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The status of the theory of energy weighted cross sections (in particular energy-energy
correlations) is reviewed. For e~et annihilations the results are presented in a form which
is equally applicable at low energies (where only the virtual photon channel plays a role)
and at high energies (where the Z° channel is also important). Energy-energy correlations
for the pp collider are also discussed.

PACS numbers: 12.35.Eq, 13.65.+1i, 13.85.Hd, 14.80.Er

1. Introduction

Energy weighted cross sections, in pariicular energy-energy correlations (EEC) have
been suggested a few years ago as possible tests of QCD in e-e* annihilation [1]. The
advantages of using EEC as a test of QCD have been mentioned in the pioneering papers:

1. It is calculable and characteristic of QCD.

2. It is proportional to the QCD coupling constant squared a,(W) (as contrasted to
R = al2¥°™¢ & pointlike).

3. A complicated event by event analysis of data is not required.

4. Fragmentation corrections are easily calculated.

5. A large patt of fragmentation corrections drops out from the properly defined
asympmetry.

In the past few years (angle integrated) EEC (or energy weighted angular correlation)
has been measured by several experimental groups [2-4]. It is one of the best possibilities
of an experimental determination of x,. While a large part of the original motivation is still
valid, there is a serious uncertainty in connection with fragmentation. At present energies
(® 30 GeV) the fragmentation correction is large, model dependent and also affects the
asymmetry. To illustrate the size of uncertainty I quote in Table I the o, values of the last
two publications. Both determinations have taken into account O (a2) corrections (in the
MS scheme). The unpublished data of several other PETRA groups [4] show similar
dependence of the o, value on the fragmentation scheme used.

* Presented at the XXIV Cracow School of Theoretical Physics, Zakopane, June 6- June 20, 1984.
** Address: Institute for Theoretical Physics, Edtvés University, 1088 Budapest, Puskin u.' 5-7,
Hungary.
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TABLE 1

Measurements of &, at W x 34 GeV from e*e” energy-energy correlation data assuming independent
fragmentation (IF) and string fragmentation (L) for hadronization. O(=}) corrections have been taken

into account in both cases. Ak refers to the MS scheme and Ny = §

“IF) | ) A5 F) AO)
MARK J 0.12+0.02 | 0.14+0.02 90+13° MeV 2002338 MeV
CELLO 0.12-0.15 0.19 90113 MeV 900 + 400 MeV
| +10%; +10%;

There are two possibilitics to improve the situation. Either one has to try to understand
fragmentation better, or onec has to minimize the effects of fragmentation. The simplest
way to minimize fragmentation is to increase the energy W. While the perturbative result
drops proportional to 1/In W, the fragmentation correction is believed to decrease faster,
like 1/W. Therefore at the Z° peak (i.e. W ~ 90 GeV) one expects a better situation. EEC
for energies comparable to the mass of the Z° have been calculated in Refs. [5, 6].

In the following I shall review what is known on EEC (or more generally energy
weighted cross sections, where possible), giving the results in a form, which is equally
applicable at low and high energies. EEC at y = 0° and y &~ 180° will not be discussed,
also radiative corrections are omitted in this review. Due to the uncertainties of fragmen-
tation corrections a detailed comparison with experiment will also be omitted. For these
topics I refer to the original papers.

2. Definitions and basic properties of energy weighted cross sections

The definition of the normalized old energy weighted cross section may be given
in terms of calorimeter measurements:

I calorimeters with opening angles dQ,, dQ,, ..., dQ, are placed at [ directions (with
unit vectors r,, ... r;) from the interaction point (see Fig. 1). In the A-thwhadronic annihila-
tion event the calorimeters measure the energies dE, , ..., dE,, respectively. The average
over all events of the product of calorimeter energies (divided by W and the product of
opening angles) defines the normalized /fold energy weighted cross section:

N
1 dr 1 dE,,  dE, a
O A2, ...dQ, N wdQ, " wdQ,’
A=1
The normalization condition
d'z d~'z
_ Q= )
dQ, ... dQ, dQ, ... dQ,_,

follows immediately. Eq. (2) is valid assuming “transparent” calorimeters, i.e. when e.g.
2, = Q, the same energy is counted twice in the definition, (as if defected simultaneously
in the Ist and /-th calorimeters).



331

The energy dE,; is obviously a sum of the energies of the particles incident into the
i-th caloriméter in the A-th event. In terms of particle energies we have

N
1 dr 1 1 Egp, - Eqp )
O dQ; ...dQ, dQ;...dQ, N wto

A=1 P

dQ,

(7 g,

Fig. 1. Kinematics of energy weighted cross sections

where the secord sum goes over all [plets of particles which are detected in the calori-
meters. Each lplet is counted only once, but a single particle may contribute to several
l-plets. Particle types are not distinguished, it is only the energy, what is relevant.

