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We review some recent work on quarkonium and discuss in particular how naive
models can be improved to include nonperturbative quark loops phenomenologically using
the unitarized quark model. We argue that such nonperturbative loops which are required
by unitarity and finite widths play an important réle in shifting hadron masses by up to
100’s of MeV, generating considerable resonance mixings and higher Fock space (multi-
-quark) components in hadron wave functions. Many effects currently often ascribed to
gluon exchange alone can also be described by quark loops. Allowing for a smaller &5 in bound
states nonperturbative quark loops could e.g., resolve the puzzle of absence of the L - §
term in baryon spectroscopy. Even for the heavy upsilon states the mass shifts are as large
as up to 80 MeV — and in particular the 5S mass, being above the BB threshold provides
a sensitive test to these ideas.
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1. Introduction

“The difficulty of physics is to see its simplicity”

The quark model of hadronic particles is only twenty years old [1-3]. During these
years high energy physicists have gathered a strong coliective conviction that the hadrons
are built from quarks bound together by gluonic forces. Thus although the quarks in the
very beginning were met with skepticism, and although they never have been seen as free
particles, they are by now very well established.

In the meantime our understanding of strong interactions has undergone something
of a revolution. In ihe sixties and early seventies no respectable author would have claimed
that we have a good theory of sirong interactions, in spite of the many successful models,
mechanisms and phenomenological analyses of data that were then introduced. Today
almost the opposite is irue; many authors believe that the fundamental dynamical theory
is that of quarks interacting through coloured gluons as prescribed by QCD, in spite
of the fact that very few and only qualitative “QCD inspired” tests can be made. Because
of the complexiiy of the theory and in particular because of the problem of confinement,
which generally is put in by hand, a irue QCD solution for evaluating the mass spectrum
of hadrons is not feasible at present. Therefore present attempis to understand e.g. hadron
masses really rely on guesses or héuristic arguments of what the authors believe to be the
dominant effects.

Thus most present theoretical hadron speciroscopy is based upon QCD inspired
generalizations of the effects well known from the hydrogen atom; only the parameters
and ihe form of the potential is different. For heavy quarks at least this seems to be a good
first approximation to the actual situation. But, with a few exceptions, current models
neglect the unitarity effects, which must be present in any theory, and which already in
the early days of the quark model were believed to be crucial [4-6].

Through unitarity one introduces loop diagrams to be added to the hadron mass
matrix. In terms of QCD this means quark loops. These can be divided into two classes:
(i) perturbative quark loops which, when neglecting quark masses, can be summed and
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absorbed into a runmning coupling constant and (i7) non-perturbative quark loops which
depend on details of threshold positions, hadronic wave functions etc. The latter effect
gives rise to s-channel cuts in the mass matrix, with the associated finite widths of resonances
corresponding to second sheet poles. These cuts are nearby singulariiies, which through
the associated dispersive (real) parts contribute 10 hadronic mass shifts of physical hadron
masses. Such mass shifts must thus be present in any theory, including the true QCD solu-
tions.

To include these mass shifts in an actual calculation is a complicated and laborious
matter indeed, which necessarily involves some phenomenology relaied to hadronic form
factors or wave functions. Therefore they are often neglected hoping that they are not
very large.

The following simple and almost model independent argument shows, however, that
they should be large: typical (OZI allowed) hadronic width is 2 100 MeV for a resonance
lying 2 100 MeV above the first threshold (e.g. A — Nm). Le. the variation in the imaginary
part of the mass matrix (M) with energy (\/s) is about 0.5 above threshold:

1

\/_( Im M(S)) l,—-m ~ 0.5. (1.1)

Below threshold, on the other hand, Im M vanishes. Disregarding *“pathological models”
(which might be invoked for an individual resonance, but hardly simultaneously for a whole
SU6 multiplet or for a group of radially excited states like the upsilons) the real part should
near threshold, because of analyticity, on the average have a similar variation with
energy:

(Re M(s))| = 0.5. (1.2)

o

This implies a large dependence of the mass shift 4M on resonance position. E.g. a state
near threshold can be shifted by &~ 50 MeV more than a similar state & 100 MeV below the
threshold. Since we must add the contributions from many different tnresholds the total
relative mass shifi can be larger than this. Thus one is led to hadronic mass shifts of the
same order of magnitude as the typical SU6 breaking in the hadron mass spectra. Clearly
they cannot be neglected; they could even be the dominant effect.

A few words of caution should be mentioned: For a single isolated resonance a mass
shift can always be absorbed by renormalization into the bare parameters of the theory,
in particular into the definition of the “bare mass”. Then of course the mass shift loses its
meaning; or alternatively models can be built where a mass shift is small or vanishes. On
the other hand in the explicit models we discuss below the overall shift (4 M) will generally
be quite large (up to 1 GeV! for light hadrons and even ~ 70 MeV for upsilons) and will
depend on details of the model (in particular the hadron size giving the effective cutoff).
The over all mass shift is however not very interesting since it can always be absorbed into
renormalized quark masses. Therefore the effect on mass splittings (K*—K, A—N, T(NS)
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d
~Y((N—1)S) etc.), which effectively depend on the derivative —= (4M) is much more

d\/s
interesting and much less sensitive to such details. Y
In the following we shall first shortly review in Section 2 the experimental situation
and comment on current models, which generally are not unitary. In Section 3 we discuss
some simple analytic properties of perturbative fermion loops in QED and QCD and in
Section 4 we discuss the 3P, modei for hadron decays. Sections 5-6 are the central sections
of this paper. In Section 5 we discuss how to uniiarize the quark model, i.e. how to include
phenomenologically the quark loops. In Section 6 we compare with experimental data.
Some of these results have also been published previously, for light quarkonium see Refs
[7-12], heavy quarkonium [13-15] and baryons [16-18]. Finally in Section 7 we make
some concluding remarks.

2. Comments on the experimental situation, naive potential models, “soft” and
“quenched” QCD

2.1. The experimental quarkonium mass spectra

Let us first review shortly the present experimental situation and some conventional
models where unitarity effects are neglected. The well known 1S and 1P wave light and
cc quarkonium states are shown in Fig. 1. The naivest model of simply adding constituent
quark masses (m, & my ~ 380 MeV, m,—m, ~ 125MeV and m,—m, ~ 1100 MeV)
is very crude and works only for the vector mesons (and reasonably well for the tensor
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Fig. 1. The experimentally known 1S and 1P light and charm quarkonium states. Missing from complete
multiplets are the ss 1+ state (H') and the charmed, (cu, cd and cs) P wave states as well as the cc 1+~ state
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mesons if m,, my are increased). However, such a quark counting model is still useful
as a simple reference model since it is convenient to discuss the actual deviation from such
a simple model. We note in particular: (i) the I = 0, I = 1 degeneracy is broken and that
sometimes the isosinglet is heavier (0—, 1—, 1**) and sometimes the reverse is true (2,
1+), without any obvious systematic reason, (i7) the lighter the meson the larger are the
deviations from the naive quark counting model; in particular the effective strange-
-nonstrange quark mass splitting and the deviation from ideal mixing increases with decreas-
ing meson mass, (iii) the axial strange mesons Q,, Q, are, due to SU3 breaking, nearly
45° mixtures of the naive states, (i) the light scalar mesons behave anomalously; the ss state
(S(975)) is much too light, the su state (x(1350)) is much too heavy and the ¢ is a broad
structure with large mass while the & is much narrower than SU3 would predict.

