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1. Introduction

The subject of chiral anomalies [1], abelian and non-abelian [2] as well as their finite
counterpart, the Wess-Zumino effective action [3], is far from new. Nevertheless there
has been a steady rate of development both in understanding the structural origin of
quantum anomalies and in appreciating the regions where these effects may be applied
to physical phenomena (for a recent review with many references, see Jackiw’s lectures [4]).

* Presented at the XXIV Cracow School of Theoretical Physics, Zakopane, June 6-19, 1984. (Lecture
notes prepared with the help of J. Sidenius.)
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Within the last couple of years this development has been particularly significant.
Witten [5, 6] noted a remarkable geometric realization of the Wess-Zumino action and
showed how it provided an attractive fermionic interpretation of the old Skyrme-solitons
in the Goldstone-Boson field. The ensuing Skyrme-phenomenology of baryons is currently
attracting a considerable amount of attention [7, 8].

Polyakov and Wiegmann [9] noted the analogous geometric interpretation of the
Wess-Zumino lagrangian in 2 dimensions (see also Ref. [10]). The 2-dimensional model has
turned out to be very interesting from the point of view of bosonization [11-14] as well
as from other points of view [15].

Meanwhile it was pointed out by Stora [16], Zumino et al. [17], and Chou Kuang-
-chao et al. [18] (see also Kawai and Tye [19]) how the topological properties of anomalies
allowed an essentially complete construction (in any even number of space-time dimension)
using the techniques of differential geometry, without having to go through the relatively
obscure calculations of 1-loop Feynman diagrams [38, 1, 2]. Also this approach provides
a very simple and systematic way of constructing the Wess-Zumino effective action of
Goldstone-bosons in a beckground gauge field. The corresponding construction in Ref. [5]
was rather intransparent (and contained a few mistakes as has been discussed at length
in the literature [18-20)).

The main purpose of these lectures is to give an elementary account of the construc-
tion of anomalies and effective actions using the diffrential geometric approach. In particular
we discuss the relationship between different renormalization schemes. In fact the scheme
mostly employed in Refs. [16-18] is not directly suitable for constructing realistic effective
actions for the Goldstone-bosons corresponding to the ordinary pseudoscalar mesons.

There are some very interesting mathematical relations to the Chern-Simons classifica-
tion of topological invariants. These matters we shall not pursue in any detail (see for
example Ref. [33])%.

In Sect. 2 we set up the problem to be analyzed, that of a set of free Dirac fermions
in a non-abelian background gange field. We distinguish between anomalies and renormali-
zation parts, set up the Wess-Zumino consisiency conditions [3] and define the Wess-
-Zumino effective action.

In Sect. 3 we give a brief treatment of the direct attack on the problem provided by
the heat kernel method. We derive some simple results which provide important constraints
on the construction in Sect. 5. Also this gives some insiructive background insight and
allows us to iniroduce Fujikawa’s notion of non-invariance of the quantum measure
[21] as the origin of anomalies.

In Sect. 4 we give a short summary of the language of differential geometry.

Sect. 5 contains the central construction of the various objects discussed.

In Sect. 6 we give explicit results in 4 dimensions for purpose of illustration.

In Sect. 7 we discuss the 2-dimensional case, where a complete ireatment of the effective
action becomes possible, and we indicate the relation to bosonization.

! Very recent further clarification has taken place through works of Alvarez-Gaumé and Ginsparg
[42] and Sumitani [43] who stress connections to the index-theorem.
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2. Formulation of the problem

Let us consider a set of free massless Dirac fermions in a classical non-abelian back-
ground in an even number,

D = 2n, )
of space-time dimensions. The aciion is
S = [ dPxipDy, @
where
D,=0,+V,+vp+14,n D =iyD" (3)

is a covariant derivative. (Although the quantization of the gauge fields in general will
lead to a renormalizable theory only in D < 4 dimensions, the quantized Fermi-theory
considered here is renormalizable in all (even) dimensions. It turns out to be instructive
1o carry out the analysis for general D.) In Minkowski-space

L N e

Yp+1 =

C))
is hermitean. In euclidean space-time it is anti-hermitean. The gauge potentials are matrix-

-valued fields in the Lie algebra of some group. ¥, and A4, are the vector- and axial-vector
fields?2. Equivalently we may introduce the left- ard right-handed components

AR = V*+ 4%, Al = vH-4* (5)
and
S = jdbxq’RDR'PR'*' SdeV—JLDL"PL’ (©®
where
Dy = ¢"+4RL Q)

act on Weyl-fields yg, . of definite chirality.
The effective action for the system of quantized Fermi fields in the classical back-
ground A5, A% is given by

eiw[A,_,AR] - I@V_)@'f’eis’ (8)

where we may regard W as a functional of 4, A5 or of ¥,, 4, according to what is most
convenient.

The action S is invariant under the U(Np) x U(N;) transformations
Pu(x) = gL (IpL(x),  we(x) = gx (Dyr(),
£0x) = g0 ' ()ALX)gL(x) + g1 () gu(x) = (AD™,
AR(x) = gr (AR gR(¥) + gr "(¥)8"gu(x) = (4D, ®)

where y, g are regarded as representing a column of N; (flavour) components and g, gr
are elements of U(N;). In addition we may assume that the Fermi- (quark)- fields possess

2 4y = —igT°4% where g is a coupling constant, T¢ a generator-matrix and Aj is real.



274

N, colour degrees of freedom. We take the background flavour gauge fields to be diagonal
in colour. For the flavour U(1) field this is unrealistic: the QCD gluon field has non-
~trivial colour (and is of course flavour diagonal). For simplicity we shall not allow the
formalism to explicitly account for that. Thus for some purposes it may be of interest
to interpret that mathematical result by interchanging the rdle of colour and flavour.

We shall assume all our fields (4. g(x), g, r(x)) to have boundary conditions such
that in euclidean space-time they are single valued on compactified space. By a stereographic
projection this may be mapped on S°.

Although the action S is invariant under the chiral transformation (9) this is not so of
the effective action W:

W(AL", AR)—W(AL, 4g) # 0 (10)
in general. This phenomenon 1s referred to as the chiral anomaly. As emphasized by Fuji-
kawa [21] it may be blamed on the functional measure 2¥Z2y not being chirally invariant

(see Sect. 3).
For g, i differing infinitesimally from the unit matrix, Egs. (9) become

SAL = Divy = &"v +[AL v1]; 04k = Drug = g +[4R, 1],

where vy g are x-dependent infinitesimal scalar matrix valued functions.
When gy g = I+v, g we define the anomaly by

G(vy, vr; AL, Ar) = 0y 0 W (AL, Ar) = WAL, AR —W(AL, 4p)- (12)
From the group property, (4°')°* = 4“?, follows the Lie algebra property:

[avx.“’.vn“” 6v1.(1’.vu(“] = ‘S[vx.“’.vu“].[vn(".vR”’] (13)

and follow the Wess-Zumino consistency conditions by letting Eq. (13) act on W(A,, 4g):
(Sl.L(x)',,R(:)G(Ug‘Z), l),({z); AL: AR)—évL(z),‘.R(z)G(l?g), US); Ap, Ag)
= G([e1", o1”], [t ok”]; A, Aw)- (14)

All of these relations may be expressed in terms of V and A4 if desired.