The number of events which contain the same lplet of particles is given in terms of
exclusive n particle cross sections as

N E' P d's SAQ, ... AQ
0 o O P By Er iy, o 4
n=2 a=1

D) 15(?2‘.1-—91) . 8(Q;,— Q)S(E;,—E,) ... 8(E;,— E), )

i1, =

where S, is a symmetrization factor, taking into account phase-space reduction for identical
particles, d®p, = p2dQ, and N, is the integrated luminosity. Multiplying by the missing
factors and summing up over all Iplets, we get the definition in terms of exclusive cross-

-sections:
d'z d"o
—_ = E'd?p, — — S,
aQ, ... do, E l,“ I « b, E ',
n=2 a=1

E, .. E, __ _
x z 715(9“—99...5(9,.,-9‘). o)

igeenig= 1
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For [ = 0 we get the total cross section, I = 1 is the antenna or energy pattern, [ == 2
. d's
is EEC, I = 3 is triple energy correlation. An important property of mis sym-
1 e 1

metry under exchange of any two £;’s.

The fully differential energy weighted cross sections are of course not measured in
experiment. Experiment determines the normalized angle integrated EEC, which is
defined as

1 az 1 d*z

d(cos y—cos 0, cos 0, —sin B, sin 6, cos (¢, —¢3)). (6)

Oy dCOSY O

In terms of particle energies we have

1 dz z E A,,EM )
Ot dcos,< Acosx N ’

where the second sum is over all pairs of particles with a relative angle . Bach pair is coun-
ted only once. The normalization condition is

1 dz

O dCOS ¥

dcosy =1, (8

this is assured by the explicit factor 2 in Eq. (7), (which should be absent for the diagonal
cases ¥y = 0 and E,, = E,).

3. Calculation of the energy weighted cross sections in e-e* annihilation

We perform the calculaiion to lowest order in the electro-weak interaction and —
by introducing appropriate structure functions — exactly in the strong interactions. We
have to calculate the graphs shown on Fig. 2. The squared amplitude |T}? is given by

1
ITI? o Z KS 4 1dul0> Wi Oljyle™e™>

f

1
Jweak ul0 0lj4ile e D%, 9
+<f+l ukut >W2——M§+iMZ[‘z< I./w k‘e € >i ( )
where jiweaky (Jyweak)) is the lepton (hadron) electromagnetic (weak) current and f is an
arbitrary outgoing hadronic final state. |T]? is assumed to contain already the necessary
energy factors, too, therefore it refers to any of the energy weighted cross sections. We
rewrite |72 as

IT? o Zf: 18,0°f1V,10) +a20"{f11 4,105 +a3a* £11V,10) +a,a"( £+ 14,100°,  (10)
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e+

Fig. 2. ee* — hadrons graphs, ‘to lowest order in the electro-weak interaction

where v* (a") is the matrix element of the vector (axial-vector) leptonic current, V,(,)
is the hadronic vector (axial-vector) current. All the coupling constants as well as the y and
Z° propagators are included in ay, ..., @;. For hadron production through a quark-anti-
quark pair of flavour f the standard model gives

2
€ gvGyy 8vGas
a,, = — Q.+ s gy = R
=y W2—M2+iM,I, Y WroMIyiM, T,
840y 8404y
137 = — ,  Qgp = -, 11
BT VENT Vo WA _MIt+iM,I, (D
where
g4 = ¢/(4sin By cos Oy), gy = (1—4sin® 0w)g,,
@y, Gyy, G4y are the eigenvalues of the matrices Q,
Gy = gA(WO ~4 sin® 0wQ), G4 = gAWG,
with
1 3
0 1 %
W = -1 B Q= 1 (12)
3
-1 ,..;’,

(for two generations).

Since particle types are not detected, the final state is effectively invariant under
charge conjugation; therefore

2 OVHI 4 < folA'10) =

7

!
e

(13)
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With the notation
V* =3 OV £ {4 1V0),

f

A" = 2f:<OIA"|f+> {f+14°10), (14)

neglecting final state interactions, TCP invariance yields
Ve = 7 A4 = A (13)
For massless quarks, i.e. assuming chiral symmetry, we also have
Ve = 4. (16)

This relation will be valid for energies much higher than any quark mass thresholds. The
necessary phase space integrations and polarization sums effect only final state particle
variables, therefore they may be peformed on V**, 4*”; the final results are denoted by
V" A", These tensors must then be coniracted with the leptonic tensors. Since V*¥, 4*¥
is symmetric, only the symmetric parts of the leptonic tensors enter, which are given by

VM = (8% —60%%) (145, - 5L —sp * sp) —siisk =5kt
a'a® = (6% —565"3) (1 =5, - 5] —sp* sp) +sisk skt
v'a¥ = (% —876*3) (5| — s )+ i(sh syt —s2s7) (07182 + 6254, 17

where we have neglected the lepton masses and the direction of the e~ is chosen to be the
third axis, while e* moves opposite to it. 5 S (s1, st) refer to the e~(e*) polarization
vectors.

