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We consider the lattice Abelian Higgs model with frozen radial degrees of freedom
using the mean-field approximation with corrections. The free energy corrections contain
essential O(1) and O(1/d) terms. In the weak coupling region the behaviour of the frequencies
arising in the expansion of action allows one to distinguish the Higgs from the Coulomb phases.
Analytical results are presented for all phase transition lines. The phase structure obtained
is in qualitative agreement with Monte-Carlo calculations for Higgs charges ¢ = 1, 2 and 6.

PACS numbers: 11.15.Ha, 11.15.Tk

1. Introduction

One of the analytical methods io study the phase structure of lattice gauge theories
is the mean-field approach corresponding to a saddle-point evaluation of a properly
rewritten path integral of the theory [1, 2, 3]. It is known that the simplest approximation
does not always reproduce the phase structure predicted from Monte-Carlo simulations.

The mean-field approach can be systematically improved including quantum fluctua-
tions around the saddle-point values of the fields. One expands the effective action in the
rewritten path integral in terms of these fluctuations. Integrating them out in the partition
function one obtains corrections to the lowest order free energy. The successful calculation
of the phase structure of the U(1) [4] and the Z(N) [5] models using the mean-field method
including corrections indicates that also the correct phase siructure of more complicated
models could be found.

The purpose of the present paper is to discuss the phase structure of the lattice Abelian
Higgs model in this mean-field approximation with corrections. It was shown in a paper
by Ranft, Kripfganz and Ranft [6] that the simple mean-field method does not reproduce
the correct phase structure of the Abelian Higgs model as found in Monte-Carlo studies.
In particular for a Higgs charge ¢ = 1 no end-point appears for the confinement-Higgs
transition and for ¢ = 6 the Coulomb phase is absent for increasing Higgs coupling x.

* Presented at the XXIV Cracow School of Theoretical Physics, Zakopane, June 6-19, 1984.
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The paper is organized as follows. In Section 2 we rewrite the path integral and discuss
the effective action in terms of the new variables. Section 3 deals with the saddle-point
method and the expansion in terms of quantum fluctuations. A strong coupling expansion
is performed in the strong coupling region. We consider the problems of zero- and 1/d-fre-
quencies in the weak coupling region. In Section 5 we discuss the phase structure for differ-
ent Higgs charges and compare with Monte-Carlo data of Ref. [6]. Section 6 contains
our conclusions. Some calculational remarks are given in the Appendices.

2. The effective action for the lattice Abelian Higgs model

We work with a hypercubical lattice in the Euclidean metric. We assume the space-
-time dimension d to be a large quantity and use 1/d as expansion parameter. This is the
general assumption of the mean-field approximation with corrections. Furthermore we
assume that d = 4 is large enough.

We denote the lattice sites by x, the links by (x, ) or L, where u is a lattice unit vector,
the site variables of the Higgs field by o and the link variable of the gauge field by U. Nis the
number of lattice sites. The action of the model is given by

S[U, o] = Sg[U]+Sy[U, o], 2.1
where Sg is the Wilson action
Se[U] = B Y (U()U,(x+wUl(x +p+v)Ul(x+v)+h.c.), 2.2)
Xy, v
v¥Eu

and Sy is the Higgs action

Su[U, 6] = & ¥, (e(x)US(x)o'(x +u) +h.c.), (23)

X1t

describing the interaction between Higgs and Abelian gauge fields. The sum in Eq. (2.2)
runs over all plaquettes of the lattice, § is the inverse square of the gauge coupling g

1
ﬁ=?-

The sum in Eq. (2.3) runs over all links, x denotes the Higgs coupling. In our model the
radial modes of the Higgs field are frozen. The coupling k can be interpreted as a mean-
-value of the square of this mode. For the group variables we use the following notations

U,(x) = exp {i0,(x)}, o(x) = exp {ix(x)}, Q4

where 0,(x) and y(x) are angle variables. The usual partition function Z of the model
is defined as

Z = [ du[U]du[a] exp {S[U, o1}, 2.5

where du[U} and du[e] are the invariant measures of the corresponding fields.
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Inserting the group variables into larger manifolds one obtains a decoupling of the
genuine variables. The interaction in the plaquettes and in the Higgs action is then replaced
by an interaction of each group variable with an external random field. For the Abelian
Higgs model we replace the original variables U, and o, by ¥V, and H, acting in the full
complex plane. Furthermore we introduce the following additional fields at each link

Cx) = —i2HX)H*(x+pn), W,(x) = Vi(x). (2.6)
To rewrite the path integral (2.5) we multiply its integrand by
1 = [ d[V]d[H]d[CI8(U - V)é(s — H)3(V?— W)d(— i2H*H —C). 2.7
We define a scalar product (-) for fields with link componenis by the expression
@ = Z(l(ml(z)-%-h c), I={I}}%, (2.8)

and for fields with site components by

s s =Y WP rhe), s = {501 (2.9)

