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We perform a mass renormalization scheme invariant analysis of the ITEP heavy
quarkonium sum rules in terms of the scale invariant mass m, thus relating in an unambiguous
manner the quarkonium data to the basic QCD parameters 7 and Axjs. Satisfactory predic-
tions are obtained for all low-lying charmonium states, except the scalar and pseudoscalar
ones, for 150 MeV < Ayps < 250 MeV. The gluon condensate comes out in average a factor
of 3 smaller than the ITEP value. Both expanded and unexpanded ratios are used, yielding
similar results. Bottonium sum rules in the vector channel are shown to be consistent with
the results of the charmonium sector.

PACS numbers: 12.35.Eq

The interesting sum rule approach developed [1] by Shifman, Vainshtein and Zakha-
rov (SVZ) to relate low energy resonance parameters to fundamental QCD parameters

oy .
such as o, and the gluon condensate G = — {0|F?|0) was first applied to heavy quarko-
7

nium, where the dominant power correction to the SVZ sum rules can be parametrized
in term of the gluon condensate alone.. Comparing experimental data in the 3S; channel
with the purely perturbative contribution to the sum rules, evidence was found [1] for
existence of the gluon condensate, with a value Ggy, ~ 0.012 GeV4, a non-zero value
of G being necessary to reduce the systematic discrepancy between data and the purely
perturbative contribution. It is clear however that in such an approach one has to be
confident that the perturbative contribution has been properly treated, in particular with
respect to inclusion of higher order radiative corrections. Now the well-known problem*
arises that higher order perturbative corrections depend upon the definition of the heavy

_ * Presented at the XXIV Cracow School of Theoretical Physics, Zakopane, Poland, June 6-19,
1984.
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quark mass. In this note, we suggest a mass renormalization scheme (RS) invariant formu-
lation, which yields rather different results from the standard treatment [1]. To set up the
problem, consider the SVZ moments:

1 dy
M, = oy (“ @) n(Q%)

where n(Q?) is the charmed vector current hadronic vacuum polarization:
ijd4xe_iqx<0IT(Jp(x)Jv(o) }0> = (’?fzqu_quqv)ﬂ(gz)s
Ju(x) = —c-(x)yuc(x), (Q2 = —qz)'

Using a heavy quark mass expansion one obtains, taking into account only the peérturba-
tive contribution:

1 [ ds
= ;J;m Im n(s), o))

02=0

. 2
Mn = (ﬁz)n [1+an+O(Q )1! (2)

where m = pole mass of charmed quark and ¢ = 41’- . Changing the quark mass definition
T

changes the value of b,, since two masses definitions m, and m, are related by m, =
m;[1+ 0(@)]. There are two problems here: (i) one would like to find an *“optimum” defini-
tion of the mass, in order to decrease the magnitude of the O(g) corrections (this motivated
SVZ to adopt the so-called “euclidean mass” definition [1] instead of pole mass). (i) For
a given definition of quark mass, one would like to be able to relate the effective coupling
¢ in Eq. (2) to the fundamental QCD scale parameter 4, as well as to have some control
over its n-dependence. This task in principle requires the knowledge of 3-loop radiative
corrections with masses, a very involved calculation not undertaken yet. Fortunately,
this problem can be bypassed. Suppose one uses instead of m the running mass m in any
mass independent RS (for definiteness, we shall use the MS scheme). Then, one easily
obtains from Eq. (2) and the one loop relation [2] between m and m:

M, = (;a;?{u [b,,—n(—S ln—':—z +%)] Q+O(ez)}, G)

where u is the renormalization point.
The renormalization group equations for the MS scheme parameters are:

m = —my(@) = —m(y0+y.0°+ ...), (4a)