We can see that the anomalies are related to a non-conservation of currents defined
as the response of W to a change in the A’s®. Thus we define the matrix-valued right-
-handed current as

—iW(AL,AR) 0 eiW(An..AR) = i oW

SAN(x) SAN(x)

jr(x) = e

(15)

and similarly for the lefi-handed current or the vector and axial vector currents. Then
under a general right-handed change in 4%:

SeW(AyL, Ar) = [ d®x tr (jR(x)0 A% (x)). (16)

3 These currents differ from covariant ones by local terms. For a very recent discussion see Ref. [45}.
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If in particular 545 corresponds to the chiral variafion, Eq. (11), we obtain afier integrating
by parts (vg — 0 at space-time infinity)

0,0 W(AL, Ar) = — | d®x tr (vg(x) (DR(X)ja(x)), an
so that

Gl vr; Aps Ar) = = [ d°x tr (sp(3)DE(x)jR(X) +vn(x)D}s(x)JL(x)). (18)

Since the fermionic integration, Eq. (8), is Gaussian we get the formal expression for
the effective action

N
iW(AL, Ag) = N trlog D = 7° tr log D* (19)

(N, being the number of “quark-colours™),

which is not defined until a regularization prescription for the determinant of D has been
provided. Such a regularization will give rise to contributions (possibly divergent) depend-
ing on the scheme and the regulator. Therefore counterterms must be supplied and the
action W is only well defined after renormalization conditions associated with those terms
have been imposed. These in turn depend on the physical situation. Such renormalization
contributions to W will be D-dimensional integrals over local polynomials in ithe A’s and
their derivatives having total dimension D [2, 22, 24, 30]. They give rise to somewhat
uninteresting contributions to anomalies : these contributions could be removed by changing
to a different renormalization condition. The point about the chiral anomalies is that they
contain contributions which cannot be described by the variation of a renormalization
term in W, they must be present in any renormalization scheme. They may, however,
[16-18] be obtained as chiral variations of (D + 1)-dimensional integrals over local poly-
nomials. This we shall see in Sect. 5.

For D > 2 the full determinant of D cannot be obtained in analytic form. It is possible
nevertheless to calculate the chiral variations of the determinant: the anomalies. This we
shall see in Sects. 3 and 5.

Therefore it is also possible to calculate the change in W under a finite chiral transfor-
mation, since we may think of the finite transformation as built up of a sequence of infinite-
simal ones, and each of those is given by the known anomaly. This was emphasized by
Wess and Zumino [3] and we may define their effective action as

WZ(gr, gr; AL, Ar) = W(AL, Ar)—W(AT, AR). (20)

In general the calculational procedure proposed by Wess and Zumino is very complicated.
It was carried out in the 2-dimensional case in Ref. [10]. As pointed out by Witten [5],
however, there is a remarkably simple expression for the result in terms of D+ 1-dimen-
sional integrals. The precise relation will be treated in Sect. 5. Notice that ‘fields™ gi(x)
and gg(x) can be reached continuously from the identity provided np — the D’th homotopy
group — is trivial. This is the case for the U(N;) and SU(N,) group in which we shall
mosily be interested (when N; > D/2 [14], a counter example is Ny = 2 and D = 4 for
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which 7, (SUQ2)) = Z,, cf. Refs. [5, 6] and Sects. 5, 6). Even then, however, there arises
a crucial question of glohal consistency [5, 6, 20]. To this we come back in Sect. 5.

Here we briefly indicate the physical interpretation of the Wess-Zumino effective
action [3] (see also Refs. [23-25]).

Tn the real world global chiral symmeiry (quark masses are ignored) is supposed to
be sponianeously broken: the vacuum “points” in some chiral direction. A long wave-
length Goldstone boson excitation is described by leiting the chiral direction of the
“vacuum” slowly depend on the space-iime point x. This is just what Eq. (20) expresses:
the Wess-Zumino lagrangian is an effective descripiion of chiral Goldstone boson fields
(gu(x), gr(x)) interacting with a background gauge field.

If WZ depends in a non-trivial way on all the components of (g.(x), gz(x)), the chiral
symmetry is completely broken. In nature instead diagonal flavour transformations seem
to survive the spontaneous symmetry breakdown.

If WZ is independent of diagonal vector-gauge-transformations (g, = ge) it means
that WZ can depend only on the combiraiion

U(x) = gu(x)er ' (%). (21

This means that we shall be particularly inierested in W’s defined in a renormalization
scheme where vector gauge invariance is preserved. This scheme we denote the 4-(axial)
scheme [19]. We take U(x) to be an element of SU(};) since we do not want to introduce
an axial U(l) Goldstone boson [26, 27}

In Refs [16-18] a different scheme was considered — mostly for simplicity. Naively
one might expect the path-integral, Eq. (8), to factorize into similar pieces depending on
right-handed fields and left-handed fields only. As we shall see ihis is not true in general —
it is not true in the A-scheme. Tt is possible, however, to impose this property as a renormali-
zation condition. In that scheme — ihe (LR)-scheme — we have

W, (AL, Ag) = W(Ag)~W(Ay) (22)

(the origin of the minus sign will be clear in Sect. 5).
In any scheme we can see that the response of the Wess-Zumino aciion, Eq. (20), to
the combined chiral transformation

AL - A{L, Ag A;{R’ gL “’fL—‘lgLs gr “"fx—lgn or U _“)fL_foR (23)

in the A-scheme, is the same as the response of the underlying quark-theory. Indeed the
last term in Eq. (20) is trivially invariant under the transformations, Eq. (23), since

AfE — (AT = A" et

Hence the response of WZ(g;, gr: Ay, Ag) is the same as the response of W(Ay, 4g).

An important difference between the effective action and the urnderlying Fermi-theory
is that the non-invariance under chiral transformations is hidden in the quantum measure
in the Fermi-theory, but made explicit in the effective theory. Thus, in a quantization
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of the Goldstone-boson modes, a chirally invariant measure should be employed so as to
not create additional anomalies.

Finally we should emphasize, that if the background gauge fields are to be considered
as parts of a bigger theory in which these are quantized (path-integrated over) with some
gauge-invariant Yang-Mills interaction, then this full theory can be consistent only if the
anomalies considered here are cancelled, for example by additional fermions, say leptons.
It follows that any effective theory obtained by integrating out the quarks in favour of
meson degrees of freedom, must respond to chiral transformations the same way the
quark theory did (see for instance Jackiw [4] for a detailed discussion).

3. The heat kernel method 122, 28-30]

Let us aitempt a direct calculation of ihe fermionic determinant in euclidean space-
~time:

. N,
e”% = (det D)** = exp {~2— tr log Dz} .