In heavy quarkonium the flavour multiplet structure is less interesting, but instead
we have many radial excitations. For the upsilons we have three 1-— states below the BB
threshold and three above. This is of particular interest to our model since the BB etc.
threshold effects can be studied in detail.

For a detailed recent review on experimental meson spectroscopy see Ref. [19].

2.2. “Soft QCD”

Before we embark on the discussion of quark loops and unitarity effects, let us shortly
review current models which neglect these effects. The most detailed such model is perhaps
the “soft QCD” (cf. Ref. [20]) which is essentially a generalization of the highly successful
model for the hydrogen atom to quarkonium. For some recent reviews see Refs [21-22].

In the soft QCD framework one solves a (single channel) Schrédinger equation

Hy = (Ho+V)y = Eyp, @1
where H, is a nonrelativistic kinetic term
2

p
H, = E + —, .
0 my; 2m, 2.2)

i=0

and the potential contains four terms:

Vifp, 1) = Hip™ + Hi°+ Hi, + HY, (2:3)
in which H* is a conventional linear plus Coulomb-like potential with running o,:
A Al
HS™ = — (C+br—- (')) (- -—’) 2.4)
r 4
and H™® in a conventional hyperfine splitting term
oa(r) (87 .. o
HYP = 220§, 8.8%r
ij mimj { 3 J ( ij)
1 3§i';‘j§j';u - »]} lilj
+ 5|2 =8+ 5; It —, 2.5
r?j [ rizj i i 4 ( )
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where the first term is the contact term and the second the tensor term. The spin-orbit

term has the form,
e /1  1\/S S\ - A4
r; \m;  om;/\(m; m;, 4

12 J

-

1 8H*™ (S, §;\ -
(5 + 1) L 26)

m my

27','] 6rij

and the last term H* in (2.3) is a phenomenological quark annihilation term introduced
in order to take into account the annihilation of the flavour singlet siates into gluons. One
also needs another phenomenological term for the n, 7’ states to allow for the U(1)
anomaly.

Isgur and Godfrey [20] present impressive fits using such a model claiming that all
mesons “from the pion to the upsilons” can be understood. We believe this to be over-
-optimistic. One has 1o bear in mind that, although the number of free parameters is not
very big (quark masses, slope parameter b, a, C, A, parameters for the annihilation H* and
for the anomaly, and some smearing etc. parameters related to relativistic effects), some
of these are not well understood. In particular the large value of o (s) at small s-values
(of order unity) makes the one gluon exchange picture dubious. In addition the spin-orbit
term, which must be present by self consistency is much too large (by ~ 10 times) when
fitting the baryons. Also the signs of the annihilation terms are not well understood. With
transverse gluons and no light giueball siate the gluon anninilation graph should always
shift the flavour singlet state down in mass, which is in the wrong direction for the 0, 1—,
1+ multiplets. The latter difficulty might be overcome by having one of the gluons instanta-
neous [23], but no rcliable such calculation giving all signs of I = 0 and I = 1 mass splittings
correctly has been presented (cf. the discussion in connection with Fig. 1 in the introduction).
We return in Sec. 6.3 to how this problem is solved in the unitarized quark model.

2.3. Lattice calculations and *“quenched” QCD

By discretizing QCD in Euclidean space-time on a latiice some ambitious attempts
have been done, which try to calculate hadron masses directly from fundamental principles
(sce e.g. the review by Schierholz [24]). Essentially all calculations so far have been done
in the quenched approximation, that is without fermion loops using the Wilson action.
Such calculations claim a light 0+ glueball ~ 770+40 MeV, which is very difficult to
accommodate with present data on the nr S wave phase shift [25]. The glueballs of other
J¥ are predicted heavier than 1.4 GeV, always heavier than the lightest known qq states.

For qq states the quenched lattice calculations give reasonable values for @, A,, and
N masses but the € is too light (660+ 50 MeV). (The nr phase shift can be understood
with a broad €(1300) and narrow S(975) without the “old” £(700).) In general the quenched
approximation has the failure of predicting a 7 = 0 and I = 1 degeneracy, which is bad
for in particular 0"+ and 0~ states. Also the A—N mass splitting seems to be too small:
{A-N)/N = 0.12+0.5 [26].

In short the qq spectroscopy on the lattice is in its infancy and it probably will take
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a very long time before reasonable results including the fermion determinant from quark
loops can be calculated.

In the meantime a perhaps more promising approach is to first calculate the qq poten-
tial on the lattice and then use this potential as an input to conventional qq spectroscopy
(Sec. 2.2), and adding quark loops along the lines we discuss in this paper. Recent calcula-
tions by Stack and collaborators [27] using a 123 x 16 lattice in a 2° array of parallel
microprocessors found a potential which can be very well parametrized by a linear plus
Coulomb term (see Fig. 2).

o
-~

»
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X

Fig. 2. The potential between two heavy coloured sources as calculated in quenched lattice QCD (Ref. [27])
aS

V() = — = +kr, @7
r

while e.g. a logarithmic potential seems excluded. Unfortunately it is not easy to extract
the two parameters «, and the string tension parameter k from their results since the scales
are not well defined without phenomenological input.

24. QCD sum rules

Much impressive theoretical work has been done on the QCD sum rules initiated by
Shifman, Vainshtein and Zacharov [28-29]. For a review see Reinders lectures from last
year [30]. It has much theoretical appeal since in principle it aims at predicting hadron
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masses directly from the QCD Lagrangian with only a few condensate parameters and
quark masses. Unfortunately this approach failed to predict the correct mass of the y, and
is essentially limited to the first radial excitations. But, in principle quark loops are here
included at least in an average sense.

The lack of a simple bridge betweeri the QCD sum rules and the phenomenologically
highly successful potential models for heavy quarkonium is disturbing. Bell and Bertlmann
{31] have continued their efforts to find such a bridge and conclude that the potential which
best fits the sum rule results is proportional to the fourth (!) power of r, and that it is flavour
and mass dependent. This is in strong disagreement with conventional quarkonium models.

3. Perturbative fermion loops in QED and QCD

In this section I shall discuss some rather elementary analytic properties of fermion
loops in QED and QCD. Apart from the importance to understand these for their own
sake, they are instructive in order to understand the behaviour of the mass shift corrections
discussed later in Sections 4-5.