Introducing the external random fields 4 at each link and B at each site we express two
of the d-functions of Eq. (2.7) in form of

oo J T[4 {0}
S(c—H) = ﬁn di" ‘i" exp {%B-(0~H)}. (2.10)
C

x

The integration measures are defined as follows

d[V] = N, [1dvidvy, d[w] = Ny []dW.dwy,
L L

d[H] = Ny [[dH,dH}, d[C] = Nc[]dcC.dc, 2.11)
x . L

where the N, are normalization constants and V,, W, C, and H, act in the full complex
plane. The invariant measures of Eq. (2.5) are given by

.

a8 T (d.
du[U] = <?£> and  du[o] = I l({«) 0, 1, €[0,27].  (2.12)
-ALL.H- n 7'[

Defining the one-link integral

2z

do '
194, C) = f —2-5 exp {% (ATU +CLUE +h.c.)} (2.13)
yid
0



440

and the one-site integral
2z

fB) = 9 exp {—i (B:a,,+h.c.)} 2.14)
2n 2

1]

as well as the expressions

of?(4, C) = 10gfi”(4,C), (B) = logf(B) (2.15)
we obtain the rewritten path integral of the theory
Z = [ d[A}d[Bld[C]é(—i2H*H — C)d[V]d[H]d[W](V*— W)e Seer, (2.16)

Here the effective action of the lattice Abelian Higgs model has the form
See = Sg[V]+SulW, H] - %(A - V+C-W+B-H)

+ Y o4, C)+ ¥, w.(B). @17
L x

Instead of the pure gauge field interactions in the plaqueites an interaction of the gauge
fields U, with the external random field 4; appears. The interactions of the Higgs fields
o, in the Higgs action are replaced by their interactions with the external random fields
B, at each site. Formally we regard also the C, field as an external random field. However,
since after the integration over this C;-field a coupling to the Higgs field H, remains,
the C, is not really an external random field. Furthermore the C,-integration leads to a can-
cellation of the terms /2 (C - W) and Su[W, H] in the effective action so that S, depends
on the Higgs field H only via the one-link integral o® and the term (B - H).

3. The mean-field method with corrections

Performing a saddle-point approximation of the partition function (2.16) we obtain
the following saddle-point equations

i i d
- =W+ oP(4,C) =0, - —Vi+—of(4,C) =0,
2 "t g (4,C) > et o (4, C)
iH 0 B)=0 H*+ 0 «(B) =
— — —_— —3 — ———w
5 Het Gpr o:B) =0, 2 2B,
i ., @ i d
- —3S = - — A+ —5S6lV1=0,
2AL+ v, slV]l=0, > Lt % vE sLV]
i i
- — B! - —B Sy[W,H] = 0. 3.1
2 +6Hx 7 =t TE* w[ W, H] @D
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Additionally to (3.1) we formally obtain the following two equations

i d i 9
— Lt L S [W,H] =0, ——Ci+—xSa[W,H] =0, (32
oW, 2

2 oW
i i} i

—_—— W —— (4,0 =0, ——W,+ o4, C) =0, 3.3
2 L+6CLwL( ) L ac: L( ’ ) ( )

which are redundant due to conditions (2.6). In the simple mean-field approximation one
assumes, that all fields are identical to their mean values

Vp=m, Ap= —iz;VL, where with Eq. (2.6)
H,=M, B,= —iz;V¥x, K=mi
WL = K,‘” CL = "‘iZz VL, Zz = 2KM2. (3.4)

The mean values m, M, ..., z; are real numbers and independent on the space-time posi-
tions. Using the ansétze (3.4) we obtain the one-link and one-site integrals

2z

do
(A4,C) =zy,2,) = J‘ b exp {z, cos 0+2z, cos g0},
0

2x

d
fuB) = Iy(z3) = J.'Z%z exp {z3 cos x}. (3.5)
°

With relations (3.4) and (3.5) we find from Eq. (3.1) the usual mean-field equations

0
m= _"'Ing(q)(zla Z3), Zy = 4Bm3’
0z,

d
M = —logly(zs), 1z, =2xM?
dz,

B = pd-1), z;=4dxm'M. (3.6)

The I,(z) are modified Bessel functions. We interpret the three leading solutions of Eq. (3.6)
as the three different phases of the Higgs model. We approximate them by

m=0, M=0 confinement phase (strong coupling),

1
m~1——=, M=0 Coulomb phase (weak coupling)
8p
B large enough, x small,
1 1 M=1 1 Hi hase (weak coupling) 3.7
m —- ~l-— iggs phase (weak cou .
88 +49°x 8dx £es P pung

B and « large.
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The gauge fixing does not lead to the general solution of the mean-field equations in the
weak coupling region. It is easy to see that in the case of continuous gauge symmetry all
gauge transformations

(my)(x) = g~ ' (x)mg(x+p) (3.8)

are possible solutions for the saddle-point of the gauge field. The U(1) gauge transformation
g(x) at the site x is given by the phase

g(x) = %%, where ¢(x) e [0, 2x]. 3.9)

The same is true for the Higgs saddle-point M. If an integration over the full gauge orbit
of the saddle points in the case of continuous gauge symmeiry is performed, the mean-field
method can be reconciled with Elitzers theorem [7]. To determine the phase structure we
only need the saddie-points as given in Eq. (3.6). We introduge the zeroth order free energy
per link f, of the model using the saddle-point approximation of Z