Using the “proper-time” expression for the logarithm of an eigenvalue this gives*

[ee]

N
WiV, 4] = -jff

£

il (e, (24)
N

where ¢ — 0* is the proper time cut off. As emphasized in the preceding section, we consider
gauge fields that are single valued on compaciified euclidean space S°. Then there are no
zero modes of the Dirac operator and Eq. (24) may be used. For gauge fields with more
complicated (insianton-like) topology, zero modes are present. However, then the partition
function becomes zero due to the integration rule for Grassmann numbers ([ Dy, = 0,
o zero mode of D). Nevertheless it is possible to analyze the divergence of the axial
current also in that case. This in fact leads to an alternative elegant way of normalizing
the anomalies (see for example Refs. {17, 21, 32, 42]). If we write (replacing yp 41 by iyp+ 4 in
the euclidean case, cf. Eq. (4))

D, = 6‘“-5-4&"“, o, =V, +iyps 14, (23)
we get for a general change in &/, (using the operator identity,
6D* = 64D +Déf, and [D,e*] =0
(where D = iy,D* and & = iy, ")

as well as the cyclic property of the trace),

Wlat] = =N, [ dstr (e’ D).

o0
‘log A = — fds/se‘“%—const., for A> 0.
&
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For an arbitrary chiral variation we may write (cf. Eq. (11))

5&¢u = [Du’ 0(] + i[Du’ ﬁ]}’D'+ 1 (26)
where a(x) and S(x) are matrix-valued functions, but Dirac and Lorentz-scalars, and where

the operator D, is given in Eq. (25). For = 0 this gives first (using again [D, e 21 =0
and the cyclic property of the trace)

W = — [ dstr (e’ D(Da—aD)) = 0. @7

Thus the regularization scheme, Eq. (24), automatically gives us a vector gauge invariant
definition of the determinant: we are in the A-scheme.
Then for B # 0 we find

34W = —iN, | dstr (e’ D(DByps1—BDyp+1) = —2iN, | dstr (e D*fyp. )

d ' 2 2
= +2iN, '[ ds s tr (e—sn Byp+1) = —2iNctr (e_m Brp+1)- (28)
s

&

This expression is interesting in connection with Fujikawa’s way of looking at the
anomaly [27, 31].

Under the axial gauge transformation which we consider, the fermionic quantum
action is unchanged provided we change variables

'l/)—PeiﬂyD“y) 173‘_’ ¢eiﬁ)’n+1
R .

But under that change of variables the quantum measure changes by a Jacobian (the rule
for changing Grassmann-variables is ‘‘upside-down” compared to the rule for ordinary
variable change)

DDy — DD y(det e2Fro+1)~Ne,
This precisely corresponds to Eq. (28) in the formal limit ¢ — 0. Eq. (28) represents the

change in the measure in the proper-time regularization.
Eq. (28) involves the heat kernel

h(x, y;5) = P (x, y)
satisfying the “heat equation”

0h = —D*h,  h(x, y;0) = 6°(x—). (29)
When &/, = 0, the solution is a Gaussian
ho(x, y;5) = (4n)""s " exp (—(x—y)*/ds), D =2n. (30)

In general 2 may be found by the ansatz
h = hOX Z al(x’ y)s'
T
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and the heat equation allows the coefficients g; to be determined by recursion from the
equation

((x=)uDu+Dax, y) = —D%a;_y(x, y)- (31)

Calculations quickly become rather involved. However, the simple case of no axial field,
A, = 0 is nearly trivial due to the y-matrix algebra

0 for l<n=DJ2

tr (7D+17m }’uu) = {(_)n-?l in'-!-l 2:: emmpp for | = n (32)

(cf. Eq. (4); Eq. (32) holds in euclidean space-time). Then the first coefficient contributing
becomes a, and the terms with / > # vanish in the limit ¢ — 0 (Eq. (30)). Using the normali-
zation condition ay(x, x) = 1, Eq. (29), we get from Eq. (31)

1 nd n
an(x’ X) = m (% [?u’ ?v]ﬁuv) + ..
where the dots denote terms not contributing in the trace, Eq. (28), and where we used

—D? = 3 {357} 3 {Dw D} +5 [ 1] 5 [y D]

Putting all this together gives [17, 38]

oW = N (=)i"*! _ 2 s (BF F ) 33
A - el t (47[)""! M3p2 * 4 pp-1np. ( )
when the axial field 4, = 0.
When 4, # 0 the calculation becomes far more involved [30]. We shall derive (the
relevant part of) the result in Sect. 5. But it is instructive to discuss it already here. One
finds in 4 dimensions [30]

N.i

O W = — oAl (BG+GPY),

31'2
GN = deyo0[3 Vir Voo + 77 AivAee— 5 (444 Voo + A, V004,
+ VA A)+5 A,A,4,A,], (34)
G = 2[4 (DA, +DJA,, A4,4,}—3 {DjA,, A*}+%[4,, D]V,,]
=5 [ Vial+5 D{D;(DyA,)+4A4,(D}A)A;].
Here { , } denotes the anticommutator and
Viv = 0,1, =0,V +[V,, V] 4[4, 4,),
Ap = 8,4,—0,4,+[V,, A]-[V,, 4,],

Dif=0,f+[V.f] (35)
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The contribution from G*> was given by Bardeen [2] on the basis of Feynman diagram
calculations. The contribution from G is a renormalization part since it may be derived
from a local counter term in 4 dimensions [2, 30]:

48 = 2{d** tr {3 (D}A) —~ (DAY 3[4, AV +5 4,4,4,4,+5V3) (36)

(which itself is vector gauge invariant).

In contrast G or Eq. (33) cannot be obtained in this way (see Sect. 5).

Notice also that the G*? term contains an even number of A4-fields whereas G‘*
contains an odd number of A-fields. This property follows from the parity invariance of
W(A.. Ag):

Al Ay (e VES VE A" - —49). 37

Since B is a pseudoscalar, it follows that the genuine anomaly parts must involve the e-sym-
bol and be even under A4, <» Ag. Correspondingly the Wess-Zumino aciion is odd under
Ay, &> Ag and U «»> U~ (also cf. Ref. [5]). Thus by studying anomalies from a general point
of view we can only hope to learn about those parts of the action which have this property.

In a realistic effective action for Goldstone bosons (with or without background fields),
there will in general be terms even under U<« U-! (4 <> Ag). These represent perhaps
the most important physical phenomena. Examples are:

/ > +
l E ( & M F ( )

(n(x) is the matrix-valued Goldstone boson field and F,, = 190 MeV is the PCAC-constant).
This is the chiral action describing low energy current algebra.

fd*xte([U'0,U, U™'8,UT, (38")

is the Skyrme-term stabilizing the classical Skyrme-soliton solutions of Eq. (38). Similarly
the Wess-Zumino-action derived from Eq. (36) belongs to this category. These important
contributions cannot be derived from simple considerations of anomalies. They describe
processes involving an even number of Goldstone bosons.

In contrast the anomaly parts give information about processes involving an odd
number, such as the famous examples n° — 2y, K*K- — n*2°r~, yntn-n® vertices etc.

4. Notation of differential geometry

Here we give the briefest possible description of the language of forms which we shall
employ (see also Refs. [33, 17]).

Antisymmetric matrix-valued tensor fields of rank p are made into matrix-valued
p-forms by contracting with p antisymmetrized dx’s:

— #y “p
W, = Wy XA L AXEP,
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Antisymmetrized direct products are usually denoted by wedge-products, w, A 0, etc.
However, a very convenient way of avoiding the book keeping of combinatorics and anti-
symmetrization consists in treating the dx’s formally as Grassmann-variables [17] until
at the very end of the calculation. This we shall do.