2
uzg'g‘z = B(0) = ~B1*~F:0’+ .., (4b)
u
2f 38f (101 5

with =11~ T, f,=102~ ==, , = 8, and 2] 7 = 16{ 7 — E>anc1f=nm:nber
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of flavors (f = 4 for charmonium). Integrating Eq. (4), we obtain:

m? = m*[B,0]"""" [1+ (;j - % ;—1) e+0(92)], ©)
1

where m is the “scale invariant” mass [3]. We stress that m so defined (as well as y,) is
universal [4], i.e. the same for all mass independent RS, as follows immediately from the
relation m? = m3 [l + O(g)] between two masses definitions. We suggest to use m as
a fundamental quark mass parameter in the sum rules. We then obtain:

Mn ( A3 2) [ﬂlen(m)]—nﬂml (6)

with the “effective charge” [4] g,, defined to all orders as a power series in g, known up to
next to leading order:

2
B.(m) = ¢ [1+e (—ﬁ, In iZ—z-— +Kn> +0(92)] @)
with K, =£‘—(A,£- 5) L2 b
71 n Y1 B,

The formalism for the SVZ moments set up in Eq. (6) and (7) is quite similar to the
standard formalism for the structure function moments in deep inelastic scattering (DIS),
the usual non-perturbative normalization factor of the DIS moments being here replaced

by the factor q az)" ,and the g, (analogue of the perturbatively calculable part of the DIS
m

moments) being known up to next to leading order in g, thus allowing to relate g, 10 Awg
(note that in Eq. (2), ¢ appears only in leading order). The latter step requires some further
explanation, since g, apparently depends upon a running u dependent parameter m,
instead of a u-independent, non-renormalized variable like the momentum transfer
in DIS. To clarify this issue, let us write Eq. (6) as:

M = —on
G

(3a)

with
m: = AZ[ﬂlé"]h/ﬁl’ (8b)

where we introduce an n-dependent “effective fixed mass™ m,, all higher order perturbative
corrections to M, being absorbed into the definition of m, (this is the best one can achieve,
if one naively attempts to minimize, in the SVZ spirit, the O(g) corrections in each mo-
ment). The question now is how to relate together the various fixed masses m,, since
there is only one free heavy mass parameter in the theory. In general, to any fixed (1 €., non-

-Tunning) mass m one can associate an effective charge [4] g which relates it to m ; just as in
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Eq. (8b):
m = m*[B,a(m)]"* )

with
B m? 2
o(m) =p|14+o| ~p,1n —”3— +K )] +0()].
Now, ¢ satisfies a renormalization group (RG) equation:

00

2

m PREm—
om?

= B(@) = —B,0*—B.8° +0("). (10a)

a8

The right hand side of Eq. (10a) is RS invariant and u independent, since in any mass
independent RS we have:

., 00
om?

05
m? ___gz
om®|, ,

, (10b)

m? being proportional to m? at fixed ¢ (see Eq. (5)). Eq. (10) allows us to think of g as
“running with m”, giving its physical meaning to the scale variable upon which g de-
pends®. In other words, g satisfies the modified RG equation pointed out for zero mo-
mentum observables in Ref. [4]. The first two f function coefficients are universal [4] and
given by:

Bl = By Bz = B,—B17:1-

Integration of Eq. (10) yields:

= A2 5 €Xp [
Be

which relates g to m and Agg. For latter use, we note that from Eq. (9) and (11) one can
equivalently write:

Bz In(B,0)+ ——] [1+0(2)] (11)

1 B K
= Az exp [‘ﬁT + ﬂz In(B,0)+ 3, ][1+0(Q)] (12)

where the usual 2 loop B function appears. Furthermore, we can now give the RG improved
relation between two fixed masses definitions m; and m;. Since m?; = m?[B,g, ;J’*/*!,

we have:

m = —Ir1/B1

L = [?] (132)
'"1 Q;

! We note the analogy between Eq. (9) and Eq. (5) for the running mass, i.e. “m runs with m”, At the

. dm om

differential level, the analogue of Eq. (4a) is: M — = m-— = (14 6)m, with 6 = LS B(_—e) . The
dm om|po B e

latter equation generalizes a well known QED result [5] for the derivative of the physical electron mass

with respect to the bare mass at fixed cut-off.
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and, taking the ratio of Eq. (11) applied to g; and g; to eliminate m/Azg, we get up to
2 loop:

1 1 B, ( )