Only the space-space parts of the leptonic tensors are non-zero. Of course V* (4%)
are different for the various energy weighted cross sections. Defining appropriate rotation
invariant structure functions, we get the following decompositions:

1=0 vk = A(W)o%, (18)
I=1 VE = A(W)™* + B(W)rir,
1=2 VE = (W, ) Q0% —rirk —rir%)

+BW, 1) (5%, 1= 5 (S +rbr )+ €W, ) - 0% cosy =1y o1y,
123 VE = Alriri+ A% (rir+rirD) + A (rirg 4 rie]

ok, , ke 6
+ A4 r‘zr’;—;-As-} (r‘2r§+l"3r2)~r—A rirs.

In case of / 2 3 the structure functions A, ... 4® depend on W and the scalar products
r; - r, of the unit vectors. As a consequence of the symmetry of the energy weighted cross
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sections under r; <> r, we obtain constraints for the 4"’s. E.g. for / = 3 we get [15]
Ag(ryra, iy, raors) = Ay(ry-ra, 10 13,010 13),
Ag(ry ry,ry -y, ryr3) = A(ry r3, 1y r3, 10 1),
Ay(rocrp, rysrasry k) = Ax(ry " F3, s 1y 0 1),
As(rycryory rasrpry) = Ax(ry ra, ry - ry, ryv 1),
A(ry-rary ra, Tyt rs) = Ary s, Ty, 1yt ry),
Ap(ry-rary “ras by r3) = Ax(ryrp, ry 1y, 1y - 13). (19)

A™ has simiar invariant decompositions, with structure functions which are identical
to the V™ structure functions only in the chiral symmetric, i.e. zero quark mass case.
For the zero quark mass case all energy weighted cross sections will have the general,
final form
dlz 72 ik * 2. 2 L 12 2
—— = WV Z [Uir'k(lalfI +lay A7)+ aa(ias ;17 +lag ;1)
s

dQ, ... do,

* * *
+uiag(a, fa§f+a2 1A )+ aivy (a’;fa3 s+azgas )l (20)

V™ does not depend on quark flavour. Inserting the invariant decompositions of V™, we
get e.g.

Opo = W32 Y [—sysp) - ia;flz‘i“z(si.‘“sl.) *Re(ay farj'*'a-if“:f)]A(W): @n
7 i

=]

B

A(W) = %[1+as(w)/n+ ...} in QCD.

In the zero quark mass case the following theorem is true. When integrated over at least
one azimuthal angle, the normalized energy weighted cross sections are independent of initial
state polarization and weak interaction parameters (i.e. Z° mass and width and coupling
constants). More precisely, the azimuthal angle mentioned above is an angle, which rotates
the system of unit vectors ry, ..., r; {which determine the calorimeter positions) rigidly
around the third axis (i.e. the e~ direction.) L.e. before integration one has to introduce
new variables: 2/-3 internal angles and 3 external angles. The internal angles determine
the relative positions of the unit vectors, while the external angles determine the position
of the whole system of unit vectors in the coordinate frame used. One of the external
angles is the azimuthal angle mentioned above.

The proof of the theorem is easy?, the important point is that the structure functions
obviously do not depend on the azimuthal angle. The significance of the theorem is that
all the results obtained for angle integrated energy weighted cross sections at low energies

! For! = 2 we shall outline it in the next Section.



336

(i.e. neglecting the Z° graphs of Fig. 2) may be easily extended to higher energies [6].
One has simply to multiply by o,,, (Z° included)/o,,, (Z° excluded). Since o, (Z° included)
is well known, this is a trivial exercise. I wish to emphasize that the validity of this statement
is based on general arguments, therefore it applies to both perturbative and non-perturba-
tive contributions. E.g. the higher order correction results, the y &= 0° or y = 180° results,
as well as fragmentation corrections may be immediately extended to the high energy
case. Finite quark mass effects as well as radiative corrections modify this simple prescrip-
tion.

