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The Lorentz Invariance conditions in Instantaneous Predictive Relativistic Dynamics
are integrated in the case of one dimensional motion of two particles. The physically realistic
models expressed in terms of non-relativistic potential are constructed in implicit form.
The iteration procedure giving an explicit form of dynamics describing the unbound motions
is presented and an asymptotic explicit form of dynamics describing the case of weak interac-
tion between particles is found. Trajectories of particles are presented in parametric form.
Some new simple solutions of Currie-Hill equations are found.

PACS numbers: 03.20.+1, 46.10.+z

1. Introduction

In Instantaneous Predictive Relativistic Dynamics (IPRD) [1-5] the system of two
point-like particles is described by the Newtonian-like differential equations of motion
axt .
=x

dt®

"= al(x, X', X%, my, my), (1.YH
n=1,2,i=1, 2,3, where x"is the n-rarticle position, while X = X! —x2, m, is its mass and
d} are the particle accelerations expressed as functions of particle positions x" and velocities
X (“forces™).

Currie [1]and Hill [2] have given independently the differential conditions which ensure
the Lorentz invariance of IPRD. They form a set of non-linear partial differential equations.
In the case of one dimensional motion of {wo particles they are:

oa” oa”
A=x"3%") — +[1=%"X"+(x"—x")a"] —
0x ox
m 0a" o
—X"x — +3x"a" = 0, (1.2)
ox

* On leave from the Institute of Physics, Pedagogical University, Kielce, Lesna 16, Poland.
(403)
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m # n,n = 1, 2, no summation on n. We call them C-H equations. These equations were
integrated by Hill [6]. His solutions, given in implicit form are presented in very unconve-
nient form for further physical discussion. In the present paper we obtain a class of solutions
of Lorentz invariance conditions whose form allows us to obtain physically realistic models
of IPRD. We say that a model is physically realistic if it has the following characteristics
(they have been already formulated in our previous paper [3]):

A. The system of equations of motion (1.2) has two independent constants of motion
E and P which transform like energy and momentum if one changes the inertial frame.

B. The constants of motion E and P should reduce to the free particle form

o1 22

m, m, myX m,x

+ , P= +
Ji—ztxt o J1-3%%2 Ji—xx'  J1—x2%2

E= (1.3)

either when |x| — o or when one switches off the interaction whose magnitude would
be characterized by some coupling constant. Note that all the explicit solutions known
until now do noi have this characieristics [7, 8]. It seems that the solutions given in Ref.
[6] also have this drawback since the iransition from unphysical variables ¢, 1, { to physical
variables becomes singular in the free particle limit.

C. The dynamics has the correct non-relativistic limit.

D. The ““forces” never permit the pariicle velocities to exceed the velocity of light.

E. The dynamics is symmetric with respect to the interchange of the particles.

F. The dynamics is invariant with respect to the reflections x, - —x,, which cor-
respond to the rotations by angle n with respect to the axis perpendicular to Ox axis.
This requirement is related to the rotarion invariance of the three dimensional model.

G. The functions a,(x, x!, x2), E(x, x*, x?) and P(x, x*, x2) should be regular functions
of all physically admissible values of variables.

All known until now explicit solutions of C-H equations (1.2) do not satisfy some
of these requirements. Tt is difficult to seleci the physically realistic model from the solu-
tions presented in implicit form in Ref. [6], bzcause of unconvenient choice of variables.
In the present paper we obain a class of explicit solutions of Lorentz invariance condi-
tions (1.2) describzd by a convergent iteration procedure, which have the characteristics
A-F and describz ithe unbound motions of two particles in one space dimension. The case
of bound motion is more difficult to handle and may easily lead to the situation in which
the requirement G is not satisfied.