Scalars are denoted O-forms. The vector-gauge-field becomes the 1-form

A = A dx"
and the I-form:
d = dx"o,
denotes the exterior derivative for which
d* =0

since 8,0, is symmetric and dx"dx” is antisymmetric. Acting on a product of forms, d acts
by the rules of anti-derivation:

d(AB) = (dA)B+(—)’A(dB)

if A is a p-form. Also this rule follows immediately when the dx’s are treated as Grassmann
numbers.
The identity (U is a matrix-valued field)

dU™! = —Uquu!

will be used throughout.
From the cyclic property of the trace of matrices follows

tr (AB) = +1tr (BA),

when B and A4 are forms, and where the sign is minus, if both forms are odd (“fermionic”).
Similarly the commutator of two forms is defined by

[A,B] = AB+BA

with + if both forms are odd. Then the trace of a commutator always vanishes and for
the 1-form, 4 = A,dx*
[4, A] = 242,

Also then, d and [4, -] act the same way on polynomials. The field strength 2-form is
given by
F = dA+A? = dx"dx"0,A,+dx"dx"4,A4,}

= 3 dx"dx"(0,A,—0,4,+[A,, A,])) = % dx"dx’F,. (39)
Defining the covariant derivative 1-form by

Df = df+[A. f]
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we find the Bianchi-identity
DF =20 (40)
since
dF = dA* = dA- A—AdA = —[A4,dA] = —[A,dA+A*] = —[A4, F].
A p-form in D space time dimensions vanishes identically if p > D.
Let Z,4, be a p+1 dimensional differential orientable manifold with boundary Z,,

a p-dimensional orientable manifold. And let @, be a p-form. Then Stoke’s theorem
says

J do,= [ o, D

Here the substitution, for example dx,, ... dx,, —> &, .. ,, d°V (d°V the volume element
of Z,) should be made. If the p+1 form w,,, is a total derivative of a p-form:
Wpyy = dw, (w,,, is exact)

then
dw,,, = d2w‘, =0 (w,4, is closed). 42)

The converse is also true locally (Poincaré’s lemma): if dw,,, = 0, then locally there exists
a p-form such that Eq. (42) holds.

5. Differential geometric construction of anomalies and Wess-Zumino actions

Finally we come to the central section®, According to the discussion of the end of
Sect. 3 we are looking for anomalies in D-dimensions of the form

G(vL, vg; AL, 4Ar) = ¢, Sj; w;)(vLs vg; Aps Ar), 43)

where o), is a D-form linear in the chiral variations vy, and vy, and a polynomial of dimen-
sion D in A4’s and their derivatives; c, is a normalization constant. As before, we assume
boundary conditions on the fields at infinity such that they are well defined on compactified
space. Thus in euclidean space E” we may use coordinates on the D-dimensional unit
sphere S” obtained by a stereographic mapping.

These anomalies must satisfy the Wess-Zumino consistency conditions, Eq. (14).
This is ensured provided they can be derived from a generating functional

G(vb Ug; AL’ AR) = 6vL,ngW0(AL9 AR), (44)

where W° may differ from the true effective action by terms that are completely chirally
invariant. The consistency conditions do not in any way constrain the form of W°. However,

5 Qur treatment simplifies and generalizes somewhat Refs. [16, 19]. Also cf. Ref. [33] (Sects. 6.1 and
8.3 in particular).
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as we have argued, w}) should be a local Lorentz-invariant polynomial of dimension D and
WAL, Ar) = — W (4, 4y). 435)

These requirements very strongly limit the possible forms of the G’s. (Nevertheless, the
uniqueness aspect of the following construction seems to need further clarification; for
discussion cf. Refs. [39—41]). In fact we shall see that the requirements are fulfilled by
constructing W° as a certain D+ 1-dimensional integral

WoAL AR) = ¢, | opsi(AL, 4, (46)

Bp+1

where w9, is a D41 form in D41 dimensions satisfying

w(I))+ (AL Ag) = "‘wg+ (A, Ay). @7

By, may be thought of as the D+1 dimensional unit ball having S° as its boundary.
This construction implies that we extend the fields A;(x) and Ag(x) from S? to Bp.,
in some “arbitrary” way. We shall see that the whole construction finally becomes con-
sistent.

First we must demand tihat

6v1_,vgw10)+ l(A L AR) = dwlb(v!.s Ug; ALo AR) (48)

in order that the anomaly becomes

6 PVO(AL, AR) = C,. _‘. dwll)(vL’ vR; AL’ AR)

Bp+1

= Cp j O);)(UL, UR; AL, AR) = G(vLs UR; ALo AR)a (49)
\D

VL,UR

and thus lives in D-dimensions the way it should.

Remarkably these requirements lead to a nearly unique construction of w3, up to
renormalization terms. In fact, consider extending the definition of 4; and 4g one more
dimension — into D+2 dimensional space. Then define in (D+2) dimensions

Qp+2(AyL, 4p) = dop., (Ap, Ag). (50)
This is a (D+ 2)-form, odd under 4, N Ag and exact. Further, Q5 , is completely chirally
invariant. In faet

o __ 2.1 _
Oproaf2ps+2 = A0, puWpyy = d wp = 0.

An obvious solution which we shall soon analyze is [17, 19]°
Qpy2(AL, 4g) = tr FrR™ ) —tr (FL™)
Fy = dA +A};  Fg = dAg+ AL (51)

6 Qp. . is related to the Chern character and w4+ to the Chern-Simons secondary form (cf. Ref.
[33] Sects. 6.1 and 8.3 and [16, 17)).
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This is not the most general solution. In fact any polynomial of dimension D+2
built from tr (F?) and tr (F9) factors, odd in L <> R will do [33]. As we shall soon see,
however, the form Eq. (51) is required by comparison with our heat kernel calculation,
Eq. (33), for Ay = Ag.

In Refs. [16, 17] the similarity of Qp., , to the global, abelian, pure vector anomaly
Eq. (33) was emphasized but the connection remained mysterious. Very recently Alvarez-
-Gaum# and Ginsparg [42] (see also Sumitani [43]) have clarified the connection: 4y (and
Apg) have to be reinterpreted in D+ 2 dimensions as vector fields coupling to Dirac fermions
of both chiralities in D+2 dimensions. The corresponding global, abelian anomaly may
be analyzed using the Atiyah-Singer index-theorem, and a relation to the local, pure left
Weyl fermion, non-abelian anomaly in D dimensions is established.

Now we must solve Eq. (50) for 3,4 4. Clearly a solution is only determined up to an
additive term of the form dpp(4;, 4g) so that

f Ohey _\. Whar+ j Op>
Bp +1 Bp+y sb
showing that gp has the form of a renormalization contribution.