4. The energy-energy correlation

First I sketch the proof of the theorem of the previous section for [ = 2, i.e. for the
EEC. The ECC (in the zero quark mass case) is given by Eq. (20) as a function of the polar
and azimuthal angles 6,,¢,, 0,,¢,, which characterize the directions ry, r,. The relative
position of the unit vectors is characterized by y, which is determined as cos y = r, - r,.
The angle ¥ may be introduced e.g. in place of ¢,. We get:

a’z N 1 ( d’z . a’z )
d cos 0,d cos O,dp dcosy A0, 05, ) \d21dDs)4,-9,+0  d21dD)4,=¢10)
(22)
where
cos y—cos 6, cos 8,
@ = arc cos - - ,
sin 8, sin 6,

A8y, 05, x) = (1+2 cos 0, cos 0, cos y—cos® 6, —cos® 6, —cos? x)''%. (23)

For a given y, ¢; may be chosen arbitrarily, while 8, and 0, are constrained by the require-
ment that 4(8,, 6,, ¥) should be real. This vields the restriction

cos 6, € (cos (y +0,), cos (x—0,)). (24)

Alternatively, one may introduce the angle w of the spherical triangle with the sides 8y, 6,, x
(see Fig. 3). In this case
d’z dz

= 4(0,, 0,, 25
d cos 0,dwd cos xd¢, (01, 02 ) d cos 0,d cos 0,d cos yd¢, (25)

and 0 <o
In both cases the azimuthal angle which figures in the theorem is ¢, which is uncon-
strained. We write down a single term from Eq. (22) in the case of EEC in detail:

Vo' = (2l +cos B +6)2(1 —s.s1)
—#[(2—cos? 0, —cos® 0,) (145, * 51 —5.5)
—2ry S0Py S, =2ry 517,08, ]

~ B[ (cos y—cos 0, €os 0,) (145, - S| ~SS.)—S, - ryS, - ry—3s5 a8, 1y, (26)



Since &, £, € depend only on g, ¢, dependence appears only in the coefficients.

the ¢, integration may be performed easily. The complete result is

1 dz
O d cos xd cos 8,d cos 6,

= 3 {42+ cos® 0, + cos® 8,)

1

+@(cosx+cos9;00892)+2(€}A(X 0,,0,) 8nA(W)’
»YVi1s V2

1 dz

— = n{da/ +2 %+ 3% s

O dCOS Y TS F L cos xE ¥ }SnA(W)
z |

T N y
D 4
LN Ay
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Thus

€2))

(28)

Fig. 4. Lowest order QCD graphs, which determine energy-energy correlations in e~e* annihilation
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where the denominator 8mA(W) comes from o, (87d(W) = 1+o(W)/z+ ...) and
o, B, € are the EEC structure functions?. Egs. (27), (28) are valid for arbitrary initial
polarization and do not depend on weak interaction parameters — as stated by the theorem
of Sect. 3.

The structure functions &, #, ¢ may be determined in QCD from the graphs of
Fig. 4. The graphs with the qq final state contribute only at y = 0° (self correlation) and
¥ = 180°. (Their contribution is proportional to a d function.) Since we are interested
only in angles y which satisfy 6 < y < 180°—~§ with § ~ 30°, only the qqg final states
are relevant. The result is

W)y 1 [3-4¢ 3 5 1
ﬂ:a( ) (ésgln(]—-f)dl-”—"‘—f;‘—ﬁ),

1222 1-¢ e8¢
a(W) 1 [4B3-8A-&) 12 10
= e 1—5( 5 In(1—-&+ ,—,4——-—;),
% =0, (29)

where « (W) is the running strong coupling at energy W and ¢ = § (1 —cos x). These
results are singular when y — 0° or y — 180°. The fact that the results are singular is an
indication that perturbation theory breaks down in these limits and one has to sum up an
infinite series of graphs. We shall not persue this subject further, only remark that this
is the reason why Egs. (29) yield a good approximation only in the region y € (J, 180°—9)
with & ~ 30°.

10%

1 1 | —
-09 -05 00 05 0.8
cos (X )

Fig. 5. Ratios of the massive quark and zero mass quark contributions to

for a single flavour;
S %

a) shows the vector-vector contribution ratio, b) the axial vector — axial vector contribution ratio. The
quark mass is 35/90 (in units of W)

2 The structure functions 7, #, € here are the traditional ones and differ by a constant factor from
the structure functions defined in Sect. 3.
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The results Egs. (27), (28), (29) are modified, when quark masses are taken into account
[7]. In particular, when W =~ M3 u, d, s, ¢ and b quarks may bz taken to be massless, while
the mass of the t quark is not negligible. In the massive quark case V*' # 4*', both

depend on the quark mass, thus Eq. (20) is modified to
dx .
e = W2 E Vi Towria, 2 +aarias
aQ, .. de, {¥Fr Lvwila, 4l i a3 gl
s
+uvaia, fa:f"'aiU:anaS f]+Ai}[Uivfla2 f[*
+a,~a,’f|a4fi*+viafa2 faff—kaiv,’fa’; 74471}

where the sum goes over quark flavour.