ZxZy=e Mo, (3.10)
where
1
fo = - W ng)f)-

We obtain the following free energies of the simple mean-field approximation

SN =0, confinement

SO = _Bm*+z,m—logIy(z,), Coulomb

1 .
oG0S = _Bm*+z,m—logf 9 (z,, z,) + 7 [zsM —log Io(z3)], Higes

fo = faUSGSfor general values of m, , M and « general case. (3.11)

The mean values correspond to a first derivative of the free energy. So the jumps of these
mean values define the phase transition points. To obtain these jumps using the approxi-
mate solutions (3.7) we compare the free energiés of the two adequate phases { and j,
f=f7 = 0, to calculate the phase transition lines. We remark that fS°~F and £ are
identical to the U(1) model in Ref. [4]. The free energy in the Higgs phase contains 1/d-terms
which- indicates that a simple 1/d-expansion to find corrections is invalid.

Compared to Monte-Carlo data in Ref. [6] the simple mean-field approximation
leads to a false phase structure (see Figures). Corrections to the lowest order of the mean-
-field approximation should improve the results. To correct the free energies per link
in the form f = f, +Af we consider small quantum fluctuations around the saddle-points

Vo=m+v, A= —iz,+a;, from Eq. (2.6) follows
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H,= M+h, B,= —izz+b,, K=ml
W, = K+wy, Cp= —iza+cr, w,=qm? 'v. (3.12)
We perform the expansion in terms of the real and imaginary part of the fluctuations
v = Ap+iCp,  he = a iy,
ap = xp+iy,, by = ny+iP,. (3.13)
Using definition (2.6) we obtain for the C-field the following expression

e = QL+ 0P +i(RL+RP) (3.14)
where

Qu(x) = —2kM(a(x+p)+u(x)), R, (x) = —i2xM(y(x+p)—y(x)),
0D(x) = 2k((X)e(x + ) Fy(x)(x+4)),  RP(x) = 2u(a(x)p(x + ) — p(x)oe(x + 1))

We expand the effective action (2.17) in terms of these quantum fluctuations up to the
second order. All the terms linear in the fluctuations vanish. We write the effective action
as a sum of a zeroth order term and a second order one

Serr = S +SE, (3.15)
where
5§ = —Ndfs, (3.152)

i
S = S& o1+ z m QP — ?(x‘/1+Y‘€+n-oc+P‘)’)

L

+Y 0P P+ Y o (3.15b)
L x

The quadratic terms for the one-site and one-link integral are given by

o® = _%{13(23) 3 (%(%))2} 21 1 Io(z3) p?

* Iy(z3) Io(z3) ¥ 223 Io(z3) ¥
1 ; 2.2 1 M 2
= —3{1-M/z;—M"n;—5 — P (3.16)
Z3

and

o ® =~ Eoxi—3% E,y1—7 EgoQi—% ErrRi—Eqxx1Q1~ EryyiRe G-17)

with the frequencies
2

_, 02 @
Eux = (f) 5/ 0=/ (:—f“’)

62
E, =1-(f9)' — 12,
» 0z2
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& a
Eon = (fY ! — Ff@_ (7@ ~2(,___ (9
2 =N =N S
62
Egg = 1-(/)7* a—ifm,
Z2

E,, = ( f(q))- 1 o f(q)_( f(q) )—2 (_E_ f(q)) (i f(q))
Qx 621 ]

02,0z, 0z,

Eky = ?2 {l (f(q))n1 '—a“f(q)—'ERR} . (3.18)
zy (2, 0z,

In the Coulomb phase defined by the simple mean field approximation (M = z, = z; = 0,

m # 0) only the frequencies E,, and E,, remain and are identical to the U(1) result of Ref.

[4]. The expansion (3.15) is valid in the weak coupling region. In the case of the trivial

saddle-points in the strong coupling region one can calculate the corrections to the free

energy by a strong coupling expansion.

4. The calculation of the mean-field corrections to the free energy per link

In the strong coupling region the integration leads to the original form of the parti-
tion function Z given by Eq. (2.5). Performing a Fourier expansion of the exponential
term in Eq. (2.5) and considering only the zeroih order of this expansion we obtain the
following correction to the free energy in the confinement phase

d—1 2B
AfCONF= - T log Io (d

1) —log Iy(2x). “.1)
The effective gauge coupling is small enough in this region so that we can approximate
the free energy correction by

BZ

AfONF ~ — —— _log I,(2x). 4.2)

2d
The B-dependent term is identical to the U(1) result of Ref. [4]. The x-dependent term
can be neglected if the first term dorhinates. However, when B goes to zero and « is large
enough this term dominates and, as we will see later, it gives the analytical connection
between the Higgs and the confinement phases for the Higgs charge ¢ = 1. We notice
that the correction Af“°NF contains not only 1/d-terms.