A particular solution w34 may be constructed as follows: for any space time point

x, let y be a curve in field space connecting 4, and Ay

‘)’:te[ta’ tb] i A(t) s.t. A(ta) = ALa A(tb) = AR' (52)
Then
d

(F() = dA(D+ AW}, A = -

A(t), etc.).

iy

d
Qpir = tr (FRI—FL'Y) = fdt U F@"+H

ta

= (n+1) 'f dt tr (F(OF(1)") = (n+ 1)'} dt tr [(dA(1) + A(DA()+ AW AW F()]

= (n+1) } dt tr [dADF' () + A(1) [A(), F((0]] = (n+1) tjbdt tr [dA(D)F"(t)— A(D)dF'(1)],

where we used the cyclic property of the trace and the Bianchi identity Eq. (40) for F(z)
and F(¢t) (both d and [4, -] act the same way on products). But then we have (cf. Sect. 4)

ty .
Qp42(AL, Ap) = (n+1) § did tr [A()F"(1)]
fa
giving the particular solution
iy .
09+ (AL, Ags 7) = (n+1) [ dt tr [A(DF(1)], (53)
ta

where we have indicated that the result depends on the integration path (52).
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Different .integration paths correspond to different renormalization schemes. The
difference between w9, ;s taken along two different paths is a total derivative by Poincaré’s
lemma since d acting on the integral along a closed path is tr (F"*!' —F"*1) = 0. We shail
derive explicit expressions below and show it is in fact exact. In contrast 5, , is inde-
pendent of the renormalization scheme.

Let us reserve the name @9, (4;, Ag) (with no path indicated) for the integral along
the straight line (Fig. 1)

-

- N —o _
AL= V-A \V; AR—V+A

Fig. 1. Integration path for the generating functional %+ 1(4r, Ar) for anomalies in the vector gauge
invariant scheme (4)

1
0p+1(AL, AR) = (n+1) | ditr (AF'(2)), 54
-1
where A(1) = V+tA, V and 4 being the vector and axial vector fields

V=3+4d), A=7(4g—A).

As pointed out by Kawai and Tye [19] this corresponds to the vector gauge invariant
renormalization scheme (4). Indeed under a pure vector transformation (v = vg = v)

SV =dv+[V,v], 6yd=1[4,v], yA(t) = dv+[A(1),v] = Dy,

so that 6,F(¢) = [F(z), v], whence

Sy, (AL, Ag) = (n+1) } dt tr {[A4, v]F'())+ A[F(?), v}

1
= (n+1) | ditc [AF"(1),v] = O.
-1
Next let us consider a pure axial transformation vg = —v, = v, and let us calculate
the anomaly for 4 = 0 where 4, = Ay and the integration over ¢ becomes trivial. In fact
04 = dv+[V,v] =Dv for A=0,
so that

S,4wp41(V, V) = 2(n+1) tr [DuF"] = 2(n+1)d tr [vF"],
where we used DF = 0 and tr [V, vF"] = 0. Then

op(—v, +0; V, V) = 2(n+1) tr [oF"]

and

G(—v,v; V, V) = e2(n+1) | tr [vF"]. (55)
sb
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0

Fig. 2. Integration path for the generating functional wD+:(0, 4g)— D+ 1(0, A1) for anomalies in the
LR-scheme

This agrees with Eq. (33) and determines the normalization to be”

ant1 IVC
&= (=D 2n)" (n+ 1! (56)
remembering F = 1 F,,dx"dx".

It is now easy to see that the extra terms
tr (FE~F?) tr (FRP1 P4+ F1 7Py ete. in Qpy,

must have vanishing coefficients (cf. the discussion after Eq. (51)).

In the LR-scheme of Ref. [17] where the effective action separates in terms depending
only on 4; and Ag respectively, we have to integrate through the zero field as indicated
in Fig. 2, and we evidently have

wh+1(AL, Ar; LR) = 03, 1(AL, 0)+ @), 1(0, Ag)

or
w%+ (4L, Az, LR) = W?H (0, AR)“‘W%+ (0, 41) 57)

explaining the sign in Eq. (22).

®}4q in the (4)-scheme differs from %, , in the LR-scheme by a renormalization
term which we shall denote [19] dgy(0, 4y, Ag) and which is given by an integral along
the triangle 04g A, in A-space. This object turns out to be very useful for all our remaining
purposes so we consider the slightly more general situation depicted in Fig. 3

do(Ag, Ay, 4,) = (n+1) § de tr {A'(DF (D)}, (58)

where 7 is a parameter on the triangle and A’(r) denotes the rate of change in A(r) along
the perimeter. We evaluate this using a slight generalization of a trick given by Zumino
[17] in a special case.

7 Going from euclidean to Minkowski space (— W — i W, iyp+1 => ¥Dp+1) We pick up an extra sign.



287

Define a field inside the triangle by
A(s, t) = Ap+3A;+1A4,, s,t€[0,1]
and
F(s, t) = dA(s, )+ A%(s, t).
The integral in Eq. (58) involves the circulation of the two-component vector field

(tr (A F'(s, 1)), tr (A,F"(s, 1))

AO+A2 - AO*A'

Ao

Fig. 3. Integration path for the renormalization contribution o(A4o, A1, 42)

and hence we may evaluate Eq. (58) using the elementary 2-dimensional Stoke’s theorem:

" ] G,
dop(Ag, Ay, Ay) = (n+1) f dsdt tr {Az s n—ds = F'(s, t)}
[N
a4
n—11 1-s

=(n+1) Y [ds | ditr {A,F%s,1t)(dA;+AA(s, 1)+ A(s, DADF ™ 77(s, 1)

p=00
— A F"7 18, £) (dA g+ A, A, £+ A(s, DAL)F(s, B}
Using the cyclic property of the trace as well as the Bianchi identity

[AGs, 1), F(s, )] = —dF"(s, )
repeatedly gives

n—1 1 1—s

0o(Ao, A1, A5) = —(n+1) ), Sds | dite {A,F%(s, A F* 7?7 (s, 1)} (59)
p=00 0

and these integrals are elementary.

Of course gp is determined only up to a total derivative, but that does not contribute
to the integrals over S? in which we shall be interested, due to the boundary conditions
we have assumed on the fields.

The renormalization part involved in the difference between the A- and the LR-scheme
is 0p(0, Ag, Ay).

The expression, Eq. (59), will provide an easy way of obtaining the anomaly. However,
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one advantage of the present approach is that we can construct directly the Wess-Zumino
action already from what we have obtained. This we do now.
We use Eq. (20) in the vector gauge invariant scheme
WZ(gL, gr; AL, Ar) = WZ(U; Ar, Ag) = W(AL, Ap)— W(A;f, Ag)
= WAL, 4p)—~ W(4], Ap), (60)
where U(x) = gi(*)gg 1(x) (Eq. (21)), and where (Eq. (46))
WAL AR) = ¢, 5 wg+ Ay, 4g)

Bp+1

is a generating functional of anomalies in the A-scheme. Thus, although W?° cannot be
considered a sensible model of W(A;, 4g) (it depends explicitly’on the way A; and Ag
are extended into D+ 1-dimensional spagce), the difference, Eq. (60), does represent the
integrated anomaly®.

First, let us evaluate WZ for vanishing gauge fields. Following Witten [5] we call that
action

N [Ipyy(U) = WZ(U;0,0) = —W(U™dU, 0). (61)
From Eq. (53) we find

1
NI (U) =+ [ c(n+1)fdttr (U 'dUF(1)),
Bp+1 o
where
A() = (1-0)U™'dU, F(t) = dA()+A*(t) = —t(1—1) (U™ dU) .
Using

1

Jdtt"(l —1)

0

. (@)
T @n+1)!

and the expression for ¢,, Eq. (56), we get

27 1
() =i e —— tr (U™'dU)P*, 62
D+l( ) t A(SD+1) (D+1)‘ J ( ) ( )
Bp+1
where A(SP*1) = (2r)"*!/n! is the “area” of the D-dimensional unit sphere S” (say in D+1

dimensions).

