and the bracket-expression are justified by comparison
with the equation for the finite-conduciivity correction of a single unaccelerated conductor.
(This equation coincides with T{Y , of Eq. (3.2), obtained as a result of explicit calculations.)
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Therefore, the full expression for the vacuum stress-tensor of scalar field induced
by the acceleration of a physically realizable plane conductor is:

o

, 1 o’dw 34* .
<TM >vac = - 21‘62€4 dlag (1’ 3 3’ 3)+ dldg (1> 33 T)' (4~7)
V]

The equation (4.7) is analogous to that of the Casimir effect in the sense that in both cases
the finite-conductivity corrections are independent of the state of motion of the conductors.
(4.7) is independent of the proper acceleration of the conductor. It depends on the local
Killing acceleration only.

Consider a particle which is at rest in the gravitational field of a Schwarzschild black

2M
hole. Its 4-velocity ¢ = dx%/dr = ((1— —r—), 0,0, O). The proper acceleration of the
particle is a* = Dufldt = dldt+T ;,u” w = Iadd(e, B,y = t,r,0, ¢). The single non-
2M
vanishing component of Iy, is I';, = (M/r?) 1-——r—>. Hence

M po1/2 2M\™V2 M
a*={0,—,0,0), lal =(gpa®a) " ={1-— —5 . (4.8a)
r r r
A distant stationary observer will measure
pu* dv f 2M)"2
o —=a" 1= —]
dt dt ( r
, M
ldi = (ggpd’d’)'? = - (4.8b)

The potential barrier (localized near r = 3M) has a nonzero proper acceleration
b' ~ M-, Now we can utilize accelerated-mirror results.

4B. According to the Strong (or Einstein’s) Principle of Equivalence (Thorne, Light-
man and Lee, 1973), we can replace a set of observers that are at rest (r = r,) in the gravita-

tional field of a black hole by a set of observers that move with proper accelerations
2M\"t M

a= (1 - r—) — in flat spacetime. (The horizon with all its trapped-surface properties
0 ré 0

is, of course, left unchanged.) The observer that rests on the peak of the potential barrier
in the gravitational field of a Schwarzschild black hole is equivalent to an observer on the
surface of a real conducting shell that expands with proper acceleration b-' ~ M~! in flat
spacetime. The success of the approximation of Casimir sphere by two parallel plates
permits us, for the calculation of {(T*),,., to exchange the expanding sphere by two plane
conductors with equal proper accelerations.

It should be pointed out that this plate-approximation is valid only for sufficiently
distant regions: for the vicinity of the horizon and for future infinity J+. Indeed,
(!) for r < 3M the turning points of waves with various frequencies fill in all the interval
[2M, 3M] (Fabbri, 1975). But for an observer in the vicinity of the horizon (r ~ 2M)
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the replacement of short-tailed potential barrier at r & 3M by a plane conductor should
not distort the image considerably.

(i) Accordingto § 3, the mass of the hole must diminish owing to the initial flow of negative
Casimir energy:

dM A 14 -2

— = — —5; consequently, M - 0 and — ~ M™" - c0.

dt M b
So, the asymptotic forms (4.1) and (4.2) can be utilized at late times only. The replacement
of the long-tailed part of the spherical potential barrier by a real conducting plane should
not spoil the frequency picture only if the observer is placed at the future infinity J+.

Now we can investigate the vacuum stress-iensor of scalar and electromagnetic fields

near the horizon.
(a) An observer who is at rest (r = ry) in the gravitational field near the horizon will
discover a negative flux of blackbody radiation with temperature

-, 1M 2M\"H?
T=Qnt) ' =——|1-—] .

2n o to

The ratio of observed energy hw to energy hw, (the gravitational blue shift) of the

photon emitted at J+ is
-1/2
w —12 2M
— = =(1-== )
- € o

. w ) Wo W
Along the light ray? = const (Misner, Thorne, Wheeler, 1973). Hence Tr =7
0

. W
from which Ty = — T.
Wo

A disiant stationary observer at future infinity J+ will find that the vacuum stress
in the vicinity of the horizon corresponds to absence from the vacuum of radiation with
temperature T, = (2n)-(M/r}).