In the weak coupling region we expect two phases. The first one is a Coulomb phase
with U(1) gauge symmetry. The second phase is a Higgs phase in which the continuous
gauge symmetry is broken. Up to the gauge degrees of freedom (see Appendix A) we can
perform the integrations in a unique way. For the partition function we have to deal
with the integral

Z = e[ d[a, b, v, K]F[m,v, M, h] exp {S3}. 4.3)
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The & denotes the gauge fixing terms in the case of continuous gauge symmetry, otherwise
it is equal to unity. Performing the integration over the external fields and transforming
the fluctuations into the momentum space the following action contribution remains

i +n dd 7
§® - _pN f a ”d (@*(p)A*(p)&(p) + 7*(P) A (P)F (D)
m)

+ ¥ {A(D2(P)A(p) + Ex(P)QP)E(D)D)- (4.4)

The A,(p) and the £,(p) are the transformed real and imaginary gauge field fluctuations,
respectively. The &(p) and $(p) denote the effeciive real and imaginary Higgs fluctuations,
The 6(p) (F(p)) are given by a linear combination of the genuine Higgs fluctuations a(p) (y(p))
and the gauge fluctuations 4,(p) (£,(p)) (see Appendix A). In this way the coupling between
both kinds of fluctuations is realized. The definitions of the operators 4*’(p) and Q%(p)
are given in Appendix A. To calculate the integral (4.3) the operators Q have to be diagona-
lized. In the case of the operator 2" we find (d— 1)-approximately degenerate eigenvalues

d—1
1 21 .
-1 1— A .
oxp) =¥ s Z( cos p)+ (4.52)
¢=0
and one non-degenerate eigenvalue
d—1
d—1
(1+4cos p,)
~ Z z;Eqx )2 e=0 ¢
@ = — cosp,+A— . 4.5
W(P) = = - Z Pe ( ME,. |  24p) (4:50)
¢=0

The A is the mass of the real excitations (4.5a)

1 z
A=1% (E— - ;‘) (4.50)

From the diagonalization of the operator Q° for the imaginary gauge fluctuations we
obtain (d—1) degenerate eigenvalues

d—1
1 Zy -
wlp) = 3 m (1—cos p,))+E (4.6a)
=0

and one non-degenerate one
d-1
1—cos
3 ZZRRy 2 0;0 ( pq)
24%(p)

&(p) =&

(4.6b)



446

The = can be interpreted as the mass of the photons (4.6a)

+f 1 z
==4(3 - ?1). (460)

Zero-frequency or 1/d-modes occur among the imaginary fluctuations (see Ref. [4]).
Therefore we have to investigate their frequencies in detail.

In the Coulomb like region for the simple mean-field approximation (3.7) the mean
values and the one-link itegral are given by

1
m=~1-— gﬁ, M=0, [z, z3) = Io(z,). 4.7)

We find a non-trivial saddle point value m for the gauge field but a trivial one (M = 0)
for the Higgs field. Therefore we expect a zero-frequency mode in the gauge field part
as in the U(1)-model discussed in Ref. [4]. Indeed, we obtain

E=0, Eg=0 (4.82)
so that

ap) =0, A'(p)>0. (4.8b)
The characteristic feature of this region is the non-trivial U(1)-symmetry. We call this
phase a static Coulomb phase, since the Higgs field saddle-point value is trivial,

In the Higgs-like region defined by the simple mean-field result (3.7) we obtain the
one-link integral (see Appendix B)

FO(zy, 25) = Io(z)o(z) (1+2 Y, exp {—19(zy, 2,)K7}) (4.92)
k=1
where
2
1
t(q)(zp z,) = 9 4 —, (4.9b)
221 222

Two different cases have to be distinguished:

(i) The couplings ff and x are such that ‘¥ is very large, so that the sum can be neglected
in the one-link integral.

(if) The couplings B and « are large enough so that ‘¥ is a small quantity, and the
sum in Eq. (4.92) is essential.
To find the critical coupling constant values distinguishing the two cases discussed we use
1/d as expansion parameter and consider at most 1/d-terms. Furthermore it is easy to see
that we need to consider only the first term of the sum (k = 1). So, if exp {—#?} is less
than 1/d, the sum can be neglected and is essential otherwise. From this criterion we find

=exp {19z, 2,)} or 192z, z;)=Ind (4.10)

-
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and derive from Eq. (4.9b)

Z(H)
Z(ZH) = 1 ,
21n d(z{" —g*/21n d)

(4.10a)

where the index H denotes the critical values. Using the approximation Z, ~ 48, Z, ~ 2x
we obtain the following relation between the critical couplings

o B
" 4tndBu—q*/8Ind)’

(4.11)

The one-link integral, the saddle-point values (m, M), the mass £ and the frequency Ej,
are given in Table I. In case (ii) we have approximated the sum of Eq. (4.9a) by a Gaussian
integral. For case (i) follows

Ex0, Eg=~=0 (4.12a)

TABLE I

The one-link integral, the saddle-point values, the photon mass £ and the frequency Ery in the cases (i) and
(i) of the Higgs like region defined by the simple mean field calculation

Case @ @)
t@(z,, z,) >Ind <Ind
F9zy, z5) Io(z)o(z2) Io(z:)]o(z2) (]t @(z,, z,)'/?
m 1-1/8p 1—1/(8B+44%K)
M 1-1/8dx 1—1/8dx
£ 0 1/d * (zaMg»)j4mtt
Egy 0 ami(z,+q°z2)
so that

op) 0, A'(p)~0. (4.12b

The non-trivial U(1)-symmetry indicates a Coulomb like behaviour. The existence of a zero
frequency for the Higgs field A4,(p) corresponds to the non-trivial Higgs mean value (M # 0).
Therefore we call this region a dynamical Coulomb phase. The case (ii) leads to

1 z3Mq? gm?