Instead of solving the C-H equations directly, we first assume, following Kerner
[9], that the equations of motion (1.1) are “half integrated”, i.e. that the motion is deter-
mined by the equations

X" = (Pn(X, Cy) 02)7 n=1, 21 (14)

where ¢, ¢, are some first constants of motion, which have simple transformation prop-
erties. We choose ¢; = ¥; where V; are constants of motion, which transform like free
particle velocity when one changes the inertial framz. They are related to the energy E and



405

momentum P of the whole system by the equations

2 2
E E i P mVi (1.5
A7 L1-vE '

Thus the energy and momentum transform correctly and the requirement B is equivalent to

@n = Va (1.6)

for |x] = oo or when one switches off the interaction. One easily checks that the Lorentz
invariance of dynamics leads to the equations [9]:

q:—l—xq>m7—+Z(1 v ‘p" a.mn

where m,n = 1,2 and n # m. More precisely, equations (1.7) lead to C-H equations

0@y . .
provided the dynamics is non-degenerate, i.e. det ( 5;’;) # 0. This condition allows us to

calculate the functions ¥, = V,(x, x!, x2) from the system X" = @,(x, V1, V,) and then
one finds energy, momentum E, P and “forces” g, expressed as functions of relative particle
position x and velocities x”".

All examples found by Kerner are degenerate in that sense [9]. In Sections 2 and 3 we
find the general soluiion of the system (1.7) satisfying the requirements A-F which are
given in implicit form, except the harmonic oscillator case and we propose in Section 6 an
iteration procedure which gives the explicit expressions for the functions ¢,(x,n, (),
E(x, x!, x?), P(x, x!, x?) and a,(x, x*, x2). If these functions are found, we say that the
dynamics is given expliciily. In Section 3 we present the parametric description of world
lines of the particles.

Summarizing, one may say that our work constitutes a complement to the papers [6]
and [9].

2. Integration of Lorentz invariance conditions

In our approach the Lorentz invariance of the dynamics is ensured by equations (1.7).
Tt is convenient to introduce the global and relative rapidity variables # and { defined by
the equations

n =, Wy +(1—a)W, @.1)
{=W,~W, V,=thW, (22)

where «,({) may be an arbitrary function of { having the property: a, & m,;/M for {{| < 1.
This condition ensures that in the non-relativistic limit # is simply the speed of center
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of mass system. Now, the system (1.7) takes on the form

1—g? = s _ . 9P
" an P ox

for m # n. (2.3)

This system of equations has the following particular solutions which do not depend on
variable x:

@n = th(n+6,(0)), (24
where 5,(¢) is an arbitrary function. Equation (2.4) describes free particles if
6 =U-o), &= —a,l. (2.5)
This result suggests the following substitutions for a general solution of equation (2.3)
8, = 6,8,1, %), u,=ulx,n () =ths,
which according to (2.4) lead to

thy+u,

= th(n+35,) = , lul <1 2.6
Pn (n+9,) Trthnu, LW (2.6)

These substitutions lead to the following form of equation (2.3):

du,
on

Ou,,
(+thnu,) —x(thn+u,,,)ai =0, n#Em @.7)
X

which after a change of variables #, x into

o=-—chy and B=—-shy, 2.8)
lo lo
leads to the system
A L S — 2.9)
aB o

where /; is an arbitrary constant having the dimension of length. Tne system (2.9) is integrat-
ed in Appendix A. One may verify directly that the following system of equations defines
implicitly solutions of (2.9):

Uy = _f;l(sm C)’ (2'10)
a = fi(s1, D +fas2, 0, (2.112)
B =s,+5, (2.11b)

af, )
where f(s,, {) are arbitrary functions and f/(s,, {) = aii—for n = 1,2 (no summation
s’l

over n!). The functions u,(x, , {) are found after elimination of the variables s, from (2.10)
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i.e. one should calculate the functions s, = s,(x, %, {) from the system (2.11). This can
be done provided the following condition holds
fi—fi=uy—ug #0.

Following this procedure, the functions ¢,(x, #, {) are determined after using equations
(2.6). Some cases, when the functions ¢, may be found explicitly, are presented in Appendix
B and in Section 5.

The “forces” a, may now be found from the equations

P Y% Pn a1 2
a, = (=), (2.1-)

The derivation of (2.11) with respect to the variable x produces

0s -
_5;1_ = [lo chn (po—y) (1+thnu,)] ™t
632 -1
= = ~lochn(pz=p) (L+thnuy)] 2.13)
and thus
(_1)n+1 ’ -3, 3
ay = ——[y'[1+thnu,] ch ™y (2.142)

4}

or in another form, obtained by applying Eq. (2.6)

(_ )n+1 ' 3 Y] azf;l
a, = ———f'[1+thy p,1°ch®n, where f,'= PR (2.14b)
S'l

The functions s (x, 1, {) and next the functions n(x, X!, %2),- {(x, X!, x2), obtained from
the system x" = ¢" may be found explicitly only for some special choices of the functions
f.. These cases are presented in Appendix B. They provide some new solutions of C-H
equations (1.2) and thus constitute a good test of our approach, but they are not physically
realistic, since they lead to a dynamics which does not have the characieristics B, C, D, G.