According to (4.8), j:—/;f is the magnitude of acceleration of a particle at rest in the

o
gravitational field of a Schwarzschild black hole. It tends to so-called *‘surface gravity”
x when the particle is infinitesimally close to the event horizon (Bardeen, Carter, Hawking,
1973). Strictly speaking, the result follows from the fact that the local Killing acceleration
&= al = Jaa® (& = il ¥ = 'K?, K® —time translating Killing vector) tends
to — K, sh"K? = k (where WK, = —1) at the horizon of a Schwarzschild black hole.
Kk represents the extent to which the time coordinate ¢ is not an affine parameter along the
generators of the horizon. Along the horizon x is constant. For a nonrotating black hole

&M c*
RZ  46M’
The invariance of the distribution funciion N = h~4(J,/v®) along the world line of

a photon (Misner at al., 1973, part 2, ch. 22) guarantees that the radiation (or the lack
of it) which is blackbody in one local Lorentz frame would remain blackbody for any other

K o=
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local Lorentz observer. That is why an observer at J+ discovers that the vacuam stress
in the vicinity of the horizon corresponds to the absence from the vacuum of blackbody

K
radiation with T = o Owing to Candelas, Deutsch and Sciama (1981), we can conclude
.4

that the negative flow through the horizon shows up as the positive flux of particles at J+

with T = 7 . This result exactly coincides with that of Hawking. Thus we can now
T

explain the origin of “the striking formal resemblance between the black-hole-formation
process and the accelerating mirror system” (Davies, Fulling, Unruh, 1976).

{b) Now we can evaluate the vacuum stress tensor for massless fields in the vicinity of the
horizon and far away from it. Using the expressions w, = wk, k = (4M)-! and Eq. (4.82)
we obiain (for scalar field):

MYAMY* [ oddo,

<Tuv>vac = 7"(+) = - 2 8aM
2M Mo _1q
n? (1~ —) r® ¢
r
kY
x diag(1,+, 3. D+ ——-—dlag(i, R (4.9a)

where A is to be evaluated in r —» 2M and (r/M) — oo limits separately.
For electromagnetic field

N M*@amy* wodwo(cuo+rc ) N
<Tu >vac = — M ) eano/x d g(la 3 %’ %
21— })r
r
[¢]
31%
+ o diag (1,4, 4. D). (49b)
2n

In the latter case the spectrum of the lack of blackbody radiation is not Planckian,
but is precisely thermal.

2M\™*
In the vicinity of the horizon 4 = w, (1 - —-—-) , hence (for scalar field):
r
- N 1 ¢ wgdwo di L 111
< >vac r~jM - (1 2M eSnMwo__l lag( y 3533
r
3wl
+ < diag(L, 3,4 D). (4.10)
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In the electromagnetic case

‘ 1 r wodwy(wd+K*)
<T“v>vac —zz— - IM\2 ez,;wo/x_l di 1ag (13 3 39 3
h 2nt{1- —
(-7
3w4
b diag (1,44, D), @11

2M
272 (1— —)
r

The first parts of both (4.10) and (4.11) exactly coincide wiih the results of strict
calculations (Candelas, 1980), obtained by the usual methods of quantum-field theory
in curved spacetimes. These results were obtained for Boulwarc vacuum |B), defined

. .. . . 0
by requiring normal modes to be positive frequency with respect to the Killing vector —

with respect to which the exterior region is static. This vacuum corresponds to the familiar
concept of an empty state for large radii. It is considered pathological at the horizon in
the sense that the expectation value of the siress tensor 7(Z, evaluated in a freely falling
frame diverges as r —» 2M. But the account of the finite-conductivity correction term
T!}, puts things right. We might like to think of T¢, = {(B|T*"|B) as only the pure vacuum
polarization part of {T**>,.. The *‘radiation part”” T/}, also becomes infinite on the horizon,
making the sum of the “pure vacuum polarization part” and the *‘radiation part” finite.

In the case of a uniformly accelerated perfect conductor Candelas and Deutsch (1977,
1978) found that for a massless field of spin s

h(s) 4 odw(w? +5%)

Tve ~ = 75 | xp (Znwo)—(=D)
0 *

5 diag (1, 3, 5 3, 4.12)

where h(s) is the number of helicity states.
The “very close resemblance” of black-hole results to ihose for an accelerated plane
conductor led P. Candelas to conjecture that for a black hole

v h(s) dcow(w +xs?)
(BlT“ lB> ~- Znoix di g(lo 3 39 ; (413)
r~2M 2 2 (1 21\4) e ( )
7: e —

r

He verified this conjecture by direct calculation for the s = 1 case. But, with the help of
(4.8a) and w, = wk, we can easily transform (4.12) into (4.13). Taking into account the
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finite-conductivity correction terms leads to

—— h(s) dwowo(wo+xs )
<BIT"|B) gzn - M ook _( ()% ag (1,3, 3, 3)
()

r

)t
+ ’“——‘—zﬁ"d!ag (1,35 %) (4.14)
21— —
r

Far from the horizon (r > 2M), unlike the r ~ 2M case, the vacuum-polarization
term T¢I, is negligible, and what is left is the “radiation part” T,:

