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The statistical thermodynamics of hot dense matter is developed as a covariant extension
of the Landau quasi-particle theory of Fermi liquids. The basic postulate is that the thermo-
dynamic potential is a functional of one-particle distribution functions. The formalism is
given a microscopic foundation by a study of perturbative QED at finite temperature and
density, It is shown that a QED plasma can be pictured as a collection of stable quasi-electrons

and positrons plus damped collective modes. The transverse plasmon effect is discussed
briefly.

PACS numbers: 05.30.Fk, 67.90.+z, 11.15.Bt

1. Introduction

The Landau theory of Fermi liquids gives a comprehensive semi-phenomenological
description of degenerate quantum fluids, like *He and nuclear matter 1, 2]. Central to the
theory is the quasi-particle concept which provides an illuminating framework for under-
standing dense fermion systems at low temperature. It might be of great value if this theory
could be extended to apply to hot dense matter systems such as high-temperature astro-
physical plasmas and, especially, quark matter in the plasma phase.

The present paper reports on our efforts to construct a covariant extension of the
Landau theory [3]and to give a microscopic foundation by perturbative methods [4, 5]. The
macroscopic theory is developed from a single postulate, namely that the thermodynamic
potential (pressure) is a functional of the one-particle distribution functions of the
different particle species present in the system. When this postulate is combined with
relativistic thermodynamics, which topic we shall review briefly in the next section, it has
as a consequence that the entropy density of the system has the same form as for an ideal
gas, but of elementary excitations instead of bare particles. The possible values of the excita-
tion energies are determined by the functional derivative of the pressure with respect to the
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distribution funciions and this holds true irrespective of the temperature. What statistical
thermodynamics cannot tell is whether the elementary excitations are long-lived so that
they may be interpreted as quasi-particles (dressed pariicles). Such information may be
provided by a microscopic analysis.

In the early sixties Luttinger and Ward [6] constructed the thermodynamic potential
of an electron gas as a functional of the full many-body fermion propagator. Laier it was
shown that such functionals can also be obtained for other systems, notably those described
by QED and QCD [7]. Thus, the formal structure of euclidean field theory at finite tempera-
ture suggests that ihe elementary excitations are associated with the poles of the full fermion
propagator. Unfortunately, this propagator always has an appreciable imaginary part,
except close to the Fermi surface where the attenuation is suppressed by kinematical and
statistical factors. This seems to preclude any meaningful quasi-particle interpretation
at arbitrary temperature [8].

Nonetheless, further progress is possible if it is observed that, on the one hand, field
theory yields the pressure as a functional of propagators, while, on the other hand, the
Landau theory requires the pressure as a functional of distribution functions. In principle,
the latter representation is related to the former by an analyiic coniinuaiion of the euclidean
propagators, but there are subtleties in going from the one to the oither. This will be discus-
sed in detail for a QED plasma in a neutralizing background. However, the reasoning
also applies to the physically interesting case of a QCD plasma.

The major difficuliy is that in finite-temperature field theory the energies are complex
and that the rule for transporting them to the sreal axis is not ax all evident. One could
deal with this problem by employing the real-time method, also known as the iime-path
formalism [9] or ihermofield dynamics [10]. This method automatically yields Feynman
rules involving real energies. However, the drawback is that the propagators now have
a matrix structure. This feature is essential for avcndmg ambiguities in the treaiment of
propagators with coinciding four-momenta, but it considerably complicates actual calcula-
tions because the mechanism. hinges on intricate cancellations amongst the potentially
dangerous terms [11].

As we shall show, ii is profiiable, before analytic continuation, 1o first classify closed
diagrams in terms of cycles [12], that is, according to the occurrence of products of coincid-
ing bare propagators. As far as the fermions are concerned, such products may be treated
as distinct entiiies and analytically continued separaiely. In this way, no pathologies like
powers of d-funciions ever arise, and, as a further benefit, the ensuing pressure functional
has a remarkably transparent form. Surprisingly enough, it allows for a true quasi-particle
interpreiaiion cof ‘he fermions. These quasi-fermions have an effective self energy which
is represented by ihe same set of diagrams as the ordinary many-body self cnergy, but the
rules for iis calculaijion are such that it has no imaginary part.

This fundamental difference with the ordinary self energy is the result of the particular
sequence we have chosen to perform the discrete energy summations. This amounts to
a reallocation of fermionic and bosonic degrees of freedom such that the fermion self
energy is real. However, the analysis is not complete without a discussion of the boson
excitations. We confine ourselves to the ring approximation and show that the appropriaie
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self energy determining these excitations is the well-known second-order polarization
function. We close with some remarks on the transverse plasmon effect which is found to be
non-vanishing [5, 13] contrary to common belief.