3. Parametric description of world lines

It is interesting to note that in IPRD it is easier to find the trajectories than the “forces”
a,. The description of trajectories becomes particularly simple when one tries to para-
metrize them with the help of our parameters s,.

Let us rewrite equations (2.6) in the form

>, <thn— df">, 3.

ds"

ar G, (l-thn df"), (3.2)
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where the functions G, are chosen in such a form that after the integration of the equations
(3.1), (3.2) with respect to the variable s, one gets the expressions which for f; = ¢, do not
contradict the system (2.11). One checks that the choice G, = —/, chy, G, = I, chy
satisfies this requirement. Thus after the integration of (2.18) of equations (3.1), (3.2)
with respect to the variable s, one gets

xu(s") = (_ 1)n+ ll()[ch 'If;.—Sh n Sn] +d0a
1'(s,) = (= 1" ig[shn f,—chns,]+co, (3.3)

where dy, ¢, are the integration constants. The system (3.3) leads to a 4-parameter family
of trajectories x"(t,, dy, fo, 1, {) whose Lorentz invariance is ensured by the following
transformation properties of the parameters {, 7, ¢, dp:

{'=¢ n' =n—W, dy=chWdy—shWc,,
co = coch W—dgsh W, 3.4)

where V' = th(W) is the relative velocity of two different inertial frames and the parameters
s, are Lorentz scalars. Transformation (3.4) ensures that x" and ¢" transform properly.

The description of trajeciories by formulae (3.3) and (3.4) is interesting since various
approaches to Predictive Relativistic Dynamics meet here. IPRD is defincd by the relation
between s, and s, described by equations (2.11) which ensure that #; = ¢,. The covariant
relation

Sitfo=s1+5; (3.5
means that x,x, = 0 which leads to the dynamics discussed in Ref. [12] and the relation
s = —&5; (3.5) leads to the covariant relation x, W, = 0 where W, is the “two-vector”

having a space component M({) shn and a time component M({) chn where M({) is an
arbitrary function of {. Thus relation (3.5) defines the dynamics in which ¢, = ¢, in a dynam-
ically determined frame, for which n = 0. If one chooses «; from equation (2.1) and M({)
defined by the relations

m

mmﬁzﬂéma

M) = Vm2+m%+2mm, ch{ (3.6)

one obtains from (1.5), (2.1), (2.2) that W, = P, where P, is the energy-momenium two-
-vector of the whole system. Thus relations (3.5) and (3.6) lead to the dynamics described
by constraint formalism in which x,P, = 0 [11].

The relation between our formulae (3.3) and formulae (89) and (90) from Ref. [6] has
the form

I d 1
’_2(1 (Sl'"fl) = 5?:; ’ _2(2‘(32"‘f2) =

ogu
Ny ’
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(s1+f1)— R (Eu—1), (Sz+fz)—
0y 5’?}4

a=1¢, 3.7

where the symbols with index H are those from Ref. [6].
Note that the parametric description given in Ref. [6] is singular when passing to the

o2 a?
free particle limit when one should have afH - 00, P LA oo and thus the transition
H )31
to physical variables x!, %2, x becomes singular. Our parametrization does not have this
drawback and is simpler since the derivatives of f,(s,, {) do not appear in (3.3) and the

constants of motion ¥, have a simple physical meaning of asympiotic particle velocities.

(nﬂ- 1)5

4. Construction of the realistic model of IPRD in implicit form

Now, the problem consists in finding a class of functions f,(s,, {) which describe the
dynamics satisfying our requirements A-G.