3h
T 2 DY dig (1,44, @.15)

rp2M 271

The vacuum stress-tensor at infinity corresponds to that of ordinary photon gas. Hence
T{, represents the energy densiiy depressed below that of the Minkowski vacuum that
ﬂows down the horizon and diminishes its surface. This flow appears to an observer at
J+ as a positive flux of particles created by the gravitational field of a Schwarzschild black
hole. The investigation of the Casimir effect indicates that the particles involved in the
region between the horizon and the peak of the potential barrier are virtual ones. Con-
sequently the real particles must be created outside the region [2M, 3M). This conclusion
is supported by the following considerations revealing the mechanism of the particle-
-creation process.

If a conducting barrier is present in vacuum, the reflection of vacuum fluctuations gives
rise to a cloud of virtual negative energy in the vicinity of the conductor surface. The case of
the (nonuniform'y) accelerated barrier differs from the stationary one in that the reflected
wave is amplified to give a significant flux of particles. The flux is observable far from the
barrier, where the virtual cloud is absent. Now the case of the nonrotating black hole differs
from the one mentioned above in that the role of the real accelerated conductor is played by
the gravitational potential barrier that “pushes” the partial waves in the direction of the
distant observer at future infinity J+, The “corductor” is forced to move with nonuniform
(M # 0) acceleration by the flux of negative virtual energy that flows into the hole and
sets the whole cutoff mechanism in motion. But while considering the evaporation process
we must keep in mind that the replacement of the potential barrier by a real thin conducting
shell is justified if we are interested in the vacuum stresses in the vicinity of the horizon
only. When considering the process of particle creation we must take into account the fact
that the potential barrier has a long tail of its own — a long mantle that falls from the
peak at r = 3M up to spatial infinity r = co. Hence each partial wave with fixed (w; /)
has a barrier of its own (i.e. the turning point) located scmewhere in the [3M, oo] region.
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Consequently, none of the real particles are created under the horizon. Nor are they created
“even in the collapsing matter”, nor in the vicinity of r = 2M. They are created by the tail
of the potential barrier in all the region [3M, o).

To answer the question why the radiation appearing at J* is the blackbody radiation
let us look at the region between the peak of the potential barrier and the horizon. Consider
the Casimir effect for a sphere placed around the horizon of a black hole. All the action
of the gravitational field on the propagation of the radiation inside the sphere reduces
to supplying the virtual frequencies multiplied by the (1—2M/r)™* coefficients. According
to Ford (1975), they are the wavelengths of the order of d (the distance between the Casimir
plates) that give the main impact to the Casimir energy. In the hole case these wavelengths
correspond to unstable photons moving around the horizon at »r = 3M with impact param-
eters that slightly differ from the critical one. These particles give the main impact to the
Hawking energy (see the next section). We can consider the interaction of these waves
with the surface of the sphere without taking the horizon into account. The interaction
of impact-parameter photons with the surface of the sphere leads to the installation of
thermodynamical equilibrium. Hence the radiation (or the lack of it) inside the cavity
must be the blackbody radiation. No real particles are involved in the region inside the
cavity, only viriual ones. But the existence of the horizon and (especially) of the potential
barrier forces us to take them seriously. The initial flow of negative Casimir energy into
the hole forces the barrier to shrink (r, — r,) releasing the main-impact photons at r = 3Af.
After penetrating through the r = 3M barrier each virtual (w, /) wave appears to the obser-
ver at J* as a real one created by accelerated barrier at the turning point.

5. Comparison with the Hawking method

The identity of the proposed method to that of Hawking can be revealed in a more
direct way with the help of results obtained by Davies (1975). He indicated that Hawking’s
conclusion on the exisience of blackbody radiation hinges on the existence of the event
horizon in the Schwarzschild system, which divides the solutions of the massless wave
equation into two classes. The solutions of the first class manage to propagate from J-
through the center of the collapsing object and out to J*+. Those solutions which are trapped
by the formation of the horizon and.do not reach J* form the second class. It is sudden
variation in the Fourier transform on J- due to this division that is responsible for particle
production.

Davies noticed that a similar situation would arise in the Rindler case. Almost identical
properties may be ascribed to the Rindler system by equipping the space with a reflecting
wall. Its purpose is to turn incoming waves into outgoing ones just in the same manner
as incoming waves are changed into outgoing waves by passage through the centre of
a collapsing object in the black hole system. He showed that a straightforward application
of Hawking’s argument to the flat-spacetime system leads to a Fourier transform which
is essentially identical to that of the black hole case.