2. Relativistic thermodynamics

The relativistic formulation of the laws of thermodynamics goes back to Planck and
Einstein, and is based on the observation that in the rest frame of a system in equilibrium
the first and second law may be stated in their usual form. This implies that the rules of
thermodynamics do not rely on non-relativistic conditions for their validity and that ther-
modynamic theory has as wide a range of applicability in relativistic physics as it has in
classical physics. Below the principal thermodynamic formulae are assembled in so far
as they are periinent to ihe subject matter of this paper.

An arbitrary macroscopic siate of a relativistic fluid is phenomenologically characteri-
zed by a symmetric conserved energy-momentum tensor 7*'(x), and a number of conserved
currents J4(x), 4 = 1,2, ...1. If the system is in thermodynamic equilibrium and moving
with a constant four-velocity U¥, U,U* = 1, J§ and T*' are space-time independent and
of the form,

J4 = Q. U%, (2.1)
T = EU*U’—-P4*, 2.2)

where 4*° = g*”— U*U" is the projector on space-like directions. The quantities Q 4, E, and
P are Lorentz-scalars which may be identified with the charge densities, the energy density,
and the pressure, respectively, all defined with respect to the rest frame.

In addition to ihese hydrodynamic staie variables, one may introduce an entropy flux

S* = SU*, (2.3)

where S is the entropy density, again defined with respect to the rest frame. From ordinary
thermodynamics we know that infinitesimal variations of the entropy density are related
to changes in the hydrodynamic variables through the Gibbs relation

8S = BSE+ Y a,6Q,. 2.9
A
The thermodynamic parameters entering here are the inverse temperature f = T-' and
the independent chemical potentials yu, in the combination a, = —Bu,.
A second fundamental thermodynamic relationship is the Euler equation
S = BP+BE+ Y 0,0, 2.5)
A

which expresses the additivity of the entropy and the other extensive state variables. Alter-
natively, one may regard (2.5) as the definition of the grand-canonical potential Q = —P

! Notation and conventions: x = x# = (£, %), u = 0, 1, 2, 3, &, = (&, V); metric tensor g** = diag
(1, -1, —1, —1); units such that A = c = kg = 1.
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which is the Legendre transform of E such ihat entropy as an independent variable is re-
placed by temperature, and charge density by chemical potential. When we take the varia-
tion of (2.5) and subtract (2.4) we obtain

5P = S6T+ Y Qadus, (2.6)
A

which is usually called the Gibbs-Duhem relationship. It shows that , or P, regarded
as a function of T and pu,, is a characterisiic thermodynamic function from which the
other thermodynamic quantities can be obtained by differentiation.

At this point we note that in the case of gravitational long-range forces the equaliiy
© = —P may be violated, and that therefore ithe Euler and Gibbs-Duhem relationships
may not hold [14]. This case is explicitly excluded from our considerations here.

The covariant formulation [15] of the various thermodynamic identities stated above
is achieved by treating the four-velocity U, as a thermodynamic variable on a par with the
temperature T, and the chemical potentials . Multiplying (2.5) by U* and taking (2.1)-
—(2.3) into account, we get for the entropy flow

S* = B*'P+B, T+ Y a 2.7
A

where B, is the time-like vector BU,. The variation of this expression may be written as

88" = B, 6T+ ; o, 0J%, (2.8)

which is the covariant Gibbs relation. It embodies both the ordinary Gibbs relation (2.4)
and the Euler relation (2.5), and has the same physical content.

3. Functional ansatz

Let us now consider an interacting particle system consisting of a number of particle
species k = 1,2, ... . According to the rules of statistical mechanics all thermodynamic
properiies of this system can be determined by calculating a partition function. For applica-
tions in quantum physics the grand-canonical partition function Z(f, a4, V) is the most
convenient. It depends on the volume of the system in the rest frame, and in the thermo-
dynamic limit furnishes the pressure

.t
P(T, py) = Jlm ﬁlog Z(B, o V), (€RY

on account of the fact that the logarithm of the partition function is extensive.
To make further progress we now assume that by way of the partition function it is
possible, in principle, to determine the pressure as a functional

P(T, 1a) = Pny] (3.2)
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of the equilibrium distribution functions

1
= (3.3)

M e’ —0,
of the different fermions (0, = —1) and bosons (6, = 1) in the system. The exponent

is a linear combination of the conserved quantum numbers g 4, carried by particles of species
k, and their four-momenta,

Ve = 2. qadia+B.0% (3.4)
A

with coefficients «y = —fu,, and B, = BU,. The functional form (3.2) will be justified
later on, bui we first like 10 explore some of iis consequences.