10 |~

{ ! ! ]

-0.9 -05 0.0 0.5 0.9
cos(y)
. i 3 i ax
Fig. 6. a) — — for zero quark masses at W = 77 GeV, b, ¢, d show —-
Oror dCOS Y Gor dCOS Y |m=0

dX
dcos y |m+0

for top quark masses m, = 30, 35, 40 GeV, at W = 70 GeV

(30)

1

ot



340

The expressions of V" and A" for one massive quark are calculated casily, the final
result is obtained by a simple one dimensional numerical integral. The contribution of the

. . dr
massive quark to changes much (Fi. 5). However, in both the
cos X O dCOS X
1 i
~1
10 +
a
| 1
-09 -05 00 05 09
cos{y)
i 1 dz 1 dx 1
Fig. 7. a) — — for zero quark masses at W=My, b, ¢, d show — — —_—
Tor dCOS ¥ Gtor 4COS X imy=0 Orot
ax
X for top quark masses m, = 20, 30, 40 GeV at W= My

dcos % |m #0

numerator and denumerator is a sum for several quarks, therefore the change is much
smaller, see Figs. 6, 7. In particular for W = M, the change is at most 10% (6%) for
top quark masses chosen in the range 20 GeV—M,/2 and —0.9 < cos y < 0.9 (=0.5
< cos y < 0.5).
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5. Higher order corrections for EEC

Higher order corrections for EEC have been calculated for unpolarized initial state,

dz
1y annihilation and P only [8, 9]. By the theorem of Sect. 3 these results are easily
cos x

extended to higher energies and arbitrary initial polarization. In the following I give only
a brief review, for more details I refer to the original papers. To O(a2)

2
L (1= ) (2w (%) ), )
Gy U COS X LA n

where g1)(x) and g®(y) are the functions of Ref. [8]. a,(W) is given by the formulae

a(W) 1 _byln (In (W?]A?%))
n by ln (W]A) 2b3 In? (W/[A)

b

by = $(11C,—2Np), b, = —};(17C,2,—5CANI—3Cfo), 32)

Cy = %, C4 = 3 N; = no of flavours. g'*(y) is the well known lowest order result, g®(y)
was evaluated from the graphs of the type shown in Figs. 4, 8. All the squared matrix
elements are known from the literature. To calculate the EEC one nas to multiply by the
appropriate energy factors and integrate over phase space. Thus

EE;
£20) = f(d4) Z M@ =5 6(p: - py—cos 1)
iJj

+ [ (d3) z M® %}i;i 8+ p;—cos 1), (33)

where (dN) = N body phase space, M™ = “squared” matrix element (M® is the inter-
ference term of the basic qq graphs of Fig. 4 with the loop corrected graphs), and p; is the
unit vector pointing in the direction of the momentum p,. Both integrals in Eq. (33) are
infrared divergent. The method of cancellation is given in Ref. [10]. To regularize, the
integrals are peformed in 4-2¢ dimensions. Then M® is expanded into partial fractions,
so that each term is only singular, when one of the s;; = (p;+p;)* = 0 (i.e. p;, p; collinear).

Fig. 8. A few graphs, which determine the O(x?) corrections to the energy-energy correlations in e-e*
annihilation
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The singularities are then isolated and combined with a quasi 3 body phase space and
energy weighting. Thus

D0 = {f @HIMP — [ (@HZMD}+{ [ (@3)ZMP + [ (dHIMW}. (34)

Both combinations are separately finite in the & — 0 limit. The integrals are evaluated
numerically. A simple analytic approximation of the results is given in [8].

A few remarks are in order. a) Comparison with experiment shows that the O(a?)
corrections reduce the fitted value of o, by about 209%,. b) The corrections calculated in
Refs. [8, 9] are calculated in the MS scheme. Of course, there is a scheme dependence of
the calculated EEC. ¢) The conventional choice for the scale of «, is the total center of
mass energy W. However, it is possible to choose a y dependent scale W(x) [8], so that
a substantial part of the correction is absorbed into a(W(y)). Of course the fitted value
of oy increases. It turns out that the prediction is very close to the PMS prediction [11].
Presumably it is also close to the prediction of the Grunberg prescription [12]. Ref. [8]
concludes that the available data are not sensitive enough to the small differences in y de-
pendence of the various effective couplings.