As discussed by Witten [5] this expression is consistent for a quantum theory of the
chiral Goldstone boson field U(x), despite the fact that it involves a seemingly arbitrary
extension from the physical space (equivalent to) S°, to (D+1)-dimensional space. There
are several points to be observed.

8 Strictly speaking, only that part which is odd under U o U-?, A4; «> 4 (cf. Sect. 3).
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()I'(U) only depends on those values of the fields U(x) for which x € S”. In fact, varying
U(x) is equivalent to a chiral variation and we have seen that the result is a total derivative
dw},. Thus, two U-fields agreeing on S” produces the same I'(U).

(i) The above argument is valid only for a definite choice of By, ;. Now in the situation
we have in mind where the chiral group is spontaneously broken down to flavour SU(N,),
U(x) is an element in SU(N;). These groups have trivial homotopy groups 7, for D even
(provided N; > n, cf. [5, 17] and references therein). This means that the image of S? in
group space (i.e. the set of field values) may be considered the equator of a (D+ 1)-di-
mensional hemisphere (equivalent to the image of) By, In just two ways, but there would
be no way of preferring one to the other. Thus the path iniegral-weight exp (;N.I') should
agree for the two. This means that the difference beiween I'’s evaluated for the two hemi-
spheres should be a multiple of 2n. Notice that in a coordinate system in (D+ 1)-dimen-
sional Minkowski space, the integrand in Eq. (62) is proportional to

g (U opU ... U dup 4, U).

Thus the phase in Eq. (62) makes I'p,; real (cf. Eq. (4)).
(iii) The difference between I’s evaluated for the two (D+ 1)-dimensional hemispheres
is equal to the integral in Eq. (62) taken over SP*1 since one orientation in S” induces
opposite orientations on the two hemispheres. To see that

ASPHHTH 1 ((D+1)! | w(UTNUYPH! (63)

sD+1

is an integer is non-trivial. However, we may make the following remarks. First, the integral
is a topological invariant. This follows because locally it may be written as a total
derivative. That in turn follows because (in D+2-dimensions) dw$,(U-'dU,0) =
Qp . ,(U-1dU, 0) = Osince A, = U-'dU, Ag = 0 are pure gauges. The fact that tr(U-'dU)"*?
may be written as a toial derivative means that we really might write N,I" as an integral
directly in D-dimensional space S°. However, we would then be forced to introduce fields
like log U which are not defined on compact space, S” [10, 5, 6]. I is the singular behav-
iour of these fields which prevents the integral over S?*! from being zero.

It is also very plausible that (63) is a winding number, since it is expressed as a volume
form (with correct Haar-invariance properties), normalized by A4(S°*'). Nevertheless
there are global subtleties which must be dealt with (see Refs [5] and [34]). The fact that
field configurations U(x), x € S®*!, may be characterized by an integer winding number,
is related 1o the fact that the odd homotopy groups 7p4, of the groups in question (like
SU(Np), is Z (the set of integers).

Next we consider the case of general non-vanishing A4; and Ag. In principle we might
just use Eq. (60) for WZ and Eq. (53) for @), . However, the consistency of the result
follows from the fact that it may be written

WZ(U; Ay, Ag) = NJJ(U)+ [ dwzp(U; Ap, Ag) = NI (U)+ | wzp(U; A, Ag).(64)
Bp+i sp
Such a form, however, is far from obvious from Eq. (53).
Nevertheless the following very simple ireatment yields the desired answer directly:



290

AL —— Uau!

Fig. 4. Integration path giving the Wess-Zumino effective action for the goldstone boson field U interacting
with the gauge fields A4y and Ag

From Fig. 4 we may write (cf. Eq. (58) and Fig. 3)
W)+ 1(Ar, AR)+ @3 4 1(Ags AE)+wg+ 1(AU’ 0)+wf ., 10, UdU™ l)‘*‘C‘)?H (UdUTY A4))
= d(gp(0, Ag, AD)+0p(0, UdU ™", A1) +ep(0, Ay, 4R))- (65)

On the left hand side we use the antisymmetry and vector gauge invariance of @), to
obtain

p41(AL, 0)+ 05, (UdU ™!, 4) = 03, (4}, 0)— ), (AL, UdU™') = 0.

Similarly, @p+(0, UdU) = ng(U"‘dU, 0) and w?n 1(4r, AY) = —wp (4L, Ap)-
Thus, Eq. (65) implies Eq. (64) upon integration over By, ; and multiplication with c,,
and we find

wzp(U; Ay, Ar) = —¢,(en(0, A, ) +0p(0, Ay, UdU™H)—(U = 1)) (66)

and the g’s are obtained from Eq. (59). Explicit expressions for D = 4 are given in the next
Section.

For completeness we finally obtain a closed expression for the anomaly w}p in the
A-scheme. The result for the LR-scheme obtains by putting first 4, = 0, and then 4z = 0
(cf. Ref. [17)).

Consider first the variation
0Ag = Dgv = dv+[Ag,v], 64, =0. 67
We evaluate the corresponding anomaly from
Swp 1 1(Ay, AR) = 0f.4y(Ay, A+ Dpv)— 34 (AL, 4r)
= dop(Ag, AL —Ar, Dg0) +wp 1 1(Ag, Ag+ Dgd) (68)

since dop(Ag, AL — Ag, Dgv) represents an integration around a (nearly collapsed) triangle:
Ag, Ay, Ag+ Dgo (cf. Fig. 3). Then the last term in Eq. (68) is trivially obtained from Eq.
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(53) as
) 4 (A, Ag+Dgv) = (n+1) tr (DgvFR) = (n+1)d tr (vFg),

using the Bianchi identity on Fg. Thus we have written 94, explicitly as a total derivative,
and from Eq. (48) we find

w0, v; Ap, Ag) = 0p(Ar, AL — Ay, Drv)+(n+1) tr (vF). (69)
From Eq. (59) we find to first order in v
n-1 1 '
0p(Ar, =24, Dgv) = (n+1) Y- | dr 1 (1+7) tr {DgoF?(x)AF"~?~ (1)}, (70)
p=0 -1

where 4A(7) = V+14 (one integration in Eq. (59) is trivial for the nearly collapsed triangle).
Adding a similar expression for wp(—v,0; AL, Ag) gives

@i(—v, v; Ay, Ag) = (n+1) {tr (W[FL +FR])
n—1 1
+ Y | def(1 =7%) tr ([4, v]FP()AF" """ (7))~ tr (0FP(0)D.AF" """ (2))],
p=0 —1
where we used
L(1+1)Dgv—L(1—1)Drv = [4, v]+1Dyv = D0 +(1—1%) [4, v],
Do = dv+[A(x),v] and DF? =0.

Observing D, A = d/dtF(r) we finally obtain
1 n—1
wi(—v,0; Ag, Ap) = (n+1) § drte [p(F'(0)—(1=1%) Y [4, FAQAF" " 1(n)])] (D)
-1 p=0

where [4, B] = AB+BA when both A and B are odd forms (cf. Sect. 4) as here.