Tt is important to notice that no mass-shell restriction has been imposed: all four
components of the four-momentum p* are treated as independent variables. This is essential
for what follows because it will enable us to introduce the concept of an elementary excita-
tion. For this purpose we consider the change of the pressure due to an infinitesimal change
dn, in the distribution functions:

d*p
oP = Z j(z—n)g H(p)on(p). (3.5
k

This defines the quantity H,(p), which we shall call the speciral function, as the functional
derivative

oP
on(p)

Hyp) = (3.6)

of the pressure with respect to the distribution functions. Like the pressure it is a functional
of the distribuiion functions and, therefore, depends on the state of the system, that is, the
distribution of all particles.

The variation of the distribution funciions can be induced by a variation of the thermo-
dynamic parameters. Hence, we have from ihe Gibbs-Duhem relation (2.6)

04 s 3.7
auA ZJ @ny auA 1)
Zf @y’ Hgr @8

The derivatives of the distribution function (3.3) herein may be replaced by one with respect
to p,. It then follows with an integration by parts that the current density (2.1) and the
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entropy flow (2.3) can be represented in the form

d“p
Ta= Z ‘Mf Gy e 39)
k

d4
St = — Z J‘# vi[n; log n,—0,(1+6;m,) log (1+6,n,)]. (3.10)
k
The generalized velocity appearing here has been defined as the derivative

(3.11)

like in the hamiltonian formulation of mechanics. Together with the speciral function,
it will play an important role in the following because the connection (3.11) not only deter-
mines the relation between velocity and momentum, but also the energy spectrum of the
elementary excitations, as one will see.

The two expressions (3.9) and (3.10) resemble the corresponding expressions for an
ideal quantum gas [16]. All effects of the inieraction are hidden in the generalized velocity
which will be further analyzed in subsequent seciions. In the energy-momentum tensor,
on the other hand, the interaction manifests itself in a more explicit manner. In fact, it can
be easily verified that the energy-momentum tensor implied by (3.9), (3.10), and the covar-
iant Euler relation (2.7) must have the form

v d4p v v d4p
= ) Jap e (e ) g G2
k

k

The first term looks like the energy-momentum tensor of a free gas, whereas the second
term should be considered as an interaction density.
It would seem that the energy-momentum tensor (3.12) has an antisymmeiric part

wy __ 1 d4p FTRY A\
=3 W(l’ v — P ). (3.13)
k

However, one may argue that this antisymmetric part vanishes identically. The argument
is based on the observation that the pressure is invariant under a Lorentz transformation
of the integration variable p, — p,+0p,, op, = ¢,,p" with ¢,, = —e&,,. The corresponding
variation of the distribution function equals

19}
ony(p) = op, Py m(p). (.14
’
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Inserting this into (3.5) and putting 6P equal to zero, we see that the following identity

holds true
d*p any
€, ——H, —p' =0, (3.15)
g ZJ @n)* " op,

which after a partial integration yields 7" = 0. This argument is independent of the equi-
librium form of the distribution function.

In passing we mention that the expressions (3.9), (3.10), and (3.12) for the primary
hydrodynamic and thermodynamic state variables may be used to construct a transport
theory of relativistic quantum fluids [3]. A discussion of the nonequilibrium aspect lies,
however, outside the scope of the present paper.

4. Spectral density

It was mentioned above, that the speciral function and the generalized velocity carry
information about the energy spectrum of the system. The simple example of an ideal
quantum gas may serve to illustrate this idea. For the pressure of an ideal gas we have
the well-known expression

_ d’p
Po=p" Z Gkgkjm pi Ulog (1 +86,n), 4.1
k

where g, is the number of internal degrees of freedom and py = (pZ +m?)* the kinetic
energy of the particles. Ohe may notice that this expression is not of the form assumed
in (3.2) because pj is on mass-shell. Moreover, the dependence on the temperature is not
entirely contained in the distribution function. However, this is easily repaired by insertion
of a mass-shell d-function written as the derivative of a step-function

il
2p- Us(p*—m*) = U - P 0(p*—m?). “4.2)
p

After an integration by parts we obtain for the pressure the alternative expression

d*p
Py = z ng‘ any 0(po)0(p* — mp)n(p), 4.3)
k
which is of the desired form.
Functional differentiation yields the spectral function
Hy(p) = &8(po)0(p> —mp), (4.4)

and the associated generalized velocity

v(p) = 280"0(po)3(p* —mi). 4.5
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This explicitly shows how the mass-shell restriction is contained in both H, and v;. We can
also write (4.5) as '

vi(p) = v"oup), (4.6)

where ¢* is the ordinary velocity p*/p, and

0H(p)
0po

ep) = = &d(°—p) (4.7)
the spectral density (defined by the first membcr of the equation) of a free particle system.