— —=+4+22In = —(K,—K)). 13b

Ql Q ﬁl Qj ! ! ( )
Applying this formalism to the effective masses of Eq. (8), and relating for convenience
m, to m,, we obtain the one loop RG improved formula (we neglect for simplicity the
2-loop contribution proportional to f, in Eq. (13b)):

a,

— nyi/81

M, = 2y (m2 - (1—d,a8,) (14a)

with
_ 1 Ba K,

= A °Xp[ﬁ1@1 g2 a0+ ﬂ,] (145
and

d, = K,— Kl——ﬁ——l—(bl——b—) (15)

71 n

We stress that Eqs (14) represent a mass RS invariant formulation, and it is only for
convenience that we use m, as mass parameter instead of m?2.

—4
Inclusion of gluon condensate: with the gluon condensate G = Ao {0|F?10),
the theoretical expression for the moments becomes 1@
a a, G
Mn = '—:"— a,c, p +O(Q)} —2n +aucn =2nt2 (16)
()" (m?) ”[ (3 (ma)+?

where it is natural to introduce a separate fixed mass definition m, for the condensate
contribution. In practice, since the O(g) corrections for the gluon condensate contribu-
tion are not yet known, we will use the same fixed mass definition as for the purely per-
turbative contribution, and assume the resulting corrections are small, i.e. we write:

a, G
M, = 1 17
2y [ e ﬁ‘] @
Hence, relating m, to m,, we use:
G
Mu = Mg” [1 +cn —a (1 —dnél)znml] (18)
m

1

with M, the purely perturbative contribution, being given by Eq. (14).

? In principle, one could have equally used any other fixed mass instead of m,, such as m = pole
mass. In practice, we cannot use the pole mass for the charm quark because its associated effective charge
@ is too large for RG improved perturbation theory to apply. This fact simply reflects SVZ finding that
using the pole mass produces too large perturbative corrections for the moments.
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Expanded ratios approach: a similar formalism can be applied if one prefers to deal
with the perturbative expansion of the ratios:

M 1 2
. N —-5{1—% [b,,—b,,_l— (-—81n = +é§~)] g+0(92)} > 2).
i

19
Proceeding as above, we get:
a, 1 a, 1 _ -
Iy = —— —3 & —— <3 [ﬁlQn(m)] vi/Bs (20)
an—l mn an"l m
with
m? 2
O,(m) = ¢ [1+Q (~B; ln7 +K..) +0(e )]
and
Kn = 'p;l"' [%"(bn"bn—l)]'l' .y-z' - E_z' . (21)
71 Y1 1

Note that the effective masses m, and charges g, introduced here are not the same as in
the case of moments, but we keep the same notation when no confusion can arise. Relating
m, to m, (the effective mass defined by the n = 2 ratio), the one loop RG improved formula
for the ratios now reads:

i
o= (1= d,a)"* (22a)
ay-q m2
with
1 B K,
iz = A% exp[ + Z1n(B,8,)+ ———] (22v)
2w g, BT B
and
B
d, = K,—K, = 7— [(b2—b1)—(by—ba-p)]- (23)
1
Including the gluon condensate, we similarly obtain:
a, 1 G
r, = p 14+(ca—Cu-1) —il- 2%
an—l mn mn
Hence we use:
G
=0 1+ @mep o a-dar™ | @
2

with r{” given by Eq. (22).
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TABLE I

Experimental and theoretical expanded ratios for the 3S, charmonium channel. The fit parameters are
Ajis = 200 MeV, g, = 0.02898, m2 = 1.62415 GeV? and G = 0.004963 GeV*

n 2 3 4 5 6 7 8 9 10 11 12

10xr(" | 0.6597 | 0.8561 |0.9484|1.001 | 1.034 | 1.056 | 1.072 | 1.083 | 1.092 | 1.098 | 1.103
10xrs | 0.6563 | 0.8485 | 0.9357|0.9819| 1.008 | 1.022 | 1.028 | 1.029 | 1.027 | 1.021 | 1.013
10xrg™ | 0.6687 | 0.8601 |0.94220.9836| 1.006 | 1.020 | 1.028 | 1.033 | 1.036 | 1.038 | 1.0395