=7 amer o

=
]

(4.13a)

N z,+4°z,
so that
@,(p) ~ E(1-0.29 m*™ 1),

d—1
i (- o),
Ap) v — = (11— =——(1-m*"? 1—cos p,). 4.13b)
(p) 2d M ( q222+21( m*™") ( P.) (
=0
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Instead of zero-frequencies we find frequencies of order O(1/d). Since the continuous
symmetry is broken, we call this region a Higgs phase. We interprete the relation (4.11)
between the critical couplings as the phase transition line between the Coulomb and the
Higgs phases.

Now performing the integration over the fluctuations we present the results for the
corrections to the free energy. Details of the calculation are given in Appendix A. For
the static (STAT) and dynamical (DYN) Coulomb phase we obtain

1
Afstar = — Fspar(zi, m, d) (4.142)
and
1
AfSWN" = — Foww (21, 22, 25, m, M, d). (4.14b)
The expressions for the F’s are given by
z
FAr = —3% log (4ndm®)—1 log (2—_‘—__2> +3
m—-Zl +Zlm
~3[-K+3K*]-log2 (4.15a)
and
2
PO = PSS —tiog+ (1= ) log2n
~llog(—— ) —i[-L+iP? 4.15b
2 g<2M—z3+z3M2 2 L L] ( )
where

z,—m—z,m? L 2m*—z,(1—-m?%) z;—M — z_,,M2
2m ’ - m? 2M
The first two logarithmic terms in Eq. (4.15a) include all the Jacobians of the gauge field
part and the contribution from the non-degenerate eigenvalue @g(p) (Eq. (4.5b)) of the
real fluctuations. The constant contribution (3/8) comes from the (d— 1) massless photons
(4.6a). The bracket term is the contribution of the (d— 1) massive excitations (4.5a) whereas
the log 2 is a correction coming from the Higgs fluctuations. Up to this log 2 term the result
is identical to the U(1) calculation of Ref. [4]. In the expression for the dynamical part
of the Coulomb phase (4.15b) the new terms arise from the Higgs part. The first two new
terms include the Jacobians. The following terms come from the real Higgs excitation
A%(p). We remark that in the Coulomb phase all the corrections are of the order O(1/d).
In the Higgs phase we obtain the following expression for the free energy correction

2z,+q%z m z,(1—-m?
Af““’“s=%log(———‘ z 2>+%log( — - 2o ))
2z, +q°z,) z2:1+49°z,  2z,+q°z,

1
+ log( m) + lOg (1 +4m:)+ FHIGGS(ZD Z3, 23, M, M’ d)’ (4163)

K= (4.15¢)
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where

¥4 ~ ~
FMIOGS = _Llog (i) 3 [-K+3 K*]+3+31log -5 [029m% ! +0.04 m*@~ 1]

2M 2mi iz, 42
~2log2—-1log (——--—-—> +% log (L—i—l) —+[~-L+% Lz] (4.16b)

2M —z3 4z, M? q*z,+z,
and
K= 2z, (z14+4°2) (1—-m*)—m

C2z,+4q%2, 2m ’

L _ 2q222+zl Zl(l_mzq) Z3—M—Z3M2

"\ %z, 42, m? 2M ’

- 1 z3Mq”
E= T amT photon mass. (4.16¢)

As expected, the corrections in the Higgs phase contain essential terms (of order O(1))
and 1/d-terms. The first two essential terms in Eq. (4.16a) arise from the (d— 1) real massive
excitations @g(p) given by Eq. (4.5a). The other ones are contributions of the (d— 1) massive
photons (4.6a). Now we consider the 1/d-terms in Eq. (4.16b). The first two 1/d-terms include
the contributions of the non-degenerate real excitation @gz(p) as well as the (d—1) real
massive excitations wg(p) (see Eq. 4.5, b)). The constant term (3/8) comes from the photons
(4.6a), the following two are the contributions of the 1/d-frequency given in Eq. (4.13b).
The remaining terms are Higgs contributions. The first logarithmic Higgs term and the
last Higgs expression include the contributions of the real Higgs excitation A%(p). The
third Higgs term comes from the imaginary excitation A"(p). The second term contains
the sum of contributions coming from 4% p) and 4”(p). The determination of the free energy
including corrections allows one to improve the phase structure study of the lattice Abelian
Higgs model.