The spectral density (4.7) expresses the fact that the elementary excitations of a free
system are stable particles possessing a fixed mass. The question is, what do these excita-
tions look like after the interaction is switched on? In the Landau theory of Fermi liquids
it is assumed that the excitation spectrum has a structure which is to some extent similar
to that of an ideal Fermi gas and can be discussed in terms of quasi-particles (dressed par-
ticles) having a definite energy &(p).

In the present theory the quasi-particle picture emerges naturally if we assume that
for an interacting Fermi system the spectral function (4.4) can be generalized to

Hi(p) = g8(po)0[p* — M7 (p)], (4.8)

where M,(p) is some effective mass. Such a speciral function would imply a sharply defined
spectral density

2i(p) = 88(Po)d(po— (D)), (4.9)

where ¢,(p) is the quasi-particle energy determined by the solution (assumed to be unique)
of the dispersion relation

p*—MZ(p) = 0. (4.10)
For the generalized velocity we find

- 68(1_5)
vl(c) =0k Y= 75“ k- (4.11)

The first equation is simply the definition of the spectral density. The second one follows
immediately from (4.8) if the argument of the step-function is read as Po—=&(D).

Unlike the other formulae we have derived so far, equations (4.9) and (4.11) have
a non-covariant appearance. This has come about because, for the purpose of illustration,
we have chosen the energy in the observer’s frame of reference p, as the variable for which
the dispersion relation (4.10) is to be solved. Another possibility would be to select the
energy in the rest frame p - U. The latter choice leads to a formally covariant theory and
will be further adopted here. The former choice furnishes a link with the non-covariant
formulation of the relativistic Landau theory as given by Baym and Chin [2]. To verify
this last statement one only needs to insert (4.11) into the expressions for the macroscopic
currents, given in Sect. 3, and to integrate out the energy.
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The Landau theory has been successful as a phenomenological descripiion of normal
Fermi systems, but according to conventional wisdom its validity is confined to low iemper-
atures. From the point of view of many-body theory this is only too undersiandable, if one
identifies quasi-particles with the poles of the full many-body propagator [6]. Indeed,
its imaginary part, which is only small close io the Fermi surface, signifies rapid decay of
these “dynamical” quasi-particles. Nevertheless, there exist calculations irdicating that
a different kind of non-decaying quasi-particle, called “statisiical”, can be obiained as
an exact result of many-body theory at any temperature [17)]. This would imply 1hat the
Landau theory is exact at arbitrary temperatures, and not limiied by ihe life-time of ihe
quasiparticles.

At this stage we shall not take sides in this matter. Instead, we shall coniinue and apply
the theory of the last three sections to the particular case of a QED plasma. The programme
we shall follow is dictated by Egs. (3.2), (3.6), and is quite siraighiforward in principle:
(f) express the pressure as a functional of the distribution functions, and (i) calculate
the spectral function by functional differentiation. The result should speak for itself and
reveal what type of elementary excitations we are dealing with, and whether they are long-
-lived or not.

5. Feynman rules

We shall study quantum electrodynamics at finite temperature describing an interacting
system of elecirons, positrons and photons in a neutralizing background [18-20]. The
euclidean fermion and photon propagators, when Fourier transformed, have the form

1 g"
So(p) = -———, Do) = —= . (5.1)
Yy p—m k
The y’s are the ordinary Dirac matrices and we adopt the Feynman gauge. The difference
with vacuum propagators is that the energies take discrete and complex values:

Po = i@n+Dnp ™ +u, ko = i2nnp™?, (5.2)

with z integer. The single chemical potential u corresponds to ihe conserved charge carried
by the fermions.

The advantage of the euclidean formalism is that the Feynman rules for calculating
the generating functional, i.e. the partition function, closely resemble those of the vacuum
theory. The principal statement is that the interaction pressure Py = P— P, can be equated
to the sum of all closed linked diagrams (bubbles) each multiplied by a combinatorial
factor depending on the order and topology of the diagram [21]. For QED the first few

diagrams have been depicted in Fig. 1.
INIORIGEIGRIOIO,

Fig. 1. Lowest-order QED diagrams contributing to Py

~—
T
PN
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(Tadpole diagrams have been left out because they do not contribute in a charge-neutral
system.)

The Feynman rules for finite-temperaiure QED [22] may now be stated as follows:

1. A bubble diagram consists of 2N vertices, 2N directed fermion lines, and N photon
lines.

2. Each bubble is weighted with a factor S/(2N)! where S is the number of different
ways the vertices can be connected with the same topological resuli [23].

3. Propagators (5.1) are associated with each fermion and photon line.

4. A factor ey* is inserted for each vertex.

5. Energy and momentum are conserved at each vertex; momentum by a three-
-dimensional §-function, and energy by a Kronecker delta, muitiplied by the factor f(2x)3.
[One arbiirary vertex is excluded since energy and momentum conservation would yield
a factor SV which has already been divided out, cf. (3.1).]