3.1. Lepton loops in QED

Let me begin with discussing the vacuum polarization in QED using a language
similar to that we use in ““unitarizing the quark model”. In fact 1 believe this is a very
physical approach which is intuitively very easy to understand. It is related to the Kallén-
-Lehmann representation of 2-point functions. We first calculate the width of a virtual
photon to a lepton pair using standard techniques,

L1 2
15 = (2n)2Jdsz|M| : 3.1)

where
4¢* 2m?
IIM|* = } e*aL(py, p2) = '-g— s (1+ '—s—) (3.2)
in which L, is the lepton tensor

4Luv(p1: Pz) = TI' [(“p’l +m1)yu(,p’2+m2)7v] (33)

and R; two-body phase space

1- —. (G4

Then

o T 4m? 4m?
c=m e — [l — 24—, 3.5
Js 3n 2\/ s (+ s) 33)
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where the + comes from averaging over three initial spins. In the last factor the 2 comes
from the two transverse polarizations and 4m?/s from the longitudinal polarization. Let

us define:
Ten II(s) — I's) 1 %)\/1 4m?> 36
m (S)——"‘-:/‘;-—-—<+s -“T, (a)
Re n(s)z—l-sjf—lff—fs—)d '+ 11(0), (3.6b)
T s'( )

and a photon ‘‘running mass™:
ml(s) = sI(s) = s Re II(s)—il \/5, 3.7

which vanishes for s = 0 (by consiruction) as it should in order 1o maintain gauge invari-
ance. Conventionally one generally instead of a running photon mass absorbes the s depend-
ence into a running coupling constant a(s). That is we can sum the fermion loops in the
photon propagator (Fig. 3) by renormalizing o:

%o oo a(s)
B s—mf,(s) - s (3-8)
where
%o
ofs) = — 3.9
- 3 I1(s)

T >0 oo

fermions

Fig. 3. The renormalized photon propagator obtained from summing graphs with charged fermion loops

Lamb sf-ﬂ
s slope

30
2 i
Rell(s)-3 ]

i i 1

Fig. 4. The QED vacuum polarisation function (cf. Egs. (3.6)-(3.7) and (3.10)) as a function of s/m?




512

It is instructive to look at a plot of the function II(s) (Fig. 4). Its imaginary part is
proportional to the phase space modified near threshold by the piece from the longitudi-
nally polarized photon. The real part vanishes at s = 0 (I1(0) is absorbed into &, by renormal-
ization) and it has a square root like behaviour below threshold. On the other hand above
threshold it is nearly linear and for large |s] it approaches a logarithm. More precisely the

analytic form is:
1(, 4m? 2m? 4m?
Rell(s) = — <53+ — — {1+ —} j1— —
4 s s s

xIn

- 2
1+y/1—4m /_s}’ 3.10)

1—/1=4m?s
for s > 4m? and s < 0, while for 0 < s < 4m? replace the logarithm by

arctg V4m?[s—1.

For large |s|] ReIl(s) has the often quoted logarithmic behaviour:
1
Re II(s) = — In (s/m?), (3.11)
n
while for very small |s]

RelI(s) & — — —s. (3.12)

1
St m

This small s limit is relevant for the QED correction to the Lamb shift and is found in any
text book on QED.

Ly © - Y0 1000 d
[’ QED | ™
= l =
¢ Z “"”O_““ .~ ¢
-5 : ! Rell TT o
- & e
-3 ImT
= 2 2
e'e”
B ™1 J
Py o]
E/MeV
A ST, S 1% . S ]
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Fig. 5. The QED__vacuum polarisation function taking into account (a) the ete~, w*u~ and v+ thresholds,
(b) the uu, dd, ss and cc thresholds (using the first OZI allowed threshold as threshold value)

For our purpose it is rather the behaviour near s = 4m?, with the pronounced cusp,
which is the most interesting. The same behaviour appears in S-wave hadron loops (for
higher partial waves the cusp is smeared out somewhat).

With several thresholds there will obviously be one cusp for every threshold as shown
in Fig. 5a for the e*e-, ptp~ and 1~ thresholds. If we consider the quark thresholds we
get the curves of Fig. 5b, and thus the QED II(s) function is a sum of Fig. 5a and 5b.
There is an ambiguity as to what quark masses one should use, since really each quark
threshold should be replaced by a sum over many hadron thresholds. As effective quark
masses ‘‘constituent quark masses” are perhaps the best choice.

3.2. Quark loops in QCD

In QCD the perturbative quark loops are quite similar to those in QED apart from
a color factor, a larger o, and different couplings to quark flavours.

In Fig. 6 the quark loop contribution to II(s) is plotted (normalized such that each
threshold increases Im IT(00) by one unit). The exact position of the thresholds are not
well defined (in Fig. 6 we used the first OZI allowed theeshold), since it is not clear what
quark masses should be used. Really each quark threshold should because of confinement
be replaced by a sum over many hadron thresholds. Such “hadronization’ involves non-
perturbative effects, which, however, should be small if one is far from the threshold
regions.

In addition to quark loops the gluon loops contribute a piece of opposite sign to I1(s),
which reverses the sign of Re IT(s) and makes the theory asymptotically free. For s » m?
one finds the usual expression:

1
I(s) = — — (11-2ng) log — = —foIn —, (3.13)
4z m m
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Fig. 6. The quark contribution to the QCD vacuum polarization function (using the first OZI allowed
threshold as threshold value)

where n, is the number of flavours. Thus one gets the well known running o,:

o, s\
a(s) = —— = (ﬂo In P) , (3.14)

1 +asﬁo ln _2
m

where

1
A* = m? exp(— )
asﬂo

By using the running o, in the one-gluon exchange potential (cf. Fig. 7 and Ref. [32])
one includes perturbative quark loops corresponding to rather distant (#~channel) singulari-
ties.

Much more important are the nearby s-channel singularities (cf. Fig. 8a, b) where
the quarks can recombine to form physical hadrons in the s-channel. Such singularities
are not included, even in an average sense, by a running «; in the Coulomb potential.
We refer to these as nonperturbative quark loops. To calculate them we need a model
for hadron three point functions. Such models necessarily involve hadron wave functions
or form factors, and we must invoke some amount of phenomenology. Fortunately most
of the phenomenology we need is fairly standard, and for hadronic vertices the 3P, model
has been successfully shown to work for numerous hadronic decays.

Py

[11111%)

+ --(O-- +..

Fig. 7. The perturbative quark loops modifying the one gluon exchange potential through a running a, ()]
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Fig. 8. Diagrams containing s-channel quark loops (a) which when summed, including nonperturbative
contributions, contribute to the s-channel cuts described by intermediate two body (or multibody) hadron
states (b)

4. Hadron widths and the 3P, model

As a first step in order to develop a unitarized quark model including the nonperturba-
tive quark loops of Fig. 8 we need a model for hadronic three-point functions to be used
as an input in the dispersion relations.

We use the 3P, model which includes most conventional internal symmetry relations
and which has successfully been applied to various hadronic decays. It originated from
some early intuitive ideas [33, 34] on quark pair creation (Fig. 9). A hadron decay is assumed
to proceed in a two-step process. The creation of a quark pair in a 3P, state and with vacuum
quantum numbers is followed by a rearrangement of quarks to final hadions. In particular
the Orsay group [35] have developed this model into its present form.

Jg=$S
B B8 B
Lg=0
Q
A o
_.a
TA=LA"§A
J =S¢
CLc=0

Fig. 9. Hadron three-point function described by a quark pair creation in a 3P, state and vacuum quantum
numbers followed by a rearrangement of quarks into final mesons
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For quarkonium this model factorizes into a flavour factor, F, g, a spin-angular~
-momentum factor S, 5c, and a spatial overlap, I,, multiplied by an overall constant the
quark pair creation strength parameter ygpc = 3.3 as given by the formula

{BCIT|4) = yqec 2, <11, m—m|00)

F 45cS pclm(ABC), 4.1

where {11, m —m|00) is a Clebsch-Gordan coefficient for coupling the P-wave of the
pair to the quark spin triplet.