5. The phase structure of the lattice Abelian Higgs model

We have to consider iwo kinds of phase transitions in the model. The first type describ-
ing the transitions from strong to weak coupling corresponds to a jump in the mean values.
We determine the phase transition lines comparing the effective free energies of the adequate
phases. We define these effective free energies by including all the essential terms coming
from the zeroth order free energies f; and the corrections Af. In a phase transition point,
not corrected by 1/d-terms of f, the effective free energies of the two phases i and j satisfy

fe(fif)(Bcffs Keff) _fe(fj;')(ﬁeff, Keft‘) = 0. (5'1)

To correct the phase transitions we use the effective corrections Af,g including only the
1/d-terms and assume that the corrections 68 and S« to the critical couplings are small

Bcrit = eff+5B: Kerit = eff+5’€' (5'2)
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We determine §f and dx by

—6% [f;(;f) “‘fe(fjr)] (Betes Ketr)OB '
P ) =[4 efJf)'—Aj;(fig] (Betes Kete)- (5.3)
5; [fe(tft? ~f;(t'jt")] (ﬁeff: Keff)éx

The second type of the phase transitions in the weak coupling region corresponds to a drastic
change in the behaviour of the frequencies.

First we investigate the confinement-Coulomb transition (C) which is of the first
type. We obtain the critical coupling

Bt = 1.80 (5.4)

independent of the Higgs charge g and the dimension 4. The correction is of the form

logd 231 162
df = -1 =" 7" 4 T 5.5
b=-3— Tt 1 (5.5)

so the corrected coupling in the case for d = 4 is given by
B. = 1.52. (5.6)

Next we regard the Coulomb-Higgs transition (H). The transition line is given by (Eq.
(4.11)
1 Bu q°

- P -1 57
N hnd BB, o P = Sna D

Physically, the pole B, of expression (5.7) exists only for
B, > B. =152 (5.8)

Then a Coulomb phase exists for all values of the Higgs coupling x up to infinity. In four
dimensions it is easy to see that the Higgs charges ¢ > 5 yield values of B, satisfying (5.8).
This is in agreement with the Monte-Carlo calculations of Ref. [6]. We remark that the
transition is of the second type. .

Finally we discuss the confinement-Higgs transition (CH) for a Higgs charge ¢ = 1.
For small enough B the effective free energies of the two phases are given by

HOGS x —P—log I,2kM?), fe™F = —log Io(2x). (5.9)
For « large enough and M nearly equal to one we find for
p<1= ::t't‘ (5.10)

that the coupling constant dependence of the free encrgies is approximately the same.
Therefore we can regard the two phases analytically connected in this region. The B
denotes the uncorrected B-value for the end-point of the phase transition.
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TABLE II
The corrected results for all phase transitions calculated for dimension d = 4 and Higgs charges q = 1,
2 and 6
7 Confinement-Higgs transition Conﬁnemer'zt‘-Coulomb Coulomt’)-‘H:ggs
transition transition
1 end-point: f* = 1.125 B _
Bc > Bcu > B*: Bc =152 Bp = 0.09
kcy = 0.49—0.12fcn
2 KCH = ___ﬁ&i —-0.16 Bc = 1.52 Bp = 0.36
4(Bcu—In2)
6 — Bc= 152 Bp =325

In Table II we summarize the corrected results for all phase transitions calculated
for dimension d = 4 and Higgs charges ¢ = 1, 2 and 6. Our results for the improved mean-
-field calculation (IMF) compared to Monie-Carlo data (MC) and the simple mean-field
results (MF) of Ref. [6] are presented in the Figures. We present the phase transitions
in the plane of the couplings B and x for Higgs charges ¢ = 1, 2 and 6. Note that our
definitions for the couplings differ from those in Ref. [6]. The dashed-dotied lines denote
the phase transitions obtaincd by MF, the continuous ones are phase iransitions resulting
from the IMF. The MC-dafa are representcd by the circles. The bends in the transition
lines of TMF are due to different analytical approximations.

In the case of the Higgs charge ¢ = 1 (Fig. 1) the end-point of the confinement-Higgs
transition in the IMF calculation is in gocd agreement with the Monte-Carlo result. The
simple mean-field calculation does not allow one to find this end-point of the phase transition.

P4
O O Monte Carlo {MC}
—+— Simple mean- field (MF} g=1
10 —— improved mean-field {IMF)
E—
0.5 ~,
. HIGGS
CONF,
i
0

Fig. 1, The phase structure of the model for Higgs charge ¢ = ! and dimension 4 = 4 in the («, B}-coupling
constant plane
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Fig. 2 shows the phase siructure for the Higgs charge ¢ = 2. Both simple MF and IMF
results are in reasonable agreement with data. In Fig. 3 we present our results for the Higgs
charge ¢ = 6. Using the improved mean-field calculation we can qualitatively reproduce
the correct phase structure as predicted by the Monte-Carlo simulation. For increasing
values of coupling x the Coulomb phase remains opposite to the simple mean-field predic-
tion.

