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An explicit formula expressing the pairing-interaction strength G by the pairing-energy
gap parameter A, averaged over shell effects, is found in a uniform level-distribution model
based on the harmonic oscillator potential. The dependence of G on the proton and neutron
numbers, obtained from the formula in case of the phenomenological 1(3 = 124-1/2 MeV),
is discussed and compared with that assumed in various microscopic analyses in which
G is numerically fitted to empirical odd-even mass differences.
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1. Introduction

The pairing interactions have been used in nuclear physics for more than twenty five
years [1-3]. Their strength G is determined from empirical odd-even mass differences.

The usual procedure is to solve numerically the pairing equations (which connect
the pairing energy-gap parameter 4, that is assumed to be equal to the odd-even mass
difference) for each nuclide, separately for neutrons and protons. The solution is based
on a definite single-particle energy spectrum, obtained with a realistic single-particle po-
tential. The empirical odd-even mass differences, i.c. the values of the gap parameier 4, are
the input of 1he calculation, while the strength G is treated as an adjustable parameter.
The calculations are performed for a given, larger or smaller, region of nuclei (cf. e.g.
Refs. [4-7)).

In some papers (¢.g. Refs. [8, 9]), however, the energy-gap parameter 4, averaged
over shell effects (e.g. 4 = 12 A-'/2 MeV), is taken as a starting point. The strength G is
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then calculated from 4 by the use of a single-particle spectrum which is also averaged over
the shell effects. The calculation is performed numerically using a definite averaging pro-
cedure, e.g. the Strutinski procedure.

In the present paper, we also base on the average gap parameter 4. However, instead
of calculating G numerically for separate nuclei, we aim at finding a simple, explicit formula
for G, which will show us the dependence of G on the neutron, N, and proton, Z, numbers.

It is interesting to check if such formula predicts the dependence on N and Z which
is usually assumed in the numerical fits of G to the odd-even mass differences. It is also
interesting to see how close are the values of G obtained from such formula (which may be
considered as a general formula for all, not too light, nuclei in the nuclear chart) to the
values obtained in the numerical fits. More generally, it is interesting to see if the formula
can replace the fits.

We base on the harmonic oscillator spectrum, averaged in a simple way.

2. Explicit formula for the strength

Let us consider the pairing equation in the model of uniformly distributed energy
levels around the Fermi level A. The equation is (cf. e.g. Refs. [6, 8, 9))

1~ S S \21/2
eG-Ol = j‘—‘ + [1—*— (’j) ] 5 (2.1)
1 !

where G is the pairing-interaction strength for one kind of nucleons (neutrons, / = N,
or protons, / = Z), §, is the single-particle level density for these nucleons, 25; is an energy
interval (taken symmetric with respect to A) in which the pairing interaction is assumed
to be active (i.e. its matrix elements are assumed to be different from zero) and 4, is the
pairing gap parameter. For

Sl/Zl > 1’
which we always fulfil, Eq. (2.1) becomes

1
- 25
eGett = %‘ 2.2)
i

For §;, we use the level density of ithe spherical harmonic oscillator, averaged over one
oscillator shell, i.e.

; _EmrD ) GhY
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(2.3)

where n; is the total oscillator quantum number of the last filled shell and 2w, is the
oscillator energy. With this, Eq. (2.2) reads

2

P3G = — o hagy.
LT BB as Ay Y

(2.4)
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Thus, the value of G, depends on the cut-off energy S;. We adopt here the same S, as in
Ref. [6] (cases of other S are discussed in Sect. 3), where 25 is the energy interval including
/151 single-particle levels below the Fermi level and the same number of levels above it. For
the smooth pairing energy-gap parameter 4, we take the widely used phenomenological
formula

A, = 124712 MeV, (2.5)

obtained from a fit to all odd-even mass differences available (cf. e.g. Ref. [10]). Thus,

28, 2. /151 A”z 2. /151 AV?
== -—‘/*- \/2,3 2hwg, — . (2.6)
4, 0 12~ @3l 12

To express the oscillator energy hwy, by the number of particles /, we express the
total single-particle energy of the oscillator by the average value of the potential, on one
hand,

Z e; = Mag(r?y, - 1 (2.7a)

(where e; is the single-particle energy in a state i and M is the mass of a nucleon) and by
the number of particles, on the other. For the latter case, we calculate the energy expli-
citly, assuming #, oscillator shelis to be filled

Y e, = hoy, i n+H(+D)(n+2)
i n=0

= hawg - 2 Un+2) = 2 haog, - I3HY. (2.7b)

In Eq. (2.7a), we have used the virial theorem for each oscillator state i. Comparing Eq.
(2.7a) with Eq. (2.7b) one gets
2

hog ~ 3 M2S ——= (D', (2.8)
t

which, with the assumption of the same value of {r2) for neutrons and protons and of the
uniform distribution of them in a nucleus