4.1. The spatial overlap I,

The spatial overlap I,, is given by the overlap between three qq wave functions of the
hadrons involved and a function 97 =g, - k J3/4n describing the P-wave qq pair:

1,(ABC) = L [ dg® ["(ky—q) x pu(ks+ D ¥s(— D) c(@)- (4.2)

This overlap has the nice features that for a pointlike particle B (or C) it reduces to con-
ventional particle emission models including a “‘recoil term” (cf. Ref. [36]). It also automati-
cally avoids double counting. For our purpose one obvious but important feaiure is that
it gives an exponential cutoff for large decay momenta ky. This is related to the finite size
of hadrons as described by the wave function y, etc., and will ensure that any hadronic
mass renormalization from a given channel is finite.

It is also instructive to note that in the special case when the decay products Band C are
much larger than the decaying hadron A4, the overlap is simply:

I(ABC) o &, - kpy(ks), (4.3)

i.c.it is given only by the wave function of the decaying hadron multiplied by the #T factor.

. T . . JS T(nS) -BB
2519 i 01t 55 ]
3s
, 15 ¥(nS) —~0D . 15
° 0
4S
Lo -1
r k -0k 4
s A . | 5 25 2 k{Gev/) 3
1 TGevlc) 2 3 i i i

Fig. 10a,b
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Fig. 10. Some examples of the spatial overlaps: (a) ¥(ns) DD P-wave decay, (b) Y(nS) BB P-wave decay,
(©) ¥(nD) DD F-wave decay, (d) ¥'(nD) DD P-wave decay

This is not an unreasonable approximation for heavy quarkonium decay like Y(NS) — BB,
since the bb bound states are smaller than the bu, bd, bs states. In Fig. 10 we give a few
examples of the spatial overlaps in the case of charmonium.

42. The spin-angular-momentum overlap

This factor is obtained by recoupling the spins and angular-momentum of the quarks
in meson A4 and the *P, qq pair to form instead the two final mesons (B and C) of definite
spins and parity. It is straightforward to show that this recoupling can be expressed in
terms of 9-j symbols and some Clebsch-Gordan coefficients. One finds that the reduced
widths to pseudoscalar (P) or vector mesons (V) are proportional to

3L, +1)
S2pc oc L0, 10|LOY2 - AT~
ABC < A 1 > (2L+1)
T 3 Spf[Ls 1 LY}
x L1 s s, 1 s, (4.4
=|s, 1 S:!|J. o0 J,

where the notation is defined in Fig. 9 and Sy is the total spin of the four final quarks!.
In Table I we have listed the weights as given by Eq. (4.4) (normalized such that their sum
is 12). That is if everything else is identical the widths are proportional to these numbers.

For corresponding spin factors in the case of ground state and P-wave baryons see
Refs [16] and [18].

1 'fhe symbols in Eq. (4.4) differ from conventional 9-j symbols in their normalization. See e.g.
Ref. [13].
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TABLE 1

The relative spin angular momentum weights of reduced widths to pseudosecular or vector mesons for the
lowest JPC states of decaying particle

JCP 1 PP PV+VP vV SUM
o+ 1 0 6 6 12
- 1 1 4 7 12
o+ 0 3 0 1

2 0 0 8 12
1+ 0 0 4 0

2 0 2 6 12
1+ 0 0 2 2

2 0 4 4 12
24+ 0 0 0 4

2 12 3.6 32 12

4.3. The flavour factor

The flavour factor F,pe contain the flavour symmetry, OZI rule etc. constraints. For
mesons it is convenient to use matrix notation and define the qq quark content through
flavour matrices 4

M, = izj(Aa)ij!qi(?i>r 4.5)

where a in the flavour index. As usual we define:

ui  n* K* D°

n~ dd K° D ..
4=]K> K s F ol (4.6)
cc

D° D* F
The physical flavourless states are generally mixtures of the “diagonal” states:
Ai"” = Z gl CN))
i

where the mixing matrix o is determined by the dynamics. For bound states « is a real
orthogonal (energy dependent) matrix, while for finite width resonances it is in general
a complex nonunitary matrix, which can be normalized to satisfy a& = 1.
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It is often more convenient to define the mixing matrix with respect to states of pure
isospin or SU3 quantum numbers:

4;-, = (wu—dd)/\/2, (4.8a)
41— = (wu+dd)/{/2,cc, ..., (4.8b)
A§”5 = (uu+dd +ss)//3, (4.8¢)
A3%% = —(uu+dd—2ss)/,/6. (4.8d)

The 4 matrices are normalized such that
Tr(4,47) = 1. (4.9)

For three flavours and neglecting isospin breaking the mixing matrix « can be para-
metrized by one mixing angle which is denoted @ (for pure SU3 reference states) or é (for
ideally mixed reference states). Explicitly, with the pseudoscalars and vector mesons as
examples, we define:

"\ _ 7o fOctet ) o o (S8
(n ) = RO~ 79 )<singlet) = R(p ~ 44) ((uﬁ+d3)/\/§)’ (4.102)

¢\ _  aeon fOCtEt ) AN £
(m) = ROy ~ 38 )(smglet) = R(y ~ 3 )( (a4 48] \/5)’ (4.10b)
where

R(g) = ( cos ¢ sin (p>’

—sin @ cos @
and
fp = 6p+35.3°, Oy = 6y+35.3°.

Fig. 11 summarizes graphically these mixing angles and the conventions.

®{783} nf = (uG+ddIVZ

StNGL/ET(qudéosﬂv’i

n'(958)

-OCTET™
ulisdd-255™>

Fig. 11. The mixing of physical %’ and w & states with respect to (uu+dd)/4/Z, ss and pure SU3 states
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In Eq. (4.10) 1, n' and ¢, ® are ordered according to their masses. Conventionally
one often uses the reverse order for n and n’', whereby the mixing angles decrease by 90°
(6p =~ ~11°and 8, ® —46°). Our convention is more natural when one wants to understand
the direction of symmetry breaking (signs of mixing angles and mass splittings) through
a similar dynamical mechanism for all multiplets {cf. Sec. 6).

In writing down the flavour symmetric couplings for mesons the conservation of
charge conjugation also plays an important rdle. In particular the sign of

S = C,CpC, 4.11)
determines whether we have symmetric (D-type) or antisymmetric (F-type) couplings.
For S = —1 we have only one possible flavour symmetric coupling:

Fape- = g_Tr(4,4;47)-, (4.12)

while for S = +1 we have in general five different possibilities (cf. Fig. 12):
Fasce = 8°Tr (4,47 A7)+ 8" Tr (4,43) Tr 4}
+g°Tr (4,47) Tr A +g° Tr A, Tr (47 AT)+ g° Tr 4, Tr A, Tr A]. (4.13)

In terms of SU3 direct products Eqs (4.12)+(4.13) correspond to the six times an octet
or singlet occurs in the product:

(1@8)@(1@8) =] SF@SD@Sl x 3@83 X 1@18 X 8@11 X1y (4°14)
with obvious notation. Thus Eqs (4.12)+4.13) are the most general charge conjugation

and flavour symmetric couplings one can write down assuming only that physical mesons
do not contain higher dimensions of SU3 than octets.

B B B

A a) A][jb) A]I%(?)
SRS C

B B
AD@:) AT 0&
S

Fig. 12, The quark-line graphs corresponding to Eq. (4.13)
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44, The weak OZI rule

Strictly speaking the OZI rule imposes two types of constraints on the couplings and

mixing matrices a defined above:
(i) the C-symmetric couplings g’g°g’ and g° vanish,
(#) the mixing matrix « does not mix the I = 0 states (uu+dd)/,/2, ss, cc.