X
15
1.0~
05+
. CONF.
1
0 1.0

Fig. 3. The phase structure for Higgs charge ¢ = 6 and dimension d = 4

6. Conclusion and summary

We have found that the improved mean-field calculation qualitatively leads to the
true phase structure of the lattice Abelian Higgs model as found in Monte-Carlo studies
for all Higgs charges considered. The simple mean-field result is corrected by considering
small quantum fluctuations of the ficlds in a proper way.
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We emphasize: To distinguish the phases of the medel we use the different behaviour
of the saddle-point values and the effective action under gauge transformations in these
phases. The characteristic feature of the confinement phase is the trivial U(1)-symmetry.
This means that a gauge transformation of the trivial saddle-points (m =0, M = 0)
leads to the saddle-points themselves. The Coulomb phase can be characterized by a non-
-trivial U(1)-symmetry. The gauge transformed non-irivial saddle-points (m # 0, M # 0)
differ from the original ones by a phase. However, the effective action is invariant under
this transformation. In the Higgs phase the continuous gauge symmetry is broken so that
the effective action is not invariant under the U(l) transformation. For the transitions
from the confinement to the Higgs or Coulomb phases, corresponding to the strong to weak
coupling transition, at least one saddle-point becomes non-irivial. So the jumps in the
mean values of the fields are used as a phase transition criterion. In the weak coupling
region we have to distinguish the Coulomb from the Higgs phases by their effective action
behaviour under the gauge transformation. This leads to different frequencies in the loop
expansion of the action. So we obfain a second phase transition criterion in the weak
coupling region by inspecting the frequencies. From the mean-field equations it follows
that the mean values behave as the first derivatives of the free energy. Therefore we can
interpret the transitions with jumps in the mean-values as first order phase transitions.
The transitions of the second type are obtained directly from the frequencies. The frequen-
cies are the result of the secerd variation of the effective action corresponding to a second
derivative of the free encigy. So we interpret these transitions as second order ones.

We have calculated the correciions to the free energy per link up to one loop. We
stress that besides the te: ms of order O(1/d) also essential terms O(1) arise. Therefore, the
simple saddleroint approx’mation does not contain all essential terms of the free energy
per link. As a consequence the simple mean-field calculation does not reproduce the end-
-point in the confinement-Higgs iransiiion for the Higgs charge g = 1, which we have
found including one loop corrections.

Using the secord phase transition criterion in the weak coupling region we find for
Higgs charge g = 6 that with increasing Higgs coupling x the Coulomb phase remains
in a region for non-irivial Higgs mean-value (M # 0). Analytical approximations have
been presented for all phase iransition lines.

1 thank J. Ranft, A. Schiller ard E. M. Ilgenfritz for many enlightening discussions
in the preparation of this paper.

APPENDIX A

Remarks on the integration of quantum fluctuations in the weak coupling region

Considering the integral (4.3) we deal with the fluciuations of the external fields
A, and B,. The well defined Gaussian integration leads to the following contribution to
the free energy per link
1 M M
4, = 10 (EE,,)+ - log (-—— [1— = —M’]) : (A1)

23 Z3
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Additionally quadratic fluciuation terms remain coming from the mixing terms in Eq.
(3.15b). These terms we have to add to the remaining action terms of the expression (3.15b).
The definition of the operators in Eq. (4.4) are given by

d—1

Z; 1
Q% (p) =[ o <1+2 cos p,— z cos pL,) + 2Exx] Sy

g=

1 . z2E g P ] ipu ~ipy
“[m(d—1)+<MExx> wp | e, (A2

d-1

1
tir=[s iplo- Sroen) o

0=

.!.I: Zy (ZzERy)Z 1 ] - Dy i— —ipv)
“F =0 T\ME,, ) a1

d—1
M -1 Zy
A“(p):—’—(l— ————M2) - E cos p
2 Z3 2dM - ¢
2
z3 EQQE”
i (1+cos P,

ExgE,,— E2
Ap =12 _ % cos p,— 5—2 RRw Ry Z (1—cos p,). (A3)

and

We remark that the second terms in the non-diagonal part of the operators Q vanish in the
Coulomb phase (Ey, = Eg, = 0). The effective Higgs fluctuations &(p) and §(p) correspond-
ing to A%(p) and A’(p) are the linear combinations

&p) = a(p)— 5 A"( ) NZIEQ" Z(He“"")k,,(p)
e = 2p)+ 5 A,,( . ;4;’ z(l e )E,(p) (A4)

of the genuine Higgs fluctuations a(p) and y(p) as well as the gauge fluctuations 1,(p)
and £,(p). In the Coulomb phase (Ey, = Eg, = 0) the effective and genuine Higgs fluctua-
tions are identical.
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The diagonalization of the operators Q leads to the eigenfrequencies given in Egs.
(4.5) and (4.6). We expand the gauge fluciuations 4,(p) and &,(p) in terms of eigenfunctions
of these eigenfrequencies

d—-1
Ap) = Z D(p)d(p),  Eup) = =Z0 C.0)y(p), (AS)

where D,(p) and C,(p) are the expansion coefficients and ¢"”(p) and y{’(p) the correspond-
ing eigenfunctions. The eigenvalue @g(p) (Eq.4.5b) is related to Do(p) and &,(p) (Eq. 4.6b)
to Co(p). Up to the gauge degrees of freedom the integration over the D,(p) and C,(p)
is performed in the same way leading to the following free energy correction
+n
dd