TABLE II

Theoretical moments, experimental moments, and unexpanded theoretical ratios for the 23S, charmonium
channel. The fit parameters are AxG = 200 MeV, g, = 0.02266, ﬁ: = 1.2847 GeV2, G = 0.003338 GeV*

n 1 2 3 4 5 6 7 8 9 10 11 12

107+ x M(?) | 3.943 | 2,612 | 2.237 [ 2.118 | 2.113 | 2.177 | 2.288 | 2.434 | 2.620 | 2.841 | 3.098 | 3.388
10" 2x M, |3.936 {2.597 | 2.208 | 2.069 | 2.033 | 2.052 | 2.098 | 2.157 | 2.222 | 2.28]1 |2.323 | 2.332
10"*2x MS*P | 3.831 | 2562 [ 2.203 | 2.076 | 2.042 | 2.055 | 2.095 | 2.153 | 2.224 | 2.304 | 2.391 | 2.486
10xr{? 0.6623| 0.8565, 0.9470| 0.9977, 1.030 | 1.051 ; 1.064 | 1.076 | 1.084 | 1.091 | 1.093
10Xr, 0.6597] 0.8505| 0.9369| 0.9826! 1.009 | 1.023 | 1.028 | 1.030 | 1.027 | 1.019 | 1.004

Applications: we give here only a summary of the main results, leaving a more detailed
account to a future publication. We first performed fits of the 3S; charmonium channel,
both with expanded and unexpanded ratios, trying to determine G. The fits were done
by first assuming a given value of Az between 0 and 300 MeV, then adjusting g, (unex-
panded ratios) or g, (expanded ratios) to fit r5, with the gluon condensate contribution
neglected: the knowledge of Awys and §,(@,) determines m,(m,) by Eq. (14b) ((22b)).
Finally, we adjust G to reproduce the higher moments (in practice, we used n = 8). We
took over values of a,, b, and ¢, from Ref. [6]. The quoted values of Azg refer to 3 flavors
and can be simply obtained by using 3 flavors for §, and §, in Eq. (14b) and (22b) (X,
and K, as well as all other formulas, have to be computed with f = 4, however). Fits
acceptable within experimental errors® were obtained up to n =10 for 0 < Az
< 300 MeV, G decreasing with Az, Agg = 0 (i.e., neglect of all perturbative corrections)
being compatible with Ggyz =~ 0.012 GeV?, and Ay = 300 MeV being compatible with
G = 0. Fitting other channels however restrict Agg to the range 150 MeV <
< 250 MeV and require G # 0 (sce below). As an example we give the fit for
Az = 200 MeV using expanded ratios (Table I) and unexpanded ratios (Table II).
One should note the following features:

() For 150 MeV < Az < 250 MeV, G turn out to be in average a factor of 3 smaller

3 We used data from Ref. [7].
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than Ggy. For unexpanded ratios, this is partly due to the use of a larger value of the
effective coupling &, = 4ng (Azg = 200 MeV gives &, ~ 0.285), and partly to the use
of formulas different from SVZ. For expanded ratios, the main effect is due to the larger
value of &, (&, ~ 0.364 for Agg = 200 MeV), since the formula Eq. (22a) turns out to be
quite close numerically to the form used by SVZ. Indeed, to first order in g,, we get:

[1-d,5, 7" ~ 1-[(b,—b,)—(b,~b,-1)]6. With b,—b, = 10.73,

whereas the corresponding correction with the SVZ euclidean mass definition is:

2
x 47 = 11.09.

4In2 .

1- [—— X 41r~(b,,—b,,_1)] ¢ with
) T

(i) The purely perturbative contribution r{? for unexpanded ratios increases mono-
tonically even up to n = 12, contrary to what happens in the usual formulation, where
r® displays an unphysical maximum [7] limiting the validity of perturbation theory to
n < 8. There is therefore no sign of perturbation theory breakdown which could forbid
the use of unexpanded ratios in the investigated range of n (n < 10).