Let us first consider the requirement C, i.e. let us look for a dynamics which is a relativi-
stic extension of Newtonian dynamics described by the potential V(x). The non-relativistic
limit in our notation is described by the following relations |g,| <1, 4] <1, [8,] <1,

m
(=2 V,—V,0 = EL’ M = m,_+m,. Eq. (2.6) nowis ¢, = n+u, and one easily estab-
lishes that one should have in this limit

ul = al 1_
”11“12

Uy = —ayl \/ 2V(x), where = " (4.1)

since these formulae lead to correct non-relativistic expressions for energy and momentum.
Let us introduce the function

UGs, §) = LoLfi(s, O +Sa(=s, D] 4.2)
Now, Eq. (2.11a) acquires either the form
x chn = Ulsy, O+ L[ fo(B—s1)—f>(—s1)] 4.3)
or the form
xchn = U(=sz, O+ lo[f1(B—s)—fi(—52)]; 4.4)

where according to Eq. (2.8) B = %sh n. We see that in the non-relativistic limit
0
characterized by the condition |f] <1 we will have

U(Slv C) = U(”’529 C) = U(sl—ﬁl’ C) =X
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so that relativistic extension of Newtonian dynamics may be made by using in formulae

4.1) V(U(s,)) and V(U(—s,)) instead of V{(x). Speaking more precisely, this extension
can be done with the following procedure: Choose any functions u, = F(U, {; m,, m,)

having the property
¥ \/1__ 2V(U(s,))

T
m 2V(U(—s,))
Fz'é—vlC 1——;?5—5“ (4.5)

for |{| < 1, where u = mym,/M. The functions f,(s,, {} will then be found with the help
of the following integrations:

F,dU
fl(sls C) = - J\

lo[F2~Fllu=veiny
F,dU
f(s,C)=—J‘— , 4.6
2 lo[Fz“F1] U=U(-s2,)> @0
where the function U(s, {) is determined by the differential equation
oU(s, {)
T - L[F,(U, )= F (U, O)]. 4.7)

Now, the “forces” a, may be expressed by the functions F,(U, {). Using Eq. (2.14b) we get

a = — —F)(1+thy 9’1)3Ch3’7

s

W=U(s1,8)

—F)(1+thn ¢,) ch’y (4.8)

U=U(=s2,0)

Using condition (4.5) we easily check that in non-relativistic limit the system (4.8) becomes
the system of Newtonian equations of motion

V(%) V'(x)
ay = — y Gy =
my m,

since U(s;) = U(—s,) = x in that limit.

As an example we calculate the functions f,(s,, {) for the harmonic oscillator in the
next Section.

The requirement B is satisfied provided the following conditions hold:

Filyo:o = th [(1_“1)C], Filyaz = —th [“1(]- 49
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The interaction may be easily switched off by writing
Fy=th[(1—a)]+F;, F,= —th[a]+F, (4.10)

and imposing F, to vanish.
The requirements D, E, F lead to the following conditions imposed on the functions
F(U, 0

|Fil = Uyl <11, (4.11)

F(-U, ={) = —F(U, ), (4.12)

Fi(—U9 _C9 mz: nll) = Fi(U9 é:: ml: mz)» (4.13)
an’ o

det £0, i=12 (4.14)
0p1 992
a’ &

The last condition ensures that it is possible to obtain the functions n(x, X!, x2), {(x, X!, %2)
from the system X" = @(x, 5, ). This inversion procedure should be done if one wants
to have the dynamics explicitly. Knowing these functions we will know the “forces™
a,(x, X!, %) from equations (4.8) and the constants of motion E(x, X!, X2) and P(x, %!, X?)
will be known from equations (1.5) which now may be written in the form

E = mch g+ —a){]+m;,ch[n—al],
P =m shn+A—a){]+myshnp—a ] (4.15)

The procedure of elimination of the variables s, and consiants #, { from equations (2.6),
(4.8) and (4.15) should be made with the help of some numerical methods in most physi-
cally interesting cases. In Section 6 we propose an iteration procedure giving the functions
@alx, 1, 0) and n(x, %1, x%), {(x, X', x*).

Summarizing, formulae (2.6), (2.11), (4.3), (4.7), (4.8) and (4.15) with conditions
(4.9)(4.14) determine implicitly a physically realistic model of IPRD.

5. Relativistic harmonic oscillator

For the sake of simplicity we consider now the particles with equal masses and choose
the functions F, in the following form

4, = F (U, ) = th(ﬁ) IRACICVR
2u th? <—§—>

2
C) L U=s1)

u, = Fo(U,¢) = —th (-—- e (5.1)
2u th? (%)

2
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This choice atlows us to find the functions ¢,(x, 1, {) explicitly for the harmonic oscillator

k
case when we should put V(U) = 5 U?. Using formulae (4.7) and (4.6) we get

2n(5)
_\2)
[

UGs) = — sin (wlys), (5.2)
where ‘
\/’l&
o= _[- (5.3)
u
and thus .
fi=Ql)T'UGY),  fr = QL) U(=sy). (5.4)

The trajectories x" = x"(¢, 9, {, dy, ¢,) may already be obtained with the help of equations
(3.3).