6. All discrete spinor and Lorentz indices are contracted at each vertex. All momenta
and energies are summed and integrated over according to B-'X | d3p/(2m)3.

7. Each closed fermion loop carries an additional minus sign.

In formulating these rules we have tried to minimize the nuisance value of the factors
i and 27.

Self energies are obtained by opening up fermion or photon lines in the diagrammatic
expansion of P;. For example, if one fermion line is cut in all possible ways, one obtains
all diagrams contributing to the reducible self energy Z*. This rule may be expressed by the
functional equation

P e _ Z(zs ySo ! (5.3
6S0 0. 0 > -)
m=1

where X is the proper self energy. The minus sign appears because of rule 7. Similarly,
one has

=zII* =73 Z (I1De)"D5 ", (54)

where IT* is the reducible and IT the irreducible photon self energy or polarization function.

By using the Dyson equations for the full fermion propagator S(p) and the full photon
propagator D(p), it is not difficult to show [4, 5] that the last iwo formulae are equivalent
to the functional relationships

5P 5P
— =5, — =
5S; oD,

Nlr—n

D, (5.5)

derived by Freedman and McLerran [7] from the path-integral representation for the total
pressure P.

‘ The sums at the right-hand side of (5.3) and (5.4) can be given an interpretation in
terms of an m-cycle of lines [12], that is, a set of m lines in a bubble diagram such that
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the diagram separates into two disconnected parts if any two of the lines of the set are cut.
Removal of all m lines of the set separates the diagram into m disconnected pieces. On
account of energy-momentum conservation all lines of an m-cycle carry the same energy
and momentum. They are, thus, associated with an m-fold direct product of propagators
with coinciding arguments, for which we shall introduce the notations Sg(p) = [So(p)I"
and Dg(k) = [Do(k)]™.

The lines in a diagram can be unambiguously classified as belonging to cycles with
multiplicities m = 2, 3, ..., or to no cycle at all, which is called a 1-cycle for convenience.

Let us now cut all fermion lines belonging to the subclass of 1-cycles in the graphical
representation of P;. Ii is then clear that the self-energy diagrams so obtained cannot
be separated into two disconnected paris by cutting one other single fermion line. In other
words, these diagrams are one-particle irreducible.

This may be formalized by considering P, as a functional of cycles of increasing multi-
pliciiy:

P, = P[S}, S2, ...; Dy, D3, ...]. (5.6)
Functional differentiation with respect to one single fermion propagator can then be
written as
oP 6Py, 468§
L= E L. 2 (5.7
38, 0S¢ 4S,
m=1

Comparing with the second member of (5.3), we conclude that the functional differentiation
with respect to m coinciding propagators is given by

5P,
3So(p)

It expresses the fact that the parts of a diagram connected by cycles are proper self-energy
insertions. This topological property will play an important role in the sequel.

1
= - —[Z(»]" (5.8)
m

6. Analytic continuation

The Feynman rules given above yield the interaction pressure as a functional P,[S,, D,]
of the complex propagators (5.1). However, to make contact with the Landau theory,
we need to reexpress the pressure in terms of real energies and distribution functions. This
may be achieved by an analyiic extension away from the discrete complex energies down
to the real axis. The method is siandard and involves the replacement of energy sums by
contour integrals. For a fermion sum the rule is

ico

%Zf(l’o) = j ;—; [n-f(@D+n.(f(—-2)]+ f ;%f(Z), (6.1)

Cs —~iw
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and for a boson sum

i

1 d d
;Zf(ko) = - J EfiN(z)[f(z)m—z)]Jr f 1. 6.2)

C+ —ic0

The formulae are valid for any function f(z) which is analytic in the neighbourhood of the
imaginary axis, and the contour C; encloses counterclockwise all singularities of the
functions f(z) and f(—z) in the right-hand complex plane, but not the poles of the Fermi-
-Dirac and Bose-Einstein functions

1 1
ni(z) = e—ﬂ————(zi“)+1 B N(Z) = e——-————pZ—l (6.3
at the discrete points (5.2).
By this procedure the pressure becomes a functional P = Pln,, N1 of the distiribution
functions of the desired form from which by functional variation

5P = z J TP o)+ f N (64)
L 2y’ K X @n? Y ’

the spectral functions H:(p) of the electrons and positrons, and H,(k) of the photons follow.