6. Fragmentation corrections

In a perturbative QCD calculation the firal state is composed of quarks and gluons,
which are assumed to hadronize. As is well known, the description of this last process is not
yet solved on the basis of QCD. There are two types of models: a) independent fragmenta-
tion [3] and b) string fragmentation models [14]. The qq fragmentation is quite similar
in the two models, the first major difference appears in qqg fragmentation. The string
kinematics in a qqg event shifts the particles from the original parton directions towards
the regions between quarks and gluons, thus making a 3-jet event look more 2 jet-like.
Therefore, fitting the same data the value of o, will be higher in the string model than in
independent fragmentation models.

The best method to take into account fragmentation is to perform a complete Monte
Carlo calculation. In order to get a feeling about the effect of fragmentation I recall the
original calculation of Ref. [1]. With the help of our theorem the result will be presented
in a form, which is readily applicable to the high energy case.

First we calculate the fragmentation to the antenna (energy) pattern. The calculation

for EEC may be performed similarly. Suppose a quark (antiquark) of momentum P pro-
duces dn hadrons in d3h. We put

dh ..
dn = Ffl(h; p)- (35)

fi is normalized as

d*h - -
JW k% (h; p) = p~. (36)
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The antenna pattern cross section is then given by

d'z a*h h
4z = -d—Q-AQ = Jdﬂ,, 10 J W (fx(h P)+fi(h; — D)), 37N

where the integration over d3h is in a cone with opening angle 4Q and axis direction £.
Defining

2 + - S
Fi(n) = thzdhfl(h; p), cosy=p-h, (38)
we may write
'z do _
0" ? dQ, — i, [F(m)+ Fy(n—m)]. (39)
The cross section for qq production (through the 1y channel) is
4o _ 2 N prgnte 40
dQ, T ow? s SImSs (40)
!

where the e~ is perpendicularly polarized (in the direction of a unit vector b), while the
e+ is polarized in the —b direction, and cos & = b + 5 To perform the dQ, integration
we choose the z axis to be the direction of . With the notation of Fig. 9 the azimuthal angle
is o, thus

| sin? &da

sin? & = = sin? p+1 sin’ - (3 cos® y—1) 1)
n

Fig. 9. Kinematics of quark fragmentation in e~e* annihilation
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and

dx

az . . y
o = z 3Q;JdQP(31n2 p+1isin’n-Gcos? p—1)(Fi(m+Fn—n). (42)
J

Since the integrand depends only on 7, we may perform the integration over d@ instead
of dQ,. Thus — after normalization and integration over the azimuthal angle — we get

1 dz
Oy d COS O

= 3 ((1 +cos? 8) +1 ¢sin? n) - (2—3 cos? 0)), (43)

where
<sin® n) = | dQsin® nF (n) (44)

and 6 is the polar angle in the original frame (i.e. when the e~ direction is the third axis).
As a consequence of the theorem in Sect. 3, this result is valid for arbitrary initial polariza-
tion and high energies, too.

Until now, the calculation is completely model independent, the form of fl(h )
is not yet specified. Tt is sufficient to make some general assumptions on fl(h D)

.. 2h
a) Scaling i.e. fi(h, P) = fi(z, hy), where z = _v#

b) A, dependence is exponentially decreasing.
¢) No backward production.

nC <{h
Under these assumptions it is possible to prove that <sin?#) ~ > <WJ;> , Where C is

) 1
a constant. This means that the fragmentation correction is O (W)

Next we discuss fragmentation correction to EEC. Via fragmentation the qq final
state also contributes to EEC at y # 0°, y # 180°. This is actually the largest correction,
since qqg fragmentation correction is already proportional to a,(W). Let us denote the
number of hadron pairs produced by a quark (or antiquark) by dn. We put

d3 d3 ’ .
d*n =—5 P (B, B3 B). 45)

The normalization of f, is:
d’h’ ” . w Tl
— Wk, B B) = (0"~ fi(h; B)- (46)
The contribution of the qq final state to EEC is:

d2r [ 4q 4o h2dh h'2dh' B° R'°
dde’ ) TPde,) B° K W w
(LAR; DAG; = D) +12(h, B Y+ RS~ f1(B, D]+ [P —P1},  (4D)
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where the self correlation is also included. Defining

' 2 2 ' ' T T, 0 7.
Fy(n,n'sx) = (W) fhzdhh [ fo(h, B D)+ ROS(R—R') f,(R; P)), (48)
cos # 51;: cosn'=;-}-{', cosx=h:.-lf',
with the normalization
de'Fz(ﬂ, '7" X) = Fl(’l)? (49)
we have
d2z do
2000 = %fd Y [F(mF (x—n")+F (x—n)F(1)