In this simple case we are able to determine the functions g,(x, n, {) explicitly since
equations (2.11) arc now

xchy = —2(w)" ' th (—5—) sin [wlys; — twlyB] cos (#) (5.5)
and thus
UGs)) = TG, 1, ) = % chn—(@)™*4(x, 1, 8 sin (‘"?” )
[ox (o (+- 2))]
xsgn|cos|wly| s — — s
2
U(—s,) = U(x,1,0) = x chy+(w) ' 4(x, n, {) sin (C%Oﬁ>
B
X sgn [cos (wlo <s1 - —2—>>] , (5.6a)
where
2 2 2
Ax,n,0) =2 th% 1 cx chino (5.6b)
4 th? £y cos? (3 wx sh )
and

+1 if >0
sgn(y)={_1 ” z o (5.7)

Note that we were unable to eliminate the parameter s, completely, it intervenes in equation
(5.6) after the half period of motion is accomplished. Similar situation will probably occur
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in the case fo any relativistic bound motion. We hope to be able to discuss this problem
more thoroughly in a separate note.
The energy and momentum expressed by formulae (4.15) now have the form

-1/2 -1/2
E =2m l:l—thz ﬂ chy, P=2m [1—th2 ﬂ shy (5.8)

and the “forces” g, are now

a; = =+ 0*U[L+th ng,1° ch® nly—geemns

a, = 5 0*U[1+thn9,]° ch® nly-Feamp- (5.9)

We may now find the explicit approximate form of dynamics in some limited area of variables,
e.g. let us consider the region defined by |4| < 1. Then formulae (5.7), (5.1) and (2.6)
lead to the following approximate relations

TUxUs=x, #xLi(w+w,), (5.10)
k 2
FRILIPUPR B s S0 (5.11)
2 2
where
w, = arth%", n=1,2. (5.12)

6. Explicit form of dynamics obtained by iteration procedure

The functions

thn+u,
x, 1,0 =—- 6.1
Bl 0 = e 6.
will be known after performing the elimination of the variables s, from the functions #, by
using (2.11b) and (4.3). Let us rewrite the latter in the following, more convenient for
iterations form

U = xchn+G(B, T, 0, 6.2)
where
U =U(sy), GBT,0 = ~lLAiB—=sy(T)—fo—5:(0))] (6.3)
and
du
O=|—-— . 6.4
() .[lo[Fz“Fl] U=U €9

We propose to determine the unknown function U(x, 1, {) described implicitly by (6.2)
with the help of the following iteration procedure

(+1) @
U =xchn+GB,U,0D, n=01,2,.. (6.5)
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The sufficient convergence condition of the series (6.5) is determined by the condition

;6G(,B, U.0)

— < 1. 6.
e (6.6)

One finds that

6 _ FuU,)~Fy(U, )
00 ~ Fy(U,0-Fy(U,0)’

6.7)
where
T = Us(D)-P). (6.8

For B = sh n so small that the Taylor expansion in (6.8) and (6.7) are justified one

0
obtains

oG oF,
~ xshy =2 6.9
P Ty €9)

Thus, we may conclude that our iteration procedure will be well convergent either in some
limited area of variables x, n, { or in the case of sufficiently ‘““‘weak” interaction (note
that 8F,/6U = 0 for free particles). The latter conglusion will be more clear if one makes
some particular choice of functions F,, e.g. let us 1ake

_ (2 1o 2O
() 9

m, 2V (U)
F,= —th{—¢) [1— . 6.10
z t <M C>\/ pt* lo-% (10}

Now, formulae (6.9) and (6.7) yield the following convergence condition of the series (6.5):

§ m, GV[
;xshnth ———-C

I

|

|

l

<

oU |

(6.11)