Although straightforward in principle, the actual analytic continuation of an arbitrary
diagram is not without difficulties. Mathematically, there is the problem how to deal with
the highly complicated analytic structure of higher-order diagrams. But even apart from
this, one is confronted with the problem that the procedure is not unique and generates
formally different pressure functionals Pln,, N] depending on the order in which the sums.
are performed. As far as the pressure is concerned, these functionals are all equivalent
on account of identities like

n+(2) [1—n+(z")]
nt(z)—nt(2)

N(iz—-z') = (6.5)

but the spectral densities defined by (6.4) are not.

Our solution [4] to this problem rests on the observation that in closed diagrams as
they occur in the perturbation expansion of Py, the fermion lines are grouped together
into closed loops with two or more external photon lines, see Fig. 2. Owing to energy-
-momentum conservation such loops have only one independent fermion variable, over
which must be summed and integrated. The expression associated with a loop with / external
lines is of the typical form:

i a3
Liks, k) = Z f (2—703 H So(p), (6.6)

l
i=1
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where irrelevant vertex factors have been suppressed. The internal four-momenta p; are
linear combinations p; = p+¢;k;, &; = 0, +1, of the loop variable p and the external
photon momenta k; satisfying L k; = 0.

The reason for focussing on loops is twofold. The first is that different loops are
completely indeperdent with regard to the fermion summation and the order in which
these sums are performed is immaterial. Secondly, by doing the fermion sums first we ensure
that fermion sums lead to Fermi disiribution functions and boson sums to Bose distribu-
tion functions without these two getting mixed up.

k
k , 4
1\ /~
\ / ‘\
\ S
\ / \
)
// 1}
- 1
k / /
2 / .
I e
;T
k
3

Fig. 2. Fermion loop with external photon lines

The propagators at the right-hand side of (6.6) can be analytically continued away
from the discrete energies merely by putting p, = z. This extension is analytic in the strip

|Re z| < m, but singularities occur when the internal loop momenta are on their mass
shell:

z+ekd = & V(P+e,k) 2 +md. 6.7)

Let us first assume that none of these singularities coincides, that is, the loop does not
contain an m-cycle of multiplicity greater than one. The energy sum in (6.6) can be replaced
by a contour integral according to the general rule (6.1). The sum of the residues at the
points (6.7) may be written as a sum of integrals of the discontinuity across the lines z = p,
~&;;k) with the variable p, row real. Shifting also the three-momentum we obtain

(2n) J‘ — n (Z) So(z+8ijk_(;, I-;+ SUE_))

II

(27'c) - -(po )680( ) * Disc So(p)- (6.8)
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The discontinuity has been defined as Disc So(p) = So(po + i€, p)—So(po— i€, }3), and the
functional derivative as

H;
6L
= Z I | So(p+eik;j—e,5k ;). (6.9)
0So(p) — 1

Strictly speaking, this functional derivative only exists for discrete complex values of p,,
but as it appears in (6.8) the energy variable is real. This replacement by a real energy must
be understood to take place after the functional! differentiation has been performed.

In general, loops contain cycles, i.e. products of fermion propagators with identical
arguments. The above reasoning is easily extended 1o this case by regarding the loop func-
tion (6.6) as a functional of m-cycles. The various residues are then found by consecutive
functional differentiation wiih respect to all possible cycles. The result is again an integral
expression which contains one single fermion distribution function, like (6.8), correspond-
ing to the one independent fermion-loop energy. Taking the functional derivative with
respect to this distribution function, the final result of bringing an entire fermion loop to the
real axis may be cast in the compact form

SL 0 SL
L -+ (p‘f) E L. Disc S?(F p). (6.10)
2mi
m=1

ony(p) 3SH(Fp)

This crucial equation links the functional derivative wiih respect to the Fermi distribution
functions, as it occurs in the Landau theory, to functional derivaiives, of the kind discussed
in the previous seciion, with respect io propagators.

7. Effective self energy

As already mentioned, one of the reasons for isolating fermion loops is that they are
completely independent from each other as far as the loop integrations and summations
are concerned. Also an m-cycle of fermion lines can never involve more than one loop.
Tt is then immediaiely clear that the functional differentiation of P; with respect to n.. follows
the same rule (6.10) as valid for loops. Combining this insight with Eq. (5.8), we obtain

——61)' +i 0(po) 1 [Z(Fp)T" - Disc Sg(Fp), (7.1)
n : : m
m=1

snip) T 2

where the quantity Z is the proper self energy, bui with an external energy that is real.

In order to clearly understand the nature of Z, let us first recall the definition of the
proper self energy in perturbation theory as a linear combination of one-particle irreducible
self-energy graphs with discrete complex exiernal energy po, = u+i(2n+1)nf~*. Since
this self energy is known only at a discrete set of points, its analytic continuation to the
complex plane, and ultimately to the real axis, cannot be unique without further delimita-
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tions. The customary prescription is to require that the self-energy is an entire function
having no singularities except on the real axis and vanishing at infinity. This construction
is guaranteed to be unique [24] and yields the many-body self energy X(p) as an analytic
function in the p, = z plane cut along the real axis.