Py =z = $RS = $r54%5, 2.9
where R, is the radius of the nucleus, lcads to

2 (33

Mrg VR (2.10)

s
hwot =7

Using the value ro = 1.2 fm and introducing the relative neutron excess I = (N—2Z)/4,
Eq. (2.10) becomes

41.0 /21\'* 410
ﬁwo;=:1—,—,;<x) = i (1+£D'3 MeV. (2.10a)
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To obtain this, we have used the relation
2l = A(1tD), (2.10b)

where sign plus holds for neutrons (/ = N) and minus for protons (/ = Z). An expansion
of this expression up to the first order in 7,

| 4.0
ha)o, ~ -;im (1 _'_t:—; I) MCV, (2.10C)
“is usually used in the harmonic oscillator calculations [6).
Substitution of Eq. (2.10a) into Eq. (2.6), with a use of Eq. (2.10b), gives

28,/4, = 28.56(1 +1)"/°, (2.6a)
or
In (2S,/4,) = 33524+ In(1+1) ~ 3.3524+1 1. (2.6b)

This leads to the final form of Eq. (2.4)
I*3 . G, = 0.287(1 F0.0501)iw,y,, 2.11)

where sign minus holds for neutrons and plus for protons. One can see that Gy, (Gy),
when expressed in units of iwgy (hwgy), depends essentially only on the number of neutrons
N (protons Z) and merely very weakly on the number of protons Z (neuirons N). The
latter dependence enters through the small term involving the neutron excess I and may
be accounted for, with a high accuracy, by taking an average value of I in Eq. (2.11), e.g.
I, = 0.185 for rare earths and I, = 0.217 for actinides. With these values, Eq. (2.11)
gives for both the regions of nuclei

N33 .Gy = 0.284 hagy,
Z*3 . G, = 0.290 hwy,. (2.11a)
The strengih G, of Eq. (2.11), expressed in units of MeV, is

, 11.76
P3G = i (1F0.050) (1+1)"/*> MeV, (2.12)

according to Eq. (2.10a).

3. Relation with the strength obtained numerically

3.1. Relation with the strengith of Ref. [6]

The relation with the strengih of Ref. [6] is most direct, because we use the same
energy interval 2S,, Eq. (2.2), as in that paper.
The pairing sirength G, is assumed in Ref. [6] in the form

4G = goFal, G.D
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where minus sign holds for neutrons and plus for protons. A fit of the gap parameter
4y, calculated microscopically in Ref. [6] with that G, to empirical odd-even mass differ-
ences, leads to the values

A+ G, = (19.2F7.41) MeV. (3.2)

The fit has been performed for a wide region of A4, from 4 ~ 150 to 4 ~ 250, using ihe
energy interval 25, corresponding to 2 /15! Nilsson levels nearest to the Fermi level.
Our formula for Gy, Eq. (2.12), transformed to a form similar to that of Eq. (3.2) is

A+ G, = 18.67(1F0.0501) (1+1)" /3 MeV, (3.3)
where we have only made use of relation (2.10b). Up 10 the first order in 1, this gives
A" G, = (18.67F7.15I) MeV. (3.3a)

Thus, our values of both g, and g, differ from those of Eq. (3.2) only by about 39, i.e. by
less than the accuracy wiith which they are obiained from the odd-even mass differences
[6] (we think his accuracy to be about +59%). One could expect such good agreement
as the fit of Ref. [6] has been performed for large region of nuclei. For such region, the
uniform model used by us, which washes oui the shell effecis in the energy spectrum, should
already work sufficienily well.

The presence of higher-order terms in 7, in Eq. (3.3), which are omitted in Eq. (3.1),
suggests that the form of G,, as given by Eqgs. (2.11) or (2.12), is more proper for the fit
than that assumed in Eq. (3.1). These terms are significant for heavy nuclei, for which
I is rather large (around 0.2).

3.2. Relation with the strengih of Ref. [5]

It is instruciive to look at the relaiion with the strengih obtained in an analysis in
‘which another energy interval 2S;, than that of our formula, was used.
In Ref. [5] (cf. also Ref. [11]), ihe pairing strength G; has been assumed in the form

A-G = gy 3.4

and adjusted to the odd-even mass differences. The Nilsson potential has been used and
42 energy levels have been taken for the pairing interaction. The analysis has been performed
for a wide region of nuclei, 150 << 4 < 256, leading to the result

A -Gy =(2254+05)MeV, A:Gz; = (26.54£0.5) MeV. 3.5
Our Eq. (2.4), rewritten to the form useful for the comparison, is
A+ G, = 62.58 [In (25,/4)] '+~ "> MeV, (3.6)

where we have used Eqs. (2.10a) and (2.10b). To calculate G, we should relate 25, taken
in Ref. [5] with that of our analysis. The relation is