The mathematical technique of Davies’s paper will be of special importance to us;
that is why we shall consider it more thoroughly.
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Rindler coordinates may be defined for the two-dimensional Minkowski space by
z=x*=H)"?, .0 <z < o,
b = tanh~!(¢/x), —0 < b < o, (5.1)

with lines of constant z corresponding to the world lines of observers undergoing uniform
acceleration of z-*. The two asymptotes (z = 0, v = —o0) and (z = 0, v = + ) therefore
behave as event horizons. They were referred to by Davies as the past and the future
horizons respectively.

The surfaces v = const are the Cauchy surfaces for the region covered by Rindler
coordinates, so we may express the field at a general point (z, v) in terms of a complete
set of incoming solutions of the massless covariant wave equation. In particular we may
consider the decomposition

$(z,0) = 3 (@, fu+aufs) (5-2)

on a surface with large negative ». In a quantum theory a,,, a; may beinterpreted as annihila-
tion and creation operators for incoming scalar particles.

In distant regions sizeable contribuiions to the field disturbance will arise from two
sources, First the incoming disturbances discussed above will cross the surface v = oo,
This surface is a future event horizon for the accelerating observers, so that the region
beyond it is analogous to a “black hole”. There will also be outgoing disturbances caused
by reflection at the wall. They appear to a distant observer to have crossed the past event
horizon.

In a region with v large and positive (near the point 0) we may therefore decompose
the field as follows:

¢(Za U) = z (bwgw'*'b;gw’*"cwhm"'cz;ﬁm), (53)

where g, represent solutions which are reflected by the wall and pass out to large z while
h,, represent solutions which cross the horizon into the “black hole”. The operators b and
¢ are the respective annihilation and creation operators for particles of these types.

If we write

8

8o = S (awm’fm'+ﬁmm’fw')dw, | (54)

[=]

then a,, and B, are in general nonzero. Consequently the vacuum state for incoming

particles will not be the vacuum state for an observer near 0. He will instead see the produc-
o0

tion of particles with an expectation value dw { |B,.|?dw’ for the range w to @+dw.
‘ o

Having determined the form of g, in the region of large negative v by adopting the
argument used by Hawking in the Schwarzschild case, Davies calculated o, and S,
by taking a Fourier transform of g,. The result turned out to be the same as that given by
Hawking:

r(1—io)l e "|r(1—iw)|

laww’ - W” lBa)w’i = '7W (55)
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If (5.5) is substituted into the expression for the amount of particle production, this expres-
sion diverges logarithmically. This means a steady rate of particle production over an
infinite period of time. This may be demonstrated by constructing wave packets.

Consider an incoming wave packet approaching the wall at an advanced time 7 > 1,
(1o — some characteristic proper time). All of this packet will cross the future horizon
into the “black hole” region. To a Rindler observer such as 0 it will appear to have been
completely absorbed by the wall. However, 0 will also see the emission of radiation by the
wall, due to the particle production effect, from wave packets which approach the wall
for T < 1o, and then reflect to reach 0. For him all of these outgoing wave packets will
appear to have crossed the past horizon (in the absence of the wall) in a manner identical
to that of the passage of the former incoming packet into the “black hole”. The ratio
of emission to absorption cross section turns out to be (e*™’— 1)~ This expression has the
form of that for a black body radiator of temperature (2z)~'. It does not depend on the
distance between the wall and the origin of coordinates. To convert this expression to
geometric units it should be remembered that an observer with coordinates (z, v) would
interpret a wave with time dependence exp (iwv) as having a frequency w/z = wx (proper
acceleration of observer). To such an observer the wall surface would appear to have
a temperature of (acceleration){2n.

Now we can apply Davies’s results to the case of a black hole. The potential barrier
localized near r =2 3M behaves like a wall that turns the incoming waves into outgoing
ones. An observer at J+ is accelerated towards an observer on the peak of the wall with

proper acceleration
2M\"'? M
ol =(1-=) =

2
To To

1
ro=3M 3J§M‘

Therefore from the point of view of an observer at J+ the barrier radiates as a blackbody
with temperature af2n = (6\/§nM)-1,'which is in qualitative agreement with Hawking’s
result. The decay is again due to the fact that r = 3M is not an exact peak of the barrier
at all. And, of course, the approximation of a sphere by a plane conductor at r = 3M
is too rough.