+F2(’7’ ”,9 X)+F2(7I—‘I1, 75_'7', X)] (50)

Assuming a specific function for F, and F, the integral may be evaluated numerically.
To determine the energy dependence a few general assumptions on f, (scaling, limited
transverse momentum) are sufficient. It may be established that

1 1
a. When both », — , Fyoc — .
n '1’7>W 2% 33

b. F, is strongly peaked, when either 5 or #’ is small.
It follows that the largest contribution to the integral (50) is obtained when either 2 or Q'
is collinear or anticollinear to Q2,. Keeping only these regions one gets

2yaq p F do
deQ" X3 ( (D +F(m—x) dQ dQ'
d
B LAY (51)
4713 |44 daQ dag

: . . . . 1
With some more work it is possible to show that the corrections to this result are O (WE)

[1]. For the normalized angle integrated EEC one gets:

1 dz®  C <(h

R <huy sin” y. (52)
O dCOS 1 2 W

This is the fragmentation correction to EEC for arbiirary initial state polarization and high
energies, too. Defining the EEC asymmetry as

1/ dz dz .
AQ) = (u——- (=0~ 5 (;c)> (53)

Oi \d COS X dcos y
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it is clear that in the above approximation the qq contribution drops out. This is why the
asymmetry is considered to be a better quantity than the EEC itself. Of course qqg fragmen-
tation does contribute to A(y) even in the leading approximation. It is the model de-
pendence of this contribution, which results in the widely differing values of «, quoted
in Table L

7. Triple energy correlations

While in experiment only the normalized angle integrated EEC ‘is measured it is
worthwhile to look for further independent tests of QCD. The next member of the hierarchy

d3z
of energy weighted cross sections is the triple energy correlation ————— . This
&y weig P &Y 0, da, da,

is certainly not very practical since it depends on 6 angles. Integrating out over all external

1 et ——
MBS W B s dra i

= COS Xz, Iy * F3 = €OS x3. In terms of the structure functions of Sect. 3 we get?

, where the angles are defined through r, -7, = cos xy, ;" 13

1 ar 12873 1
Owr AX1dx2dys  3(sin y, sin x, sin 7(3)_I A(Xu X2s X3)

{A + Ay cos xy+ A3 o8 g+ Ag+As cos 3+ Ag), 54)

where

A(xy, %2> 73) = 142 €0s x; €OS ), COS x3—c0s? y; —cos” g, —cos? x3)'/2.

dz
Probably ————— is not practical either, thus one may integrate also over the angle ys.
dyy dy2 dys

(The integration region is determined by the requirement that A(xy, x2, xs) should be real.)
Alternatively one may define the “planar” triple energy correlation, which is triple energy
correlation measured with planar calorimeter positions. Since three jets give the dominant

dx
contribution, this is equal (to a good approximation) to J dys .
dy dy2dxs
The lowest order QCD result may be easily obtained:
1 dZyume _ 640(W) EIEZES
Oo dtydys 3 WP
{ E}+E} N Ei+E} N E}+E} } (55)
(W—2E,)(W—2E;) = (W—-2E,)(W—-2E;) (W—2E;)(W-2Ey}’

3 6. here is the lowest order QCD result. Inclusion of higher order corrections of 614 is achieved

&
by multiplying (54) by (1— ;’+ )



where

—sin(x; +x2)

E1 = VV L. . . . )
sin g +sin yz —sin (ry +2)

—sin y, sin y,

E2 = — El’ E = EZ‘

sin (1 +12) > sin X2
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(56)

The lowest order result Eq. (55) is a good approximation, if § < y; < 180°-8(i=1,2,3,
A3 = 2m—Y—X2), With & =~ 30°, provided fragmentation corrections are also added.

The axonometric view of the function (55) is shown on Fig. 10 for o, = 0.13.

The “planar” triple energy correlation is not yet measured experimentally. The motiva-

tion for studying it is [15]:

Fig. 10. Axonometric view of the normalized, planar triple energy correlation function for & = 30°.
The equal maxima are at , = 60°, x> = 150°; x; = 150°, 2 = 60°; x; = x2 = 150°; while the minimum
isaty, = x2 = 120°. For x; + 2 < 180°+ 4 (a region, where the QCD result is not applicable) the function

has been arbitrarily set equal to zero
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a. It is a further independent test of QCD.
b. It takes into account 3 jets in a more natural (symmetric) way than EEC.
c. The fragmentation correction may decrease faster with increasing energy than

1
for EEC. (Preliminary results indicate O (W) [16].)