4f, = (2 2y

[ (log wa(p) +1og w(p)) + = (log @(p)+log A’(p))] (A6)

We have to deal with the remaining fluctuations differently depending on the phases. The
zero-frequency modes follow from the exisience of degenerate saddle-points in the case
of continuous gauge groups (Coulomb phase). This means that fluctuations around a saddle
point corresponding to gauge transformaiions have no restoring forces. This does not
allow one to make a naive loop expansion of the effective action. We have performed the
perturbation theory only in the Gaussian fluctuations and integrate the collective coordinates
[8, 9] arising from the gauge degrees of freedom exactly. In the Higgs phase, where the
continuous gauge symmetry is broken instead of the zero frequencies we obtain frequencies
of order O(1/d). The corresponding modes can integrate as usual Gaussian fluctuations.

First we deal with the Higgs phase. The integration is Gaussian so that the gauge
fixing term & is given by

Fim,v, M, h] = 1. (A7)

The integration leads to the following contribution to the free energy per link

A1 = j (2n)* 2d L (tog a,(p)+10g 47(p)). (A%)

Second we consider the Coulomb phase. The genuine Gaussian fluctuations satisfying
a background gauge condition are just orthogonal to the gauge degrees of freedom. The
background gauge condition for the gauge field is given by

d—1

m ¥ G0 = Ex—p) = 0. (A9)

In the staiic part of the Coulomb phase the Higgs mean value is zero. Using the standard
Fadeev-Popov method [10] we obtain the following gauge fixing factor

Fm, v, M, h] = )" dpelm, V] [1O[ T () —E(x—p))] = FTAT. (Al0)
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The first factor in Eq. (A10) comes from the group volume. To perform the integration
we write the background gauge condition in terms of C,(p) and obtain

o(C,
H [Z(c,xx) £ G n)] [y aam z((l"f’;)jsp : (ALD)

The Jacobian comes from the normalization of the zero-mode eigenfunction
1—¢P
V2Y (1—cosp,)’
"

v(p) = (A12)

From the 1/d expansion of the Fadeev-Popov deierminant we use only the zeroth order

term
AP[m, v] = exp {N logm+N J on [Z (2—2cos p”)]} (A13)

The integration of these remaining fluctuations leads to a correction to the free energy

41
[, L dr T
Af3 COUL = i log 2n—log m—+ (—2—1& log I (2—2cos p,)

I

1 [ A7 ] Al4
+7 j‘(Zn)d »|. ( )

The first three terms are the contribution of the Fadeev-Popov determinant, the group
volume and the zero-mode integration. The last comes from the Higgs fluctuations. In the
dynamical part of the Coulomb phase we find zero-modes for the Higgs field (47(p) = 0).
Choosing a global U(1) symmetry for the Higgs field

y(x) =0 (ALS)

we obtain
Flm,v, M, k] = 2r4[M, K] ] 8(y(x))F ™. (A16)

The first factor is the contribution of the group volume of the global U(1) group. We
write the gauge condition (A15) in terms of the transformed fluctuations, so that

[To((x)) = T 6Cx(p))- (A17)
x P

For the determinant 4[M, h] we need only the zeroth order contribution

A[M, k] = exp {N log M}. (A18)
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Performing the integration we obtain a contribution 1o the free energy which is identical
to the expression (Al14) up to the last term which has to be

1 2
¥ [—— IV_ log 2n—2 log M +log 27[] . (A19)

The first term comes from the group volume, the second is the contribution of the determi-
nant (A18) and the last is the result of the integration of the Higgs zero mode. The correc-
tions to the free energy given in Egs. (4.14), (4.16) are the sum of corrections Af, , ;.

APPENDIX B

Remarks on the one-link integral in the weak coupling region

The one-link integral of the lattice Abelian Higgs model is defined by

2n
@ do ,
[P0z, 20) = > exp {z, cos 0+z, cos q0}. (B1)
n
V]
It is casy to see that in the region of trivial Higgs saddle-point (M = 0)
2z
(a) d6
Sz, 22) = Io(zy) = ’Z;exP {z, cos 0} (B2)

0o

since z, = 0. In the region of non-trivial Higgs saddle-point (M = 1—1/8dx) we perform
a Fourier expansion for the exponential term in Eq. (B1)

exp {z, cos 0} = Iy(z))+2 Y I(z,)cos(10),
i=1

exp {z; cos g0} = Iofz;)+2 kzl I(z;) cos (kg6), (B3)

where the 7,(z) are modificd Bessel functions. Integrating out 0 we obtain that only terms
with / = kg remain. So the result is

f(q)(zb zy) = Io(z)o(2,)+2 k§=:l qu(zl)lk(ZZ)' (B4)

It was shown by Kasperkovitz [11] that for z sufficiently large the following approximation
can be used

1(2) n } (B5)

I P 22

independent of n. Using this approximation we oblain the expression for the one-link
integral given in Eq. (4.5).
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