-8
< ___
[y
|
o
<
-
& g
~

. 2V(U)
We conclude that for unbound motions, when _[ 1— 2
n

potentials V(x) our procedure should work well. For # small formula (6.2) suggests starting
the series (6.5) by the expressions

s 0 and sufficiently smooth

0
U = x[chn+shn Fy(x chn, )],

o

U = x[chn+shn F (xchn, ] (6.12)
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The series (6.5) should be particularly well convergent in the asymptotic case of weak
interaction between particle defined by

<1. (6.13)

V(U) oV xshn
<1, -
Me oU

Then, it seems to be reasonable to start this series by

O = x[chn—shqth (,0)] = x 72
= x[chn—shn th(¢,{)] = X @D
o ch W,
U =x[chn+shnth[(1-«){]] = X [(1—“1)& 6.14)
and thus
o thn+F (U, ) _ thn+Fy(U, ) (6.15)

o
v

= - — 3 (P = — —
L+F (0, Othnlg-g *° 14Fy(T,0) thnls-

describe the asymptotic behaviour of the functions g,.

The explicit form of dynamics will be known after calculating the functions 5(x, xt, %2)
and {(x, x!, Xx?) from the system X" = ¢,(x, 1, {) which we will rewrite in a form, convenient
for iterations:

C = Wy _‘v2+H1(’19 Ca x),
n=ow,+(1—a)w,+H,(n,{, x) (6.16)
where
w, = arth x",
H, ={+arth F,—arth F;, H, = —¢,arthF, —(1—«,)arth F,. 6.17)

Let us try to solve the system (6.16) in the following two situations:

1** case. Asymptotic region —weakly interacting particles
We assume again that (6.13) holds, then it seems reasonable to solve (6.16) using the
series '
(n+1) )y )
{ =W1—W2+H1(7], C,X),
(n+1) ) (n) ™

no=a(Owi+[1—a,(O)Iwa+Hy(n, {, %) (6.18)
with
0) ) /] o
{ =wi—wy = a,(Ow+[1-0,(D]w, (6.19)
being the solutions of (6.16) for free particles. Thus we already obtain the asymptotic
[ o (0)

form of “forces” a, using U, U expressed by (6.14) and putting 7 =5, { = {.
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Let us illustrate these results by choosing the functions F, in a form

m, my
Fl = th [—M_ Ql]’ F2 = _th[ﬁ‘ QZ}, (6.20)
where
2w [U ¢h <—m—‘ c)] 3% [ﬁ ch (m—z c)]
M M
01 =0y 1- e s 02 =0 1- e (6.21)

and o; = m,/M, which gives a relatively simple form of dynamics in the asymptotic region.
Now formulae (6.17) are

m m
H]=(— —20,— —X g,,
1=¢ M 01 M 22
mym
Hy = - — ool (6:22)

axn
We put 4, { calculated from (6.18) into (4.15) and make several Taylor expansions justified

by (6.13). This way we obtain the approximate expressions for the energy and momentum
of the system
)
E = E +(w;—w,)" " [sh w; V(x ch w;)—sh w,V(x ch w,)],
©)
P = P +(w;—w;) '[ch w, ¥(x ch w;)~ch w,V(x ch w,)], (6.23)
(0).0)
where E, P are free particle energy and momentum given by (1.3) and w, = arth ¥".
Remember that these formulae are valid only if

o
V(x ch w,) V'(x ch wy)x shy
w(wy— Wz)2 w(wy — W2)2

hold. The ““forces” a, for the dynamics described by (6.20), calculated with the help of
formulae (4.8), are

<1, <1 (6.24)

AR my 3 1.3
Vv I:U ch (—X/I— C)] sh g;(1+thy @) ch’ g

m ’
m ch?{ =2
104 ( M 91)

= my 3 3
vV [U ch <W— C)] sh g,(1+thn @,) ch’ gy
g, = ) (6.25)

m
msyQ; ch? (Vl Qz)

1=
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In the asymptotic region defined by conditions (6.24) we get

) 0) )
- V'(x chw,)sh { (1+thnx')*ch’y

0 m, @ ’
m1C Ch2 (7 C >

0) ) )

_ V'(xchwy)sh{(1+thnx?*)’ch®y

a2 = s
m zch2 M (Z’)
2 M
(0) (0)

where { and 5 are described by formulae (6.19).
Summarizing, formulae (6.23) and (6.26) describe explicitly a physically realistic
model of TPRD in the case of weak interaction between particles.