The second source of OZI violation (ii) cannot be avoided. Once the OZI rule is broken
by any mechanism, and unitarity is one such mechanism, it will necessarily genera‘e mixings
of the kind (i7). However, the direct source of OZI violaiion (i) could be very small and all
OZ] breaking would be in 1the mass matrix, i.e. of the kind (i), which would be generated
through higher order diagrams. This would be similar to flavour symmetry breaking which,
as well known, seems to be dominantly broken through the mass maltrix.

As a working hypothesis it is thus useful to formulate a weak form of the OZI rule.

TABLE II

The flavour symmetry factor Egs. (4.9) and (4.10a) assuming the *“weak OZI rule” described in the text.
Meson A is assumed ideally mixed while for B and C the mixing is parametrised by s; = sin §;, ¢; = cos 6;.
The flavour quantum numbers of B and C are labelled by the symbols of pseudoscalar and vector mesons.
Note the sum rules of Eq. (4.17)-(4.20). The light quark states of pure isospin are denoted by I = Qand I = 1

. S = C4CsCc = + S = C4CpCc = —
BC\< I=1 I=0 sS cc I=1 I=0 ss cc
7%° 0 V2 0 0 0 0 0 0
o 0 V2 0 0 -2 0 0 0
ot 0 V2 0 0 +V2 0 0 0
%0 +V2¢v 0 0 0 0 0 0 0
nd +V2sy 0 0 0 0 0 0 0
KoK *o V12 +V1)2 1 0 V12| Vie ! -1 0
KOK*° V12 +V1)2 1 0 Vi | -Vip | 1 0
K-K*+ +V12 +V12 1 0 Vi | Vizl -1 0
K+K*- +V1/2 +V12 1 0 V2 | =V 1 0
e +V 2¢p 0 0 0 0 0 0 0
e +V2sp 0 0 0 0 0 0 0
ne 0 +V2cpey | +2spsy 0 0 0 0 0
o 0 + \/ESPCY —2cpsy 0 0 0 0 0
ne 0 +V 2cpsy | —2spev 0 0 0 0 0
e 0 +v/ ESPSV + 2¢cpsy 0 0 0 0 0
DD*0 +V1)2 +V1)2 0 1 Vig!l Vi o | -t
Dop*o +V112 +V12 0 1 V12 | V12| o 1
D+D*- Ve +V12 0 1 V12|l Viz| o | -t
D-D*- -V12 +V12 0 1 Vip | -V | o 1
F+F*- 0 0 1 1 0 0 1] -1
F-F*+ 0 0 1 1 0 0 -1 1
ey 0 0 0 2 0 0 0 0
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The weak OZI rule: 4.15)

All the breaking of the OZI rule is in the hadron mass matrix.

In other words the weak OZI rule assumes that any violation of the OZI rule can
be expressed in terms of the mixing matrix «. Clearly gluonic intermediate states can gener-
ate disconnected quark line diagrams which would violate this rule, but those may be
small insofar as they cannot be included in the mixing matrix a. To test this weak OZI
rule model-independently is not a simple matter. First, we must determine the mixing
matrix o (from e.g. radiative decays) and then test whether the first term in Eq. (4.13)
reproduces the observed branching ratios of hadronic decays, assuming that SU3 violations
are negligible (or can be corrected for).

In general we assume the weak OZI rule to be a sufficiently good approximation i.e.
we use Eq. (4.13) with only g different from zero. For the tensor mesons [11, 37, 38]
there are some indications that this approximation fails, but even there it is difficult to
disentangle this effect from SU3 breaking which also is present.

In Table II we list the flavour factors, for 4 flavours, obtained from

(Fapd)s = Tr (4,45 47) 4, (4.16)

in a reference frame where A is ideally mixed and the mixing of B and C parametrized
by the mixing angle & defined above in Eq. (4.10).

4.5. Completeness relations

When one sums over a complete set of SU6,, related intermediate states, neglecting
phase space and spatial overlap differences, one finds certain useful completeness relations
or sum rules. E.g. summing over all PP, PV or VV thresholds one gets equal contributions
to all octet states, only the octet-singlet degeneracy may be split. To maintain also octet—
-singlet degeneracy in the output, thresholds of opposite charge conjugation (i.e. opposite
sign S = C,CCc) must contribute with equal weighis.

The flavour symmetry gives the following contributions using Table II. For § = +

6 0 0 0 2 0 00
010 220 0 2 0 22
F4pc+Fapc+ = 0 23 8\/ ol lo o 2 2\/ s (4.17)
Be 00 0 0 0 22 2 10
and for S = —
6 0 0 0 2 0 0 0
o 2 -2J2 0 0 2 0 -2.2
zFABC—FABC-— 0 _2\/§ 4 0 + 0 0 2 2 y (4.18)
Be 0 o0 0 0 0 -2J2 -2 6
C — N —

Y Y
noncharm charm
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where the states are those in the ideal frame (I = 1, I = 0, ss, cc) and where we have
separated the contributions from the charm quark in the second matrix. As easily seen by
summing Eqs (4.17) and (4.18) one obtains the unit matrix times 4N,. By transforming Egs.
(4.17)<4.18) to the frame of pure SU3 states the 3 x 3 submatrix is always diagonal being

6 0 O 6 00
06 0 for S=+, and 060 for S= —, (4.19)—(4.20)
0 0 12 0 00

where the states are ordered such that first comes the two octet states then the singlet
states. Thus for F-type couplings the singlet decouples and is not shifted in mass, while
for D-type couplings the singlet is shifted twice as much as the octet. The same results hold
for any SUNjj,our» i.€. for just isospin (neglecting ss, cc etc.) the I = 0 decouples (by
G-parity) for § = —, but for § = + it is shifted twice as much as the I = 1 state.

For the spin-angular momentum part similar completeness relations hold. Thus from
the properties of the 9-j symbols we have:

1 1 g2
2 2 B
L 1 gl =1, 4.21)
$o52 [S4 1 St
and
'L, 1 L7
3(2L,+1
(L0, 10|Lo>14--) S, 0 S;|=1. (4.22)
(QL+1)
L,St _JA 0 JA

Thus summing over all PP, PV and VYV thresholds, again neglecting the spatial overlap
and phase space, all octet states are shifted equally. In Table I the sum rules Eqgs. (4.21)-
~(4.22) result in the same number (12) of the last column.

4.6. Comparison of the 3P, model with experiment

The 3P, model can most directly be tested by comparing with a large number of
different mesonic and baryonic decays. Various authors [39-41] have performed such
tests and found that with ygpc ® 3.4 and harmonic oscillator wave functions one can
reproduce a large number of known experimental widths, including ¢ — 7w, radial excita-
tions of psions and upsilons (cf. Fig. 13) and various baryon decay widths. Although there

Japc/ 34
18 g—msm A—on

: g/ P en _

o < 1= KR "~ DD
' 10 §~fenn 35 /2 4 Mass
06 B—wn v'—-DO Gev

Fig. 13. Determination of yqpc using various experimental widths {37}
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are a few experimental widths, which are off by up to a factor of two the over all agreement
is impressive. In fact, one should of course expect deviations since (/) SU6y, (although more
restriciive than the 3P, relations) is sometimes broken by up to 50% (ii) the hadronic
"wave functions are uncertain and (i) relativistic corrections are sometimes large.