This many-body self energy must be clearly distinguished from Z(p) which is obtained
by a different, and almost trivial, prescription. It involves nothing more than a formal
replacement of the discrete external energy variable by the continuous variable p, = z,
while keeping all internal boson lines imaginary. The resuliing self energy is certainly not
analytic, but at the real axis it is well defined. The main difference beiween the itwo self
energies is that X in general has an imaginary part, whereas T is real at the real axis. In
virtue of this last property the sum in (7.1) can be wriiten as

o0

1 _ _
2i Im E —tr [S(FPZ(Fp)]" = —2i Imtr log S,S™ 1, (7.2)
m

m=1

where we defined an effective propagaior through

S57(p) = 5o '(p)—Z(p)+iyoe, (1.3)

which again differs from the ordirary analytic many-body propagator in the fact that it is
a real quaniity.

Substituiing (7.2) into (7.1) ar.d noting that 1the factor S, in the logarithm is cancelled
out by the coniribution of the free pressure, we finally get for the functional derivative
of the pressure, i.e. the speciral function, see (6.4),

H4(p) = £0(po)/n Im log Det S™'(F p), (74)

where we also used ir log S—! = log Det S-1. The last derived formula shows that the
interaction is fully incorporaied into the propagator S. The excitation energies of the system
are given by the solutions of the dispersion relation

DetS™'(Fp) =0, po>0. (1.5

In the absence of an imaginary part these excitations have an infinite life time. Using the
terminology of Balian and de Dominicis [17], we may call them “‘statistical” quasi-particles.

In the “dynamical” approach, which has become standard since the first paper of
Luttinger and Ward [6] on the many-body theory of Fermi-systems, the pressure is consider-
ed as a functional of the analytic many-body propagator. This functional form then serves
as a basis for the formal derivation of the “dynamical” quasi-particle behaviour of an
electron gas. Thus, dynamical quasi-particles are defined by functional differentiation
with respect to propagators, whereas statistical quasi-particles are defined by functional
differentiation with respect to distribution functions as prescribed by the Landau theory.
The two prescriptions are quite different, except at temperature zero at the Fermi surface,
where they coincide.
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8. Ring approximation

In the previous section we saw how the statistical self energy can be used to determine
the behaviour of the excited fermion states. However, at finite temperature, there are other
excited states that have to be taken into account too, namely the collective modes described
by the bosonic spectral function H,(k) as defined in (6.4). For the purpose of calculating
H, we now have to carry through the analytic continuation of the bosonic energies.

For simplicity we restrict ourselves to the subclass of ring diagrams, that is, the set
of single closed photon loops with an arbitrary number of lowest-order polarization inser-
tions. Tt is well-known that this selected class of most infra-red divergent diagrams makes
the following contribution [18]:

bl 3
e Z 1 {Z j L [H(k)Do(k)]’"}, 8.1)
28 m (2m)
m=1 n

Here DY}’ is the bare photon propagator and IT*" the lowest-order (proper) polarization
tensor. The trace means a contraction of Lorentz indices, and the m'th power should be
understood in the sense of matrix multiplication.

The lowest-order polarization tensor contains one fermion loop which must be brough,
to the real axis first. The resulting expression is well-known and can be found in Refs. [18t
20, 5]. It is a functional of the fermion distribution functions n4, and explicitly analytic
both in the upper and lower complex energy plane. Functional differentiation of the ring
pressure with respect to n, and comparison with (7.1) in the truncated form

) i
on+(p)

yields the corresponding approximation for the statistical self energy [5].

To obtain the photon spectral function we now have io perform the explicit boson
summation in (8.1) with the help of (6.2). Since the product II(k)Dy(k) is analytic everywhere
except at the real axis we can do this term by term and sum over m afterwards. The result
is the spectral function in the ring approximation [5]

= —0(po)d(p* —m*) tr (Fy - p+m)Z""%(Fp) (3.2

HO™(k) = — 9(:°) Im [log (1-— %—) +2 log(—k2+ﬂr)]’ (3.3)

where IT; r are the longitudinal and transverse polarization functions defined by the
connections

My = —KI°°K?, My = L (12~1), (8.4)

in terms of the polarization tensor.