(i) Tt is non trivial that moments themselves are satisfactorily reproduced, whereas
no moment has been used as input in the fit with unexpanded ratios.

(iv) The fits with expanded and non ¢xpanded ratios are consistent with each other,
in the sense that the fit parameters (m,, g,) and (m,, g,) satisfy the relations expected
theoretically between them. Indeed, frcm Eq. (13a) one expects:

{—ﬁ—f _ (_é_l)“/ﬂl
AN
and from Eq. (13b) (neglecting the 2-loop contribution):

= KZ—-Kl = 9.984

1 1
e @2

whereas the fitted parameters are found to satisfy the relations:

=2 = \71/81
(1_"_—;> = 0.7910, (ﬁ> = 0.78965
m3 /eie @2/it

1 1
(?— — '_—) = 9.624.
€1 €2/i

We find this agreement non-trivial. Furthermore, both fits yield similar values for G,
differing only by 50%.

Predictions for other channels: with the parameters m, , and g, , for unexpanded
and expanded ratios determined in the 3S; channel, we can deduce the corresponding

and
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parameters (m, ,); and (@1,2)s in the channel J by the one-loop formulas (see Eq. (13)):

~ - 01,2
(QI'Z)J 1"[(K1,z)J“K1,z]é1,z ’
5 71/81
(3 ,2)s = (My,2) [(Q_—’-&] , (26)
1,2

where symbols without the subscript J refer to the 38, channel, and G is taken the same
in all channels. The mass m,; of the lowest lying resonance in channel J is estimated as
usual from the J channel ratios r; by m; < (ry ma) '/ Values of (a,),, (b,), and (c,), are
taken from Ref. [6], except for the pseudoscalar channel, where we used values from
Ref. [8] for reasons explained below. We proceed as in Ref. [9], not including any contin-
wum contribution, but allowing (rj m.,)~*/> (which is usually reached for n =~ 8-9),
to exceed the experimental value of m; by at most 30 MeV (as suggested by data in the
38, channel), to account for the contribution of higher excited states and the continuum.
The results for Ayg = 200 MeV are given in Table III. We note that all states are satis-
factorily reproduced except the scalar and pseudoscalar ones, where the predictions exceed
by about 100 MeV the experimental numbers. This fact may indicate the presence of new
non perturbative contributions affecting exclusively the 0% channels, such as direct instan-
tons [10]. We have not given unexpanded ratios predictions for all currents having non
zero anomaleus dimensions [11], except the pseudoscalar current. The reason is that their
correlation functions (hence the moments) are not RS invariant objects, since they depend
on the operator RS convention used for the current. The way out consists in factorizing
out the unphysical RS dependent part of these currents in MS scheme using the “RG
invariant operators and Green’s functicns” introduced in Ref. [4], which cannot be done
on the basis of the results of Ref. [6] alone, since the currents there are not renormalized
by minimum subtraction. Note that the RS dependence is contained in an overall factor
which cancell in ratios r;, which are indeed RS invariant. This problem can be circum-
vented for pseudoscalar and scalar currents, since their MS anomalous dimension is closely
related to the running mass anomalous dimension in MS scheme. Indeed, the relation
0,J; = 2micysc, where J, is the charm axial vecior current, shows that mcysc is a RS

TABLE III

Experimental and theoretical masses (in GeV) of the low lying charmonium states, for Ayg = 200 MeV

State Experiment Expanded ratios Unexpanded ratios

P, 351 3.535 3.545

3P, 3.56 3.561

p, 3.533

1So 2.98 3.083 3.078

3P, 3.41 3.500
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TABLE IV

Experimental and theoretical perturbative ratios and moments for the 3S; bottonium channel, for

A%‘ = 164.4 MeV. The fits parameters are g, = 0.01756, m} = 17.75 GeV? (expanded ratios), and
g1 = 0.01521, m? = 15.235 GeV? (unexpanded ratios)

n 1 2 3 4 5 6 7 8 9 10 11

102 xry, 0.6037| 0.8037/ 0.9045| 0.9652( 1.005 | 1.034 ! 1.055 | 1.071 | 1.084 | 1.094
(expanded ratios)