Bui, with these reservations the 3P, model is a good over all model for hadronic decays
and we can with some confidence use it as an input to the unitarization described in the
following sections.

5. The unitarization of the quark model and nonperturbative quark loops

5.1. Non-relativistic coupled channel model

In the nonrelativistic limit the unitarization can most easily be formulated using
a multichannel Schrédinger equation. In fact the formalism can be looked upon as a general-
ization of the over 50 years old work of Weisskopf and Wigner [42] for coupling states to the
continuum.

One divides the Hilbert space into two sectors: the confined channels |}, which are
the same as the cc, bb etc. states in naive models, and the continuum channels |k>, which
are composed of two (or more) hadron states (e.g. nn, KK*, DD etc.). The Hamiltonian
can be decomposed in the following way

H = Ho Y ) o . Hopc\} confined channels
B » } continuum channels

(5.1)

Here H, is given by the usual cc or bb single channel model whose mass spectrum
(= bare mass M™°) and wave functions |/} are assumed to be known from solving the
Schrodinger equation, Holf) = MP™® |iy, in the usual way. The part H§ is assumed to
contain only the kinetic energy of the two meson channels; i.e., were it not for Hgpc no
meson-meson interaction would occur, and the states |/) would be stable (zero width)
states.

The P, quark pair cieaiion Hamiltonian Hgpc described in the previous sections
and pictured by the quark line diagram of Fig. 9, where A represents the confined state
li> and B and C form together the continuum states |k). In analogy with the Weisskopf-
~Wigner case, our full Hamiltonian Eq. (5.1) generates finite widths to the resonances
and shifts the bare masses i.e. the eigenvalues of H, by amounts 4E; which depends on
Hgpc. In addition, one finds, at the same time, the resonance mixing matrix « induced
by Hgpc such that the physical resonance states are mixtures between the bare confined
states |i>. Finally, the physical resonance states will mix with the continuum states [k,
i.e., they contain a continuum component in their wave function. This continuum represents
a muliiquark component, similar to the “qq sea”, although here always in the form of two
virtual hadrons.

The actual form of Hgpc Is not very important for the unitarization. The crucial feature
that we need is that Hopc will give energy dependent vestex functions which, due to the
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finite size of the hadrons, give an automatic cut-off in the dispersion integrals. Similarly
although our derivation is initially non-relativistic we show later that it can easily be
thrown into a relativistic form. We suppress for simplicity many indices (L, J*¢, flavour,
channels BC, etc.), which can be included in an obvious way.

Starting from the full Hamiltonian of Eq. (5.1), one can derive an effective Hamilio-
nian H*™ (or a mass matrix), wnich describes the finite width physical resonances. For
tnis purpose one uses as reference frame the eigenstates |i> of Hy, and the free eigenstates
of Hj

Hyliy = M*™i), (5.2)
Hglk) = E k>, (5.3)
and looks for eigenstates of the full Hamiltonian of the form

lyny = 3 ayli>+ § dke,(k) 1k>dk. (54)

Here the symbolic integral sign also stands for sums over the discrete variables (for example,
different channels BC) which we have suppressed. Inserting this in the full problem:

Hly,)> = M,|v,), (5:5)

one easily finds the exact relations:

(k) = Z Ay %I-I%P—Et—z (5.6)
and
(Hy—M,)a,; =0, (5.7
where

<n[HQPC|k> <k]HQPC|i>
Mn__Ek '

Hl = M5~ j (58

In deriving these relations one needs only the orthogonality relations (ilj) = d;,
Cilk> = 0 and {i[Hgpclj> = 0 and <k|quclk'> = 0 which follow from the basic form
of H assumed in Eq. (5.1).

When the resonance is below all thresholds Eq. (5.8) can be used as such. Above the
first threshold the resonance states are not stationary, and the iniegral must be interpreted
as a principal value integral. It is then appropriate 10 add an imaginary part (Eq. (5.11)
below), which describes the finite widths of decaying states.

Note that Eqs. (5.6)—(5.8) ave exact, although Eq. (2.8) loocks like a second order
perturbation term. The integrals are all finite, since Hgpc gives a natural cut-off due to
the finite size of the hadrons, described by the qq wave functions. The second term in Eq.
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(5.8) is the mass shift term and can be written:

Re IT,(E) = — <iIH°"Ci§i<ngQ"C” ? dk (5.9)
o i <ilHqpclk? <k|Hqpclj?o(k)
= - EE, dE,, (5.10)

where the latter form is obtained when the k variable is replaced by E,, whereby the phase
space factor o(E) appears.

For the case when a continuum channel is open, one introduces an absorptive part
1o the effective Hamiltonian by adding an imaginary part:

Im I1,(E) = —ilHqpclk) <k|Hqecli>@(E)H(E - E), (5-11)

whereby IT,;(E) has the proper analytic threshold behaviour containing the threshold cuts.
The Im IT;; is simply given by the widths and the *P, model. The complex mass matrix
is then:

M (E) = M{*6,;+I1,(E). (5.12)

5.2. Using unitarity and analyticity to define a more general model

At this stage it is useful to note that we can forget about the multichannel Schrédinger
equation from which we started and define a more general unitarization procedure. We can
consider Eq. (5.10) as a dispersion relation:

Im IT,(E')

dE'. 5.10

Re IT,(E) = — -—J[

Then we can actually discard the Schrodinger equation and use analyticity and unitarity
alone 10 define our mass marrix. Thereby we also make the formalism more general and
easily modified to a relativistic form:

ME(s) = (M}P"*)*5,;+ I35 (s), (5.12)
1 I Hrel

RemT3o = -+ } ol (510
T S—S

For the light mesons it is clearly important to have a relativistic formulation. Of course
the 3P, model must be replaced by a model derived from some phenomenological Lagran-
gian with a cut-off, or with some educated guess of the behaviour of Im II(s). The flavour
symmetry factor is still applicable to the relativistic generalization, while the spin-orbital
angular momentum factor can only be used as a guide to relate various coupling constants.

Below we use the relativistic notation and drop the superscript rel in II(s). The
corresponding nonrelativistic formulas are obvious.



527

5.3. The resonance mixing matrix a« and the hadronic mass shifts
The mass matrix is diagonalized by an s-dependent mixing matrix a(s)

mi(s) = (&~ (s)M*(s)(5))a- (5-13)

This mixing matrix can be normalized such that i is orthogonal, i.e. it satisfies ¢! = o
and becomes complex above the first threshold. (Note that it is not unitary above this

threshold.) We may for convenience normalize « instead such that

z Iani[2 = 19 (5.14)

although above the threshold the resonances are not exactly orthogonal in the usual sense
(cf. Ref. [43]). The eigenvalues m?(s) define the true physical masses and widths:

(MP™"*)? = Re m(5)|y= (monreyas (5.152)
m?hysryhys = —Im m?(s)]s;-(m,phys)z- (515b)

This definition differs, for broad resonances, from the position of the S-matrix poles, i.e.
the zeroes of det (M7,(s)—s), but has the advantage that it does not depend on the analytic
continuation. Therefore in principle this mass and width can be determined from data
directly.