Contrary to the statistical fermion self energy, the polarization functions have imagi-
nary parts. However, one should bear in mind that the longitudinal and transverse parts
of the spectral density (8.3) describe two distinct physical phenomena. The former has to
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do with the mechanism of dynamical screening by virtual, i.e. space-like, plasma excita-
tions. This screening effect persists even in the static limit where one finds a static screening
length xg ! given by

ki = lim M0, k). 8.5

[K|~0

In contrast, the transverse polarization vanishes in this limit, implying that a static magnetic
field is unscreened. The main effect of I is that it shifts the pole of the free propagator.
In this way the photon acquires a temperature and density dependent mass. The imaginary
part of the transverse polarization function vanishes in the region 0 < k? < 4m?, implying
that the undamped solution of the dispersion relation may be regarded as a dressed photon
with a mass given by »

o} = Ik = 0), (8.6)

in accordance with Ueda’s prescription [25] that the momentum should be put on the mass-
-shell of the corresponding bare photon at zero temperature and density.

Elsewhere [5] we have further analyzed the plasmon effect at high temperature, that
is, the term of order o2 in the spectral function (8.3). This is the leading contribution
coming from the resummation of the infrared-divergent ring diagrams. This contribution
may be isolated by subtracting the zeroth and first-order terms in the fine-structure constant
a. The remainder, which is conventionally called the correlation part, takes the form

) 0k I, +2IT

Our analysis shows that to order «? the dominant high-temperature behaviour of the trans-
verse part of this expression is rendered by the spectral function 26(k?—w32), which cor-
responds to a gas of photons with mass wy as defined in (8.6). In the high-temperature
limit, where we may use N(k,) = (Bko)~!, the correlation pressure

Pcorr — d4k Hcorr k N k 8 8
~J(27z)3 y()(o) ()

may be evaluatéd explicitly. The result is

3 3
o Ly T (8.9)
12n8 6z
where xy, is the inverse screening length and wr the mass (plasma frequency) defined in
(8.5) and (8.6), respectively.

This answer is easy to understand The first term is nothing but the well-known Debye-
~Hiickel correction to the equation of state of a classical ionized gas. The second term is the
«*/2 contribution of the asymptotic expansion [26] of the pressure of an ideal gas of bosons
with mass wy.
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We discussed the plasmon effect in some detail because it illustrates the fact that the
summation of the ring diagrams is not a unique operation. Indeed, the usual procedure
is to perform this summation directly in (8.1), which leads to the alternative expression
for the correlation pressure

3
P = —1/28 Z j(zﬂl;s tr [log (1—DoII)+ D,I1], (8.10)
for the first time obtained by Akhiezer and Peletminskii [18]. The siandard calculation
of this expression at high temperature is based on the observation that only the zero-
-energy term needs to be retained. Subsequenily, onereplaces IT, (0, ) herein by its infra-red
limit ngﬂogvo, cf. (8.5), and performs the integration. This yields the first term at the right-
-hand side of (8.9), but not the second term involving the dynamic photon mass. Hence,
we must conclude that the two expressions (8.8) with (8.7), and (8.10) for the correlation
pressure, are not equivalent. '

The problem may be stated as follows. In (8.10) the ring diagrams are summed to the
function log (1 —D,II) on the imaginary axis, whereas in our approach, which requires
the pressure as a functional of disiribution functions, we obtain the imaginary part of ihis
same logariihm at the real axis. According to ihe contour integral ideniity (6.2) these iwo
expressions should be equal, apari from a vacuum term which plays no role in the high-
temperature limit. Yet, they are not. Thus, there seems to be an internal inconsistency.

The resolution of 1his paradox lies in the analytic properiies of the photon propagator,
and its inverse D-! = Dy '—1II. Both should be analytic in the neighbourhood of the
imaginary axis in order that (8.10) is unambiguous and the identity (6.2) valid. From the
spectral representation of IT [20] it can be seen that this is ensured by the positivity condi-
tions

k|2 +1, 1(0, k) > 0, (8.11)

which must hold for all values of k. The point is that the transverse inequality is not auto-
matically guaranteed by the analytic behaviour of I1; and, in fact, is violated by ihe lowest-
-order approximation for some values of k. The implication is that log (1— DolI) is not
analytic on the imaginary axis, a fact overlooked in the standard evaluation of the plasmon
effect.

In contrast we perform ihe analyiic continuation ierm by term in (8.1) and then define
the logarithm on the domain where ii exisis as an analytic funciion, namely, everywhere
except on both the real and imaginary axes. This prescription follows naturally from our
method of analytic continuation which is aimed at the obiaining of the pressure as a functio-
nal of distribution functions. Within this framework physical conclusions about quasi-
-pariicles and collective excitations are drawn on the basis of an analysis of the speciral
functions, obtained by functional differeniiation wiih respect io these distribution functions.
Thereby it is ensured that the thermodynamic coniributions of the various elementary
excitations are properly accounted for. The example of the plasmon effect gives us confi-
dence that 1he theory is of value not only as a formal scheme, but also as a tool for practical
calculations in relativistic many-body theory.
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