The agreement of (5.6) with Hawking’s results is of no surprise since Davies’s method
is almost identical to that of Hawking. But the origin of this identity lies in the deep analogy
between Rindler and Kruskal coordinates. Indeed, compare the expressions that determine
the transition from Minkowski to Rindler coordinates

{&¢ = (x*—1%)"2; © = tanh™(¢/x)}

with the expressions for the transition from Kruskal coordinates to those of Schwarzschild:

{(2_:,} _1) M = Y22y =AM tanh"(vlu)}'
§i

It can obviously be seen that the relation of Rindler coordinates to those of Minkowski
is almost the same as the relation of Schwarzschild coordinates to those of Kruskal.

I

(5.6)
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All the mathematics of Hawking’s 1975 paper can be reinterpreted as describing the
particle creation by a spherical bariier in flat spacetime with horizon. The reader acquainted
with that paper can easily affirm that this is the case. As in Hawking’s paper, fi, i q;
are again the solutions of the scalar wave equation that are determined on J-, on the event
horizon and on J* respectively. But in considering the solution p,, which propagates
backwards from J+ with zero Cauchy data on the event horizon, the following commentary
is necessary. A part p! of the solution p, will also be scattered by static Schwarzschild
field outside the collapsing body and will end up on J- with the same frequency o, giving
a d(w—ow’) term in o,,.. The remainder P2 of p, will now enter the region between the
horizon and the potential barrier where it will be partly scattered® and partly reflected,
eventually emerging at J*. To an observer near the horizon the wave would seem to have
a very large blue-shift. Because its effective frequency is very high, the wave would propagate
by geometric optics: As was pointed cut by De Witt (1975) the waves crowd together infi-
nitely densely in the region just outside the horizon. This is an expression of gravitational
red shift. The nearer to the horizon a wave finds itself the shorter must be its local wave-
length in order that it has a predetermined fixed frequency at infinity.

1t is these waves that dominate in the flow of created particles at J+. Hence there exists
an effective ray v, such that for v > vy the impact is almost zero. Calculating the form
of pt2) on J- near v = v,, we can estimate the total particle flux at future infinity, And
this can be done with the help of Hawking’s arguments and with all the null vectors and
other techniques for work near the horizons. All the remaining part of Hawking’s 1975
paper is firm and undeniable support of the conclusion that it is the horizon and the potential
barrier that create particles with T = k/2x. It is now quite understandable why Hawking’s
final result does not depend on the details of the collapse! It is because his mathematics
in fact pictures the effect of particle creation by a spherical potential barrier. This can be
seen with more clarity from De Witt’s 1975 description of black-hole évaporation.

6. Discussion

We have provided explanations of why the radiation is the blackbody radiation and
where it comes from. Yet our considerations are qualitative ones. The strict answer depends
on the future quantitative analysis of the situation in the vicinity of the potential barrier.
I believe that the appropriate way to resolve these problems is to realize a programme of
reduction of black-hole evaporation to quantum-field effects in flat spacetime. This pro-
gramme tries to fit the reality by preducing a sequence of models that give more and more
strict and complete descriptions of the evaporation process. The irrefutable “bhard core”
of the programme (J. Lakatos) consists in the assertion that “the effect of black-hole evapo-
ration can- be understood with the help of quantum-field effects in Minkowski spacetime”.
Its “positive heuristic” or strategy of research should consist of a set of auxiliary hypotheses
which define the important problems and install a sequence of models that describe the

3 r = 3M is a critical radius only for stable photon orbits. The region [2M, 3M] is filled with photons
with impact parameter that slightly differs from the critical one (Ford, 1982).
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process with increasing precision. The “positive heuristic” of our programme consists
of the following assertion: “to understand the process of particle creation by a black hole
we must replace its gravitational field by a real conductor”. The form of the conductor
is determined by the particular model.

The first ideal model of the programme — a pair of plate conductors at rest near
the horizon of nonrotating black hole — appeared to be tco rough to describe important
peculiarities of the evaporation process (for instance, the blackbody spectrum of created
particles was lacking). Hence the next step should consist of the following:

(2) exact calculation of the vacuum stress-tensor for a sphere made from a phys.cally
realizable conductor. Then:

(3) {T"">,, for an accelerated infinite barrier with finite conductivity;

@) {T*"),,. for two plates made from a physically realizable conductor;

(5) {T*"),,. for sphere made from an ideal conductor and expanding with acceleration;
(6) The sphere is made from a physically realizable conductor;

(7) Two concentric spheres (one of them made from an ideal conductor) expand with
equal proper accelerations. The sphere with R; < R, has all the reflecting properties of
the even horizon.

(8) The sphere R, is made from a physically realizable conductor.

None of the above fiat-spacetime problems is solved completely, But without their
resolution it is impossible to proceed on the way of clear physical understanding of the
evaporation process.
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