5.4. The continuum mixing and the overall normalization

The mixing matrix a;/(s) determines the coefficients a,; in Eq. (5.4) apart from the
overall normalization, N,, which depends on both a,; and the continuum mixing c,(k)

Ay = aniNn' (5.16)

For the continuum mixing one can derive |14] in the approximation of near
diagonal a,;:

1 —Im I1(s")ds’
(k)| dk ~ N2 = | —— 222 5.1
.[IC( ) n jfmi‘imiri‘s'fz A0
Sth
Finally the normalization condition:
Y laul?+§ le (k) *dk = 1 (5.18)
i

determines N,:
N,=|1+ ! Im [1(s) ds’ o (5.19)
" n ) |mi—im,,—s'|? ’ ) ’
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5.5. Unitary multichannel partial wave amplitudes

Assuming only that the T-matrix elements are dominated by a sum of s-channel
resonances we can write down explicitly unitary partial wave amplitudes (see Fig. 14):

Typscp = Z G api(s) [(MP*)? +11, H8)—s]” YGepi(s), (5.20)

a <

b d
Fig. 14. Graphical representations of Eq. (5.20) where the blob in the propagator is described in Fig. 15

where the unitarity condition cf. Eq. (5.11) (see Fig. 15):

Im 1 ij(s) = - CXD GCD:’(S)GCD;‘(S)’ (5.21)

(13

Fig. 15. The propagator as a sum over “bare” mass term and unitarity loops (cf. Eqs (5.21)-(5.23))

and the real part of II given by
1 {ImII(s") )
Re flj(s) = — —f ——2ds'. (5.22)
b4 S§S—S
The functions G¢p; (s5) are buili from phase space and overlaps as discussed in Sec. 4 and 5.1.

k %+
Gepi(S) = 8cpi ('_C—‘) k’cF icn($)s (5.23)

NE

where g is a coupling constant and F(s) a hadronic form factor. In the nonrelativisiic
approximation the product gcp; Ficp (S)kt is given by (CD|T|i> of Eq. (4.1).

For broad resonances the shape will be significantly distorted (compared to naive
Breit-Wigner forms) as a result of (i) the s-dependence of Re II(s) and (i1) the mixing
matrix «;(s). In particular for S-wave resonances (k, € and A,) the cusps in Re II(s) pro-
duce very distorted resonance shapes {10, 12]. Then it is crucial to compare theory and
experiments with phase shifts and Argand diagrams, rather than with masses and widths.
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5.6. The Chew-Mandelstam function C(s) and the general behaviour of Re II(s)

An illustrative and insiructive example of the behaviour of Re IT(s) near threshold
is provided by a simple model where the hadronic form factor (Fi¢cp in Eq. (5.23)) is put
equal to one. This is of course unphysical since it implies point-like hadrons. For S-waves
Im 7 is simply proportional to phase space. Then one finds a Re II(s) rather similar to
the QED case discussed in Sec. 3.1, Eq. (3.10). The function II(s) is proportional to the
Chew-Mandelstam function [44] (see also Ref. [45]), which may be thought of as a “complex
relativistic phase space”. Its imaginary part is simply phase space:

Im C(s) = 2K 0(s— $) (5.24)

s
with s, = (mc+mp)* and the full funcion

€)= €5, = = 2 { = = [met moy = [(me = —<]¢

[ [(mc+ mp)’ "3]&‘*' [(mc— mv)2 _5]* ]
X In

2(memp)?

mi—-m: m mi+m? m
—-——C~——-—D—ln—-—5—--—c-i—-——~£2—~1n~—£- -1t, (5.25)
25 mD 2(mc"‘mD) mD

where a subtraction constant has been defined such that C(0) = 0, and where the square
root and In functions must be properly continued analytically from s < (mc—mp)?, when
s is above this range. The normalization of (5.25) is such that for F(s) =1 and /=0

II(s) = "’%g) gcpigepjC(s, mé, m). (5.26)

In Fig. 16 the function C is displayed with the Kn threshold as an example.

T T T T T
- CHEW-
- MANDELSTAM
B EggCTION ) i
- etk = Kot ~ImTI(s) ¢ /e A
i 01'5 1.10 Vs GeV

1 [ i 1 1 1 i i 1 i L i

Fig. 16. The Chew-Mandelstam function with the kinematics of x - Kn — «
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For nonrelativistic “complex phase space” used by Flatte [46] one simply has in the
equal mass case m¢ = mp = m:

Crr(s) = (4m*—9)¥, (5.27)

i.e. Im Cpg = 2k0(s—4m?) and Re Cyy = (4m?—5)"2 §(4m*—s). Tt differs from C(s) in
that instead of the near linear rise above threshold it is constant and it lacks the logarithmic
asymptotic behaviour.

Of course there is always the ambiguity of subtractions and that we can add an arbi-
trary polynomial, if we cannot restrict the asymptotic behaviour of II(s). In practice for
finite size hadrons the form factor F always gives an effective cut off i.e. Im II(s) — O.
Then no subtractions are needed and without singularities at infinity also Re II(s)
— comstant, where the constant can be absorbed into the bare mass.

Another simple but instructive example is the function (putting mc = mp = m):

D(s) = [(4m?—s) (4M* —5)J* + P(s), (5.28)

where P(s) is a polynomial. It has a finite cut at 4m? < s < 4M?2, i.e. M? serves as a cut
off; the “form factor” is:

F(s) = [(4M?—5)s]*6(aM* —5). (5.29)

(a)

LA S A B e 2L S0 S SN S 20t SRR B SN SNLANL B ANL N SN RILANLAR NS SN AR LI |
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-Immes 1S,
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- /
r T~ / vob -
i \\ ,h———Rens,1s ]
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(b)
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Fig. 17. Examples of the function I7(s) for (a) $(1S) - DD, and (b) ¢(1D) - DD. Because of the P-wave
decay the cusp is replaced by a smooth behaviour at threshold. The mass shift is given by the value of Re /7
and the width by ImIT at s = M2,
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The polynomial P(s) is obtained automatically when Im D is substituted into the dispersions
relation (cf. Eq. (5.10)). Alternatively it can be found by the condition D(e0) = 0:

P(s) = 2(m*+ M?)—s. (5.30)

Comparing D(s) with C(s) one notices that they are rather similar in the threshold
region. The real parts both have a square root drop before threshold and the form factor
is not very important near threshold when F(s) is a smooth function and the cut off suffi-
ciently large.

Above we assumed / = 0. For higher partial waves the k*' factor makes the cusp
vanish and instead there is a smooth behaviour at threshold. However, the general picture
of a decreasing Re II(s) below threshold followed by a rise is still applicable.

For radial and orbital excitations the form factor has nodes, hence also Re II(s)
will show oscillations. In Fig. 17 we show some examples for cc states.