10% x rpxP 0.6089( 0.8116} 0.9111|0.96895| 1.006 | 1.031 | 1.049 | 1.063 | 1.073 | 1.080
1037 x M, 0.3325] 0.2010} 0.1616] 0.1460, 0.1407! 0.1412} 0.1456] 0.1532] 0.1637; 0.1768] 0.1928
102"“><M":xp 0.3229 0.1966| 0.1596| 0.1454| 0.1409| 0.1417| 0.1461| 0.1533| 0.1629; 0.1747{ 0.1888
102 xr, 0.6046] 0.8036 0.9037| 0.9636] 1.003 | 1.031 | 1.052 | 1.069 | 1.080 | 1.091
(unexpanded ratios)

invariant quantity with no anomalous dimension. For the pseudoscalar state, we worked
with moments of 9,J;, following Ref. [8]: the corresponding values of b, differ by an
n-independent constant from those of Ref. [6]. We also note that anomalous dimensions
give a different asymptotic continuum behavior to the various currents: as Q2% - oo,
the renormalization group tells us that Im ,(Q?) ~ [a,(Q?)]~/#* where y,is the J current
one-loop anomalous dimension. Hence, as Q? —» oo, Im 7,{Q%) — 0 for S, and 3P,
currents (which have y, < 0), while Im 7,(Q?) — oo for 3P, and P, currents (which have
vy > 0), and Im n,(Q?) — const for 3S,; and 3P, currents (which have y; = 0). These facts
should be taken into account in a careful treatment of the continuum contribution to the
moments.

Application to bottonium: we e¢xpect the gluon condensate contribution to be com-
pletely negligible for bottonium. It is therefore important to check whether a reasonable
fit can be obtained using only the perturbative contribution. With the 3 flavors Ags
assumed to be 200 MeV, one easily determined the corresponding value for 4 flavors

to be: A{,s:“ = 164.4 MeV, just using 4 flavors for f, and f, in Eq. (22b) (a similar value
is obtained from Eq. (14b)). With this value of Ayg we fitted data as quoted in Ref. [12]
using Eqs (14) and (22), but adjusted the continuum threshold E; = 10.80 GeV to get
agreement with the sum rules (a similar idea has been used in Ref. [13]), since the moments
are rather sensitive {14] to the value of E;, which is poorly known experimentally. In
effect, we therefore performed a 2 parameters fit (g,,, and Ey), but we did not try to get
the best fit. The results are given in Table IV, and show a satisfactory fit can be obtained
both with expanded and non expanded ratios (the main reason why our result for expanded
ratios differs from that of Ref. [13] is that we use a larger value for the effective

&, @, ~ 0.2207, which follows naturally from the data and the value of Ag,—:“). We can
check again the consistency between expanded and non-expanded ratios, since we get

m% 21 y1/B1 1 1
:—2) = 0.8583, to be compared to (_—) = (0.8608, and (_— - _—) = 8.7986,
M3 /i 22 /13 @: @2/t
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to be compared to K,—K, = 9.186 (for f = 5). Since B, < 0 for f = 4, 5, inclusion of
2-loop term of Eq. (13b) makes agreement even better both for bottonium and charmo-

1 1
nium, since one expects (—_—— - :-) < K,—K, for B, <0 and g, < g,.
Q1 @22
As a last remark, we note that the present formalism can be easily extended to the Q2
2

ds
dependent sum rules of Ref. [11]: M, (&) = Jm Im n(s), ¢ = 4—Q— , or to the
m

mZ
exponential moments of Ref. [15]: F(w) = [ e-@s/m* Im n(s)ds, = om?, where m = any
fixed mass (for instance : pole mass). Note however the definition of the variables £ and w,
hence of the moments M,(&) and F(w), depend on the definition of m. As stressed in
Ref. [11], it is interesting to test the &-stability of the M,(£) sum rules predictions away
from ¢ = 0, which could also help solving [16] the problems caused by the large power
corrections found in Ref. [17].
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