(6.26)

2" case. Particles with mass ratio m,/m, small

We assume that m; < m, and that the functions F, are described by formulae (6.21).
It will be convenient to rewrite (6.16) in the form

m, 2
§ = F(w,wy, {,n) = wi—wa+ —(@;—@) | + >
M 2
m m mym
1= Glvs, wa, L) = S wak ek = (0=, (627)

where the functions U(x,n, ), U(x, n, ) should be determined from (6.2) and (6.8).
If m; < m, it seems reasonable to look for functions n(x, X!, x2), {(x, %!, X?) using
the iterations '

(n+1) @ ()
C =_F(W1’W2’ Ca 71)9

(n+1) ) )
’1 = G(Wh W2, C > 11) (628)

and to start this series by

© 2V(x ch ©
¢ = \/<w1—w2)2+ —(7—") g_— (6.29)

which is a solution of (6.27) for m, = o0. This is the solution for the dynamics of one particle
in an external field. Note that the condition m, < m, ensures a good convergence of the
series (6.5) in a large area of variables, since now 6G/oU is proportional to m,/M.
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7. Discussion

In conclusion, we may say that we have constructed a model of IPRD having all
characteristics listed in the Inircduction, except the last one; our “forces” a,(x, X1, x?)
are not defined for all physically admissible values of variables x, X!, x? . They are defined
only for values for which the jteration series (6.5) and (6.18) converge. These values of
variables roughly coincide with values acquired by particles executing the unbourd mo-
tions only. The problem of a definite existence ¢f ihe physically interesting IPRD defined
for all physically admissible values of variables x, x!, x? ard describing the bound motions
remains unresolved.

One may argue that one-dimensional medels, formulated in a non-covariant way
(though Lorentz invariant) scam to be of litile relevance tcday, since many manifestly
covariant models [11-14] involving three space dimensions have been constructed during
the past decade, which do not aprarently have the above mentioned difficulties. It may
be remarked, bowever, that in all physically interesting manifesily covariant medels the
“forces” (potentials) are functions of variables constrained to a surface being usually
dynamically defincd. This surface is given in the 8V dimensional phase space and it should
impose a symmetric and transitive relations between particle four-vectors (note that this
requirement is not satisfied in a covariant model given in Ref. [12]). Thus the initial value
problem cannot be formulated independently of dynamics, i.e. the surface on which the
initial particle positions and velocities should be chosen by the observer is not known
“a priori” in Minkowski space M,. Of course, one can construct IPRD using a covariant
model but the transition frem a dynamically defined surface to a surface chosen “a priori”
in M, (such as one instant surface is) will require the knowledge of trajectories and may
easily lead to the situation in which the forces of IPRD are not defined for all physically
admissible values of variables. Taking this into account, it seems that it is worthwhile
to investigate IPRD more thoroughly in order io see whether it is possible to construct
the relativistic theory being the most direct generalization of Newtonian non-relativistic
dynamics and having all its characteristics.

APPENDIX A

We explain here how we obtained solutions (2.10), (2.11) of the system (2.9). Let us
rewrite it here in a slightly different form

du, ou, Ou, ou,

— —u,— =0, = —

op on ép Oo
If one of the functions u, is known, the other may be found using the method of character-
istics, thus one may write u, = u,(s,(a, B)), u, = u,(s,(«, B)) where u,(s,) are arbitrary
functions of variables s,, the equations s,(z, f) = const define two characteristic lines
of the system (Al). Now, the problem consists in finding such new variables s, that the
system (Al) becomes

= 0. (Aly

b7} -1 du,
0, X1 (515 52) — =0, (AZ)

—1 ’ul
X2 (51, 8) — =
0s; 0s ¢
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where y, are arbitrary functions. Let us make in (A2) a change of variables s, into the
variables «, f. Thus one gets

Ju; 0 Ou, Ou
(B )
0B 0Os, Oo 0Os,

ou, 0 Ou, oo
—1 2 2
L2272 A3
X1 ((7/3 0s, Oot 6s1> (43)

The comparison of (A3) with (Al) yields

= , A4

Xn s, (A4)
oo

u(sy = 5 (A5)
1
oo

uy(s2)yz = — as. (A6)
2

Let us derive (A5) with respect to s, and (A6) with respect to s,. This way we obtain