6. Explicut results in 4 dimensions

The generating functional WAy, 4g) for anomalies in the vector gauge-invariant
(A4)-scheme is given by Egs. (46), (53) and (56) as

o iN, o
W (AL, Ag) = ﬂ;i ws(AL, Ar)
Bs
iN, arp2 ) p2
54072 [S(Ar—Ay) (AFg+Fi)+ FpFL+F Fg)
Bs

—5(Ax—AL)® (Fr + F)+ (A — 40)°]

iN, ;
=53 (% f [104gFE —SA3Fg+ Az —(Ag & A+ J 040, AL, AR)>, (72)
Bs

sS4
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where the last form is the generating functional in the LR-scheme plus the necessary re-
normalization part g,, obtained from Eq. (59) as (cf. Ref. [19])

04(0, A, Ag) = 5 tr [(Ar4r— ArAL) (FL+Fp)— Ai g+ ARAL +3 AcdrAL4g]. (73)
From Eq. (71) we find the Bardeen ancmaly [2]
0i(—v,0; Ay, Ag) = 6 tr [o(Fi+3 F5+3 A* 4 (FyA> + AF A+ AF)].  (14)

where Fy = dV+V?+ A% F, = dA+VA+AV. This agrees with Eq. (34) (F = L dx*
x dx"F,, etc.) '

Notice that WA, Ag) = —W%A4g, A) and oi(—r,v; AL, Ax) = +ol(-v, v;
Ag, Ap) as discussed in Sects. 3 and 5.

Finally, the Wess-Zumino effective action is obtained from Egs. (60), (61), (62), (64)
and (66) as

WZ(U; AL, Ag) = WAL, Ag)— WAL, 4p)
iN,

= —21 ZQOFJ tr (U™ 'dU) + jwz4(Ll;AL,AR) (73)

Bs R

iN, -
wzy(U; AL, Ag) = — A (040, AL, A)+04(0, A, —dUU ™ H)—(U = 1)),

P4

where

Al = U4 U+UTdU. (76)
This may be evaluated directly from Eq. (72), but ihat leads to a very lengthly determina-
tion of wz,. On the other hand wz, is immediately written down using Egs. (76) and (73).

Making the antisymmetry under (L <> R, U <> U-') manifest takes a few rearrangements
(including a partial integration). The result may be writ{en

UVC - 4U 3 2
\VZ4(U; AL’ AR) = - Ki tr [(AL(ARCIAR+(1ARAR+AR— URAR)
G867
—~ U7 AL U(AgUgAr— UgdAg) +5 ALUL AU ) —(Lo R, U U™Y
+3 (ALUAUTYT-(U = 1), (17)
where

U, =dUU L, Up=dU ™ 'U = ~U""dU, AY = U 'A, U~ Uy.

This agrees with Ref. [20] and (apart from the (U = 1)-term) with Refs. [18, 19].
However, as discussed in these references there is some disagreement with the original
expression given in Ref. [5].

In the case of Goldstone bosons interacting with the photon fields, we put

AL = Ag = —ieQA, A= A dx",
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where A,(x) is the ordinary eleciromagnetic field and where Q is the N;x N; diagonal
matrix of quark-charges. Inserting in Eq. (77) we get, using

A? =0, AdA = dAA = FA,

2

N_.e
wzy(U; —ieQA, —ieQA) = tr {—BA*J,,"(‘[ T FA[2(UrQ*~ULQ%)
n

+UQU"QUL—U_’QUQUR]} (78)

where *J, is (the dual of) an anomalous clectromagnetic current

_]Vc -
— S (Ul-Up0, (79)

¥] =
“ 487

in agreement with Ref. [20], [35].
In actual applications, WZ is to be added to the ordinary totally (R~ and L-) gauge-
-invariant chiral/Skyrme-Lagrangians (cf. Egs. (38), (38")) where the standard replacement
0,U = DU = 0,+ A, U—UAyg,

is made.
Replacing electric charge Q by baryonic charge (of the quarks)

/N1
gives the anomalous baryonic current
—1 -1
XN = —— r (U — UR) = —— tr (U™ 'dUY’ 80
a 1872 (U ®) YR ( ) (80)

for which the space integral over the time-component gives baryon number 1 for a static
skyrmion [5].

Notice that for flavour SU(Q2), I's(U) = 0 since it involves a 5-dimensional volume
element in the 3-dimensional manifold, SU(2). The term wz, is nonvanishing, however.
(See Refs. [5-7] for a detailed discussion of the SU(2)-case where also 7,(SU(2)) = Z, % 0.)

7. The case of 2 dimensions. Bosonization

In two dimensions a complete treatment of the fermionic determirant becomes pos-
sible [9, 10]. The result takes the form of a chiral lagrangian plus a Wess-Zumino topolog-
ical term. This modified chiral theory is conformally invariant and seems very interesting
from various points of view [11-15]. We mostly consider the vector gauge invariant (A)-
~scheme. Other renormalization schemes are readily treated using the techniques devel-
.oped above,

We have emphasized that the treatment presented so far only gives information on
that part of the fermionic determinant W(A4,, 4g), which is odd under A; «> Az.
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However, in two dimensions there is a trivial extra invariance in the problem due to
the identity
Vs = —&, (81)

(in Minkowski space; in euclidean space an extra factor i appears; we write s rather
1han 'Y3).

This means that W(A4,, 4g) is explicitly invariant under the transformations
AL hd *AL; AR insd _*AR’ (82)

where
* = & M
A, =¢,4

again is a 1-form in 2 dimensions. The invariance under the transformations (82) follows
because by Eq. (81) we find

Apyy = —Apysy = Apyr; Agyr = Agysyr = Aryr
(cf. Eq (6)).

This additional invariance in 2 dimensions has two implications.
First, any gauge field may be represented by pure chiral gauges:

Ay = h{'dhy ~ L (h{ 'dhy+*h{ 'dhy),
Ag = hg 'dhg ~ 1 (hg 'dhg—%hy " dhg). (83)

This means that knowing the response of the determinant to chiral transformations
(i.e. knowing the anomaly) is enough to fix the determinant completely (up to a field
independent “integration constant”, and up to renormalization terms).

It also means that our expression for W°(A4y, Ag) is a true representation of the odd
(in Ay <> A4y) part of W. In the (4)-scheme we may introduce

G = th; 1.
Then from Eq. (62) we find (leaving out the color factor)

_ 1 '
WAL, 4g) = WG 'dG, 0) = I'y(G) = o J.(G'IdG)3. (84)
B3

Howevel, due to the symmetry, Eq. (82), we can also fix the even part of W under
Ay > Ag.

It is simplest to consider the variation of W(A,,0) where A, = G-'dG (using Eq. (82)
and vector gauge invariance this is no loss of generality).

In the presem case of 2 dimensions, calculations are rather simple to perform directly
from Eq. (84). But it also follows from our general formula for the anomaly (Egs. (69),
(70), (49), (56)) that under

84y = Dyv = dv+[G™'dG, v]
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we find
1t] 1 -
W = — | tr (vd4y). (85)
4r
s2
However, W must be symmetric in 4, and *A4;:
. 1
oW = y '{ tr (vd(AL+*AD). (86)
T
52

This is achieved for

r 1 Iad
—W(AL Ag) = +5(G) = — | d*x tr (6,G*G™)— — | tr (G™'dG)’,  (87)
8 12n

52 B3
where A;, Ag are given by Eq. (83). In fact
szj d*x tr (6,G8"G™1) = ~ s£ d*x tr (G™'0,GG™10"G) = j tr (A *AL).
And it is easy 1o obtain

6 ftr(A*4p) = =2 [ tr (vd(*A4y))
s52 s§2

for the variation above.