~ 42 -
(28,/41)sy = 2 /sl (281/4)our» (3.7
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where our value is given by Eq. (2.62). To get only one value for the whole region, 150 < 4
< 256, we take a nucleus around the center of the region, e.g. 293Tl,,,, and obtain from
Eq. (3.6)

A Gy =220MeV, A:G; =240MeV. (3.8)

Thus, our value for AGy is only by about 29, smaller than that of Eq. (3.5) (22.5 MeV),
i.e. by less than expected accuracy of the latter, while our value for 4G, is by about 9%,
smaller than the value given in Eq. (3.5) (26.5 MeV), what is more than one might expect.

3.3. Relation with the strength of Ref. [7]

It is interesting to look at the relation with the strength obtained with the use of
another single-particle potential than that of the harmonic oscillator.
In Ref. [7], the strengih G, has been assumed in the form

A G = got+gu(N-Z) 3.9)

and adjusted to the odd-even mass differences. The Wocds-Saxon potential has been used
and / levels, starting from the lowest one, have been taken when solving the pairing equa-
tions. The result for the rare-earth region (analyzed for nuclei from *¢§Nd up to 3IHF),

A Gy = [18.95—-0.078(N ~ Z)] MeV,
A- Gz = [17.9040.176(N —Z)] MeV, (3.10a)
and for the actinide region (analyzed for nuclei from 22Ra up to *5Cm),
A- Gy = [19.3—-0.08(N~Z)] MeV,

A+ Gz = [13.3+0.217(N—-2Z)] MeV, (3.10b)
has been obtained.
To get our values, we again use Eq. (3.6), with the relation

. ! -
285,/4) i = — == (25)/8)our 3.11
(28,/4)n 2\/151( 1[4) (3.11)
which gives
[In (2S,/4)}7; = 0.9584+%In A+% In (1) (3.12)

Then, the right-hand side of Eq. (3.6) is expanded in powers of I, up to the first order,
at I, corresponding to a nucleus about the center of a region. As such a nucleus, we take
182Dy for rare earths and 233U for aciinides. The values of A are also taken as correspond-

ing to these nuclei. The results are
A Gy = [17.77—0.0501(N — Z)] MeV,

A~ Gy = [17.71+0.0670(N — Z)] MeV (3.13a)
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for rare earths, and

A- Gy = [16.84—0.0315(N — Z)] MeV,

A~ G, = [16.75+0.0441(N — Z)] MeV (3.13b)

for actinides.

One can see that the g,, part of the strength of Eq. (3.13) agrees better with that of
the strength of Eq. (3.10) than the g,, part, especially for the rare-earth region, where the
8o part of AGy differs by about 6 % and that of 4G, by about 19,. A portion of the large
discrepancy in the g,, part may come from the difference between the dependence of G on
Z and N obtained from our formula and that assumed in the numerical analysis. This
conclusion is especially supported by the fact that the total values of G differ less than the
corresponding values of separate g, and g,; parts.

Some portion of the discrepancy in G may also come from the difference in the single-
-particle level distribution, especially because the large number of levels (all occupied
levels and the same number of levels above the Fermi level) taken here for the pairing
interaction.

4. Conclusions

An explicit formula expressirg the pairing-interaction strength G by the pairing-
-energy gap parameter 4, averaged over the shell effects, is found. The formula depends
on the number of protons Z and neutrons N in a nucleus, as well as on the single-particle
energy interval, in which the pairing forces are assumed to be active. The formula is obtained
in a model of uniformly distributed single-particle levels, based on the harmonic oscillator
potential.

Our study of the formula and its relation with formulae used in microscopic analyses,
in which the strength G is numerically fitted to empirical odd-even mass differences, leads
to the following conclusions:

(1) The formula predicts a different dependence of G on Z and N numbers than
assumed in the microscopic analyses.

(2) If the difference in the dependence is small, as e.g. in case of the analysis of Ref. [6],
the values of Gy and G obtained from-the formula agree with those of the microscopic
fit inside the accuracy of the latter. This indicates that the microscopic fit is unnecessary
when we have the formula at our disposal.

(3) In particular, the formula shows that the strength for neutrons, Gy, is almost
independent of the number of protons, Z, in a nucleus and that the strength for protons,
G, is almost independent of the number of neutrons, N, if both strengths are expressed
in units of the oscillator energy hiwg,. This result is of a practical value as it allows one to
solve the pairing equations only once, for a given N, for all isotones considered, and also
only once, for a given Z, for all isotopes considered, in an arbitrary microscopic calcula-
tion. Without that one would have to solve these equations, both for neutrons and protons,
for cach nuclide separately.
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