*p 0% o*p o
uy = — , Uy = — . (A7)
0s,0s, 08,05, 05,05, 05,05,
The difference between two equations of the system (A7) is
( ) o8 0 (A8)
Uy—uy) —— = 0.
2 " s, 0s,
Thus for u, # u, one has
0* 0*
__ﬂ_ = x (A9)

05,05, 05,05,

and the solution of (Al) will be described implicitly by the following three equations

o = fi(s1, O +/2(52, O, (A10)
B = gits1, )+ 82052, ), (A11)
uy= 22, (a12)

where f, = 0f,/0s, and g, = 0g,/ds,. The redefinition s, — s, = g, of the variable s, leads
to the simpler system

o = fl(Sla C) +f2(52, C)’ ) (A13)
f=s+s, (A14)

without loosing the generality. Thus the solution of (A1) is defined by the two arbitrary
functions f,(s,, {).
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APPENDIX B

We obrain here some simple solutions of equation (1.7) and of C-H equations (1.2)
by applying the results of the preceding appendix for some simple choice of functions f;, g,
which allow us 1o calculate explicitly the functions n(x, X!, X?) and {(x, X!, x2) from the
system X" = @,(x, 1, ).

1* choice
Let us put
fl = )"(C)st f2 = —}'(g)sgﬁ Bn = Sp- (BI)
Using (A10), (A1l) and (2.6) one gets
uy = =BT+, uy = pTIAB ) (B2)
and
X ., X .,
1+l-l—sh nchn l—l-l—sh nchny
=g, = 0 , =g, = — 0 : (B3)
X x
A— A—

lo lO

The functions n(x, X!, X) and {(x, X!, x?) calculated from (B3) have now the form

2
th n = ;C:T-.{--)E_z N (B4)
M) = 2l [x(x' =% sh® ]~ L. (B5)
Putting (B4) and (B5) into (2.14b) yields
el 2242 21 2242
a1=__(i_x_L, a2=(£__il. (B6)
2x 2x

This solution of C-H equations is already known in the literature [7, 10]. We do not find
any other simple example of dynamics in explicit form being reflection invariant, i.e.
satisfying the condition a,(—x, —%1, —%2) = —a,(x, %!, X?). Next examples do not
have this property.

2" choice
We put now
fo= 2 (Fus O+s0), 8 =7 (Fu(sw O—s,) (B7)
which according to (A10), (All) and (2.8) leads to

X X
a= l—e" = F (s, )+ F3(s2, ), B= Te_"= 5+ S3. (BB)
0

0o



Now, equations (Al12) and (2.6) give

Fo+1

un = - ’ >
F,—1
e*"+F)

Pn = PT_F

where F, = 0F,[0s,. kUsing (2.12) we get

1
a; = — F{e (1 +x1)3,
21,

a, = — 2170 Fye™(1+%%)°.
Let us make now the following choice of the functions F,:
Fy = w(Q)+e™d (), Fp=dy(e ™.
Equations (B8) now give

e = (@—w(0)) (dy +de )"
and thus

F\ = dy(@—w)(dy+dre *?)™',  F} = Ad,(w—a) (dy +d,e” )1,

From (B10) we deduce that

Fi zy
F, B Za |
1-x"
where z, = R and thus
o 27
d; z,
. d:(£)
The simplest case occurs when 7.0 = ¢, = const because then the
1

n(x, x', %*) is expressed by
1 z
e = ln<—c1 —1>
xA Z,

1 sReli on Z4
a, = —z(l—xx)(1+x)ln<——cl—-).

Z3

and this way
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(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

function

(B16)

(B17)
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d.
More complicated is the case when w({) = w = const and 2 is a function of {. Then,
1
putting (B15) into (B13) and using (B10) gives

-n

e-l— = F(x, 2y, 22) = 2(2,—23) [—lxi\/im;;:ﬂ]_la (B18)

0

where L? = 4)wl2. This formula defines the following new solution of C-H equations
a, = — %(I-X"X")(l-f-)'c“)l‘“(x, 2., 25), (B19)

where z, = ‘1_55"

T and the variables x, X', X* should be limited to the area in which
X

the function F(x, x!, x?) from (BI8) is positive. The solutions (Bi7) and (B19) are not
however reflection invariant, also they do not have characteristics B and D. These results

constitute only a good test of our approach since we checked directly that (B17) and (B19)
are indeed the solutions of C-H equations (1.2).
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