8. EEC at the pp collider

It is quite natural to try to investigate energy weighted cross sections, in particular
EEC at the pp collider. In this case of course QCD is applicable at high p, only, further-
more the initial state is much more complicated than in the e*e~ case. The type of QCD
graphs, which are relevant are shown on Fig. 11. They are all ithe 2 parton — 2 parton

Fig. 11. The types of QCD graphs, which are relevant for pp collisions

and 2 parton — 3 parton graphs. The cross-sections for these processes are known from
the literature [17].

Comparing with the ete~ annihilation ihere are two more major differences. 1) The
pp CM (center of mass) frame is different from the parton CM frames. 2) The singularity
structure of the subprocess cross sections is different. A final state gluon may be collinear
with initial state partons, too. Of course, these singularities are at low p,, this phase space
region is excluded anyway, however, we can not normalize with the total cross section.

There are several possibilities to define EEC. Probably the simplest way is to define
EEC in the pp CM frame, integrating out over all angles (in an appropriate region), keeping
fixed only the relative angle of the calorimeter dircctions [18]. In the colliding parton
CM frame the two jet production contributes to the EEC only at 0° and 180°. Transforming
back to the pp CM frame, however, we get a contribution for all angles. Thus the lowest
order contribution is two jet production, i.e. O(a?). Since the pp CM frame angle is determin-
ed by the Lorentz transformation, which in turn is determined by the parton distributions,
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the pp CM frame EEC is actually more sensitive to the parton distributions, than any details
of the hard scaitering subprocesses. The O(22) corrections are first sensitive to the 3 parton
final state. The complete O(a) contribution is at present not calculable, since the one
loop corrections to the 2 — 2 subprocesses are not yet known. The 2 — 3 subprocess
contribuiions alone yield a divergent answer due 1o uncompensated soft gluon singularities.

To define EEC-s, which are calculable and sensitive to the 3 parton final states one
may choose between wwo possibilities. 1) EEC is defined in the pp frame, all angles except
the relative azimuthal angle are integrated out [19]; 2) EEC is defined in the CM frame
of the colliding partons [20]. To minimize parton distribution dependences it is convenient
to take cross section ratios. In the following we discuss briefly only the first choice. The
(preliminary) quantitative conclusions for the second choice are very similar.

In the first case the definition of the normalized EEC reads:

dz’
dET 1E d
dy’ @ET ¢’

! = Frmin
o dp ZM)Z E 7

where the first sum on the right hand side is over all accepted events 4 with total transverse
energy Ef = ZE" > Et mia- The second sum is over hadron pairs (a, b) whose iransverse

momenta have relative angles ¢ to ¢ +d¢. The accepted events are those in which at least
one jet has a certain irigger iransverse energy, which is larger than E ., = 2Ey g, It IS
also required that the deiecied partons (jets) lie in a central pseudorapidity range || < 5,
= 2.5. The allowed azimuihal angle difference range is 30° < ¢ < 150°. (Note that for
¢ = 0°, ¢ = 180° the lowest order QCD calculation is divergent.)

The main question is, how sensitive is this definition of normalized EEC to a) parton
distribution parame.rization, b) choice of the argument of «,. Since these ambiguities affect
both the numerator and denumerator, it is expected that a large part of them cancel.
In fact Fig. 12 shows that the parton distribution [21] dependence is about 10%;. In the
QCD calculation the numerator comes from 3 parton production, i.c. it is aca(Q), where
Q is chosen to be the maximum of the transverse energies of the three partons. The
denumerator is determined by two parton production, i.e. it is cca?(Q), where Q is the
transverse energy. Thus the ratio is proportional to a,({Q)), where {Q) is some effective
(or average) value. An experimental determination could measure this effective o, and test
the QCD prediction in pp annihilation.

9. Conclusion

Energy weighted cross sections (mainly EEC) have been studied in great detail for
e-e* annihilations both theoretically and experimentally. As a test of QCD and a possible
method of «, determination, EEC is still much affected by the uncertainties of jet fragmenta-
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tion at the energies of available experiments (= 30 GeV). For energies near the Z° peak
these uncertainties will be much reduced, thus EEC will be useful both for a, determination
and testing QCD. In this energy region triple energy correlation may become also meas-
urable and serve for the same purposes as an independent possibility. Though the process
is much more complicated, EEC may be useful to test QCD and measure an effective
a, at the pp collider, too.

\110—3) GHR
-~-- OR

10+ |1‘l| < 2.5
Vs < 540GeV

Trigger
~E,=30Gev Tt T = .

-

{ | 1 { ! ! | 1
0 20%  40° 60° 80° 100° 120° 140° 160° &

Fig. 12. Normalized, angle integrated EEC as a function of azimuthal angle difference ¢. The figure is
taken from Ref. [19]
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