The expression, Eq. (87) was first given by Polyakov and Wiegman [9] and (in a differ-
ent form) by d’Adda, Davis and Di Vecchia and by Alvarez [10].

We emphasize that the “kinetic term” tr (,G6“G?) is a renormalization term which
is not fixed by our renormalization condition, that the fermionic determinant be vector
gauge invariant: it is vector gauge invariant by itself since it only depends on G = A hg *.
Instead this term is a consequence of the very special 2-dimensional symmetry, Eq. (82).

Next we construct the Wess-Zumino effective action; this time the full one — not
just the portion of it which is odd under Ay «» Ay, U« U-'. A chiral transformation
Ay - A%, Ap - AT may be expressed as (cf. Eq. (83))

hy = higr,  hg = hggr.

Hence we get
(G=hhg'; Us= gugr ')
WZ(U; Ay, Ag) = —S(hihg )+ S(higrer ') = —S(G)+S(hUhk").  (88)

This is not difficult to evaluate directly from Eq. (87). However, we may also use our general
formalism, giving (Egs. (59))

Qz(o, AL’ AR) = +41r (ALAR)
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and (Egs. (56), (66))
wzo(Us Ap, Ar) = —¢2(02(0, AL, AR)+02(0, A, UdU™H)—(U = 1))

1
= — Z;?ftr (ARU YA U+ ARUT'dU + UdU ™' 4, — Az 4;), (89)
2

which is the odd (in A4y <> 4g, U <> U-?) part coming in addition to S(U) for 4, x = 0.
The full expression having the correct symmetry under (82) is immediately written down
using light cone coordinates, since

1(AL+*4.) only involves A, = 3 (do+A4,),
and
+(Ag—*A4g) only involves A_ =1 (do—A ) (50)
The result is [12] (see also Ref. [15])
1
WZ(U; A, AL) = +S(U)— ym J d*x
nsz
xti[A_UT"A, U+A_U 90, U+U0_U "4, —4_4,] (91)
‘We recognize in the last integral a simplified version of some similar terms in the 4-dimen-
sional case, Eq. (77).
The result Eq. (91) has a remarkable interpretation in terms of bosonization®. Let us

.consider the following identity obtained by path-integrating over the field U with a Haar-
-invariant measure (cf. Eq. (88)):

const. = jgueisw) = j@Ueis(hLUhR_!) — eiS(G)j QUeiWZ(U;A)"A—). (92)
‘Then we may summarize our findings for the fermionic integration using Eq. (91)

j@(—ilj, w)eifdzx[$0w+tr U+FA-+T-FA0] _ ,—iS(6)

. i i -
FISWYE g [ el s PA- 4T DAL - o JactfA-U-144U-A-4+1

= const. | 2Ue , (93)
where
Ji = —ipsPs
and
1o
- U
J8 = 1” . (94)
- —ve.Uu™!
4n

9 A treatment similar to the present [12] was given in a very recent paper by Gonzales and Redlich [46].
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Consider first the abelian case where U = ¢* and ¢ is a real scalar field. Then
1 .
WZ(p;A4,4.) = ;szxaw’@"?’— ;:—deX[A_&w—Am_fp]
n T

and Eq. (93) expresses an identity between generating functionals of currents in a fermi
theory and a certain (free) bose theory

LD o TEETZYD) e (e
= const. (JB(xy) ... BEIE(D) oo J2(m)Drs 95)

where J% = +i/4nd, ¢, and where the two greens functions correspond to the free fermi
and free bose theories respectively. This is the usual famous bosonization rule for cur-
rents [36]. )

In the non-abelian case, Eq. (93) expresses a generalization with the bosonization
rules, Eq. (94). These rules were first proposed by Witten [11] using very different arguments
(based on the current algebra of Poisson-brackets in the two theories). However,‘ due to
the last term in Eq. (93) we see that the bosonic path integral does not seem to be exactly
the generating functional of the currents (94). For greens functions (95) containing currents
of one chirality only there is no difficulty. These are obtained by functional integrations
with respect to A4+ (say) and afterwards puiting 4. = 4. = 0 in which case the extra
terms disappear.

For greens functions involving currents of both chiralities, the extra terms do contri-
bute. Thus for the 2-point function it is easy to show that [12]

F F 1 2
<(J+(x)ij(‘]—(y))kl>F = Z‘c 5115kj5 (x—y),
but
1

<J]1(x)uJ}i(J’)kt>B = 4nN,

8:10u0%(x~y), (96)
where N is the size of the matrices and where now (g refers to the bose theory defined
by the action S(U). The different index structure is particularly noteworthy.

Since the extra term in Eq. (93) involves 4. and 4. taken at the same point we see
that even mixed greens functions agree in the fermi and bose theories provided all the
arguments are different.

What is the implication of these differences? First notice that the mixed fermionic
greens functions depend on the renormalization scheme. In fact, in the LR-scheme they
would factorize in two greens functions of currents of one helicity only. Thus the fer-
mionic 2-point function would vanish identically in the LR-scheme. In the A-scheme
used here it vanishes only when x # y. However, such greens functions (where all points
are different) are believed to define the operators uniquely. Therefore the operator bosoni-
zation rule, Eqs. (94) should be O.K. in the free case (4, = 0). Notice that in the Min-
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kowski case our greens functions are vacuum expectation values of time-ordered products
since they have been obtained from a path integral formalism continued from euclidean
space. It is well known that there is an intrinsic ambiguity in defining time-ordered products
at coinciding points [37].

Without the extra terms in Eq. (93) the bosonization could have been immediately
generalized to an arbitrary interacting theory if the interaction is built from currents.
This is because such an interaction term may be obtained by a suitable number of functional
differentiations of the generating functional.

However, due to the extra terms, such a construction would seem to break down
giving rise to a far more complicated bose theory than would be obtained using the boso-
nization rules.

However, due to the fact that the last term in (93) involves U and U-! at the same
point there is a normal ordering type problem involved in giving a meaning to this term.
Arguments [13, 14] have been raised to suggest that we should impose

_ 1
U (x)aUG); = 17{ ;0 7

as an operator identity (the vacuum expectation value of the left hand side is equal to the
right hand side; this was used in Eq. (96) [12]). If that is true the last term in Eq. (93) may
be taken outside the path integral. It may then be absorbed into a different renormaliza-
tion of the fermi theory; it merely leads to a redefinition of the coupling matrix, if the
interaction to be bosonized is of the generalized Thirring form

j d zx)'ij,kl‘] ﬁ-(x)x‘j‘] e

Finally we should mention that apparently the theory defined by S(U) seems to be
exactly soluble. This has been suggested by Polyakov and Wiegmann on the basis of Bethe
ansatz techniques [15] and from a more general point of view by Zamolodchikov [15] using
the recent powerful techniques for conformally invarian: 2-dimensional field theories [44].

1 have benefited greatly from discussions with J. Ambjorn, P. Di Vecchia, B. Durhuus,
N. K. Nielsen and P, Rossi.
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