5.7. The linearized UQM

In order to see analytically, without detailed numerical work, in what direction the
mass splittings and mixing go, it is useful to study a linearized version of the UQM. This
has been applied to the baryons, where the linearized model already is a rather good
approximation especially for the ground state baryons [16-17]. Simply, the linearized
UQM expands the s dependence of IT;(s), keeping only the constant and linear terms in
J/s. From Eq. (5.21)5.22) one finds with a cut off in k., approximately:

II,(s) = CXL; gicpgicol C1+ Cz(\/g‘ me—mp)], (5.31)

where the G’s are constants given by the flavour and spin angular momentum overlaps
and C; and C, are constants. Because of completeness relations when summing over
all SU6y, related thresholds the C, term gives a contribution proportional to the unit
matrix. (For mesons one must in addiiion sum over thresholds of opposite signs of S in
Eq. (4.11) in order to maintain singlet-octet degeneracy.) The interesting part comes from
the slope parameter C, (cf. the discussion in the introduction) and the dependence on the
threshold position mc+mp,.

By using this linearized form and the tables of spin angular momentum factors it is
easy to derive formulas relating a mass splitting such as A—N or K*—K to all the masses
which appear in the internal loop diagram. These are discussed in more detail in Refs.
[16-18] and in Secs. 6.3 and 6.5.

6. Comparison with experiment

In this section we discuss the most important results of actual comparisons with data,
and show how many different experimental observations can be understood as arising
from quark loops within the framework of the unitarized quark model (UQM) discussed
above. Most of the fits to data have been presented in much more detail in earlier work
[7-18]. Only the discussion of the direciion of symmetry breaking for the light mesons
has not been discussed before.
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6.1. Heavy quarkonium, cc and bb mass shifts and the upsilon (5S) mass

For heavy quarkonium the application of the UQM should be the mos: reliable, partly
because here one has the remarkably successful “naive™ potential model as a reference
model, and panly because here relativistic corrections should not be too large. Thus it is
natural to start the discussion with these, although the effects from quark loops here are
relatively much smaller, and although historically the application started with the light
mesons. Fortunately, in bb spectroscopy the upsilon (5S) mass, being just above the BB
threshold turns out to be an extremely sensitive test to the underlying ideas [15].

In Fig. 182, b we show the mass shifts for the cc and bb #3S; (J7¢ = 1) and in
Py, (" € = 0+, 1++, 1+, 2+*) states as a function of energy. Note the completely different
relative positions of the thresholds. In cc the OZI allowed thresholds are much more spread
out than in bb, and in cc only two resonances are below, while for bb three resonances lie
below the first threshold. This accounts for the different behaviour of the mass shifts AM.

In general, there are several effects which contribute to the behaviour of AM. Firstly,
below the first threshold the mass shift is always negative as a result of the positivity of
—ImII; in Eq. (5.10), and [4M]| increases as one approaches the threshold from below
(roughly as 1/(s—s,) if the quantum numbers are the same). Above the threshold AM
turns over to even positive values (cf. Fig. 17). Secondly, as the radial (or orbital) excitation
increases the |4M| also usually decreases because of the node structure. Thirdly, if the
resonance mixing (o) becomes large, it of course also affects the mass shifts. For heavy
quarkonium the third mentioned effect is small except for the w(ID)—w(2S) mixing.
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Fig. 18. The mass shifts of the S and D wave states as a function of mass for (cc) states (a) and for bb
states (b). The curves are shown to guide the eye. Note in particular the sharp increase in the mass shift
at the opening of the BB etc. thresholds
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In cc the first and second effects compete below threshold such that the second wins
and shifts y(1S) slightly more than y(2S). For bb on the other hand, the 1/(s—s,;) effect
shifts the 1S much less (—30 MeV) than the 4S (—74 MeV). Above threshold 4 M increases
both in cc and bb, but in the latter case the effect is much more dramatic since all “ground
state” thresholds are very close to each other (Fig. 18b).

This effect makes the upsilon (5S) mass a very sensitive place to test the correctness
of the above results. A naive model can easily absorb the smoothly decreasing AM below
BB into the parameters of the potential. However, then the 5S mass will be predicted to
be much lighter, more precisely by about 80 MeV lighter (as obtained if one would continue
the near linear part of the curve below threshold in Fig. 18b). Experimentally preliminary
data from the CUSB and CLEO groups at Cornell [47, 48] support this prediction. The
experimental NS—(N—1)S mass splitting sequence is thus 563, 332, 217, =~ 300!, = 150.
Any naive model would predict a monotonically decreasing sequence [48].

Since SU6y relations are built into the model, SU6 breaking in the output mass
spectrum can arise, apart from explicit conventional SU6 brcaking in the naive mass
spectrum used as bare masses, only from the very small ~ 50 MeV B*—B mass splitting
and from different spatial overlap functions. For heavy quarkonium both these effects
turn out to be very small. Therefore we get quite small contributions to the vy —n, ¥'—n,
Y—My etc. mass splittings [13]. A more detailed model including relativistic effects (and
thereby also SU6y breaking) could well modify this result especially for cc, since small
SU6y breaking in the absorptive part could easily generate substantial contributions to
the y—mn, splitting, since the overall mass shift is nearly 200 MeV. The sum of BB etc.
channels is shown in Fig. 20.
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Fig. 19. The decomposition of AR into BB BB* + c.c., B*B* and BJB{ [10]. Note that the bumps at
10.61, 10.65, 10.70 GeV do not correspond to resonances, only Y'(4S) and Y(5S) at 10.84 GeV are present

in the model. Here the mass difference of B*—B = B —B; is assumed 42 MeV (instead of 51 MeV as
in Ref. [15]). By comparing with Fig. 2b of Ref. [15] one can see the sensitivity on this mass difference



534

W st s aat i g sy

108 107 108 Vv8/GeV

Fig. 20. The contribution to R from BB etc. thresholds below 11 GeV. As in Fig. 19 B*—B is assumed
here 42 MeV (not 51 MeV as in Ref. [15])

Using the formalism described in Sec. 5.5 one can also calculate ete~ — BB, BB*+ B*B
and B*B* cross sections in a unitary frame work [15]. An important obscrvaiion is then
done that such cross sections have many “anomalous bumps” not corresponding to reso-
nances (Fig. 19). These are rather due to the opening of new thresholds followed by dips
due to nodes in the spatial overlap functions. The sum of BB eic. channels is shown in
Fig. 20.

This should be a warning to anyone who would like to interpret such a siructure as
due to new physics e.g. hybrid states QQg, gluonium eic. One must first exclude the possibi-
lity that the structure can be a resuli of the effects described above.

6.2. Resonance |mixing, continuum mixing and radiative decays

For heavy quarkonium the resonance mixing is in general rather small i.e. the matrix
o is near the unit matrix. However sometimes even a comparatively small mixing is im-
portant as e.g. in ete~ —» 28 — 1D, where the direct process ete~ —» 1D is strongly sup-
pressed since 1D nonrelativistic wave function vanishes at the origin. We found [13] this
mixing matrix element to be 0.206 +i 0.067. The mixing of 1D with the other NS is less than
0.03 in absolute value and they do contribute a little to the 1D production. The complete
mixing matrices can be found in Refs. [13-14].

Another place where small mixing is important is in M1 and El radiative decays.
Here also the continuum mixing modifies the predictions considerably through the normali-
zation of the states. The latter effect reduces the cc radiative widths by 20-30% and bb
widths by 10-209,. On the whole these effects considerably improve the agreement with
experiment, in particular the w(2S) — ¥(CPo)y, x(*P.)y, Y(2S) — %,y and Y(3S) — %,(2S)y
widths. There is however still some discrepancy in particular for the w(2S) — x(*P,)y width
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which is still too large since here the resonance mixing increases the width. Relativistic
and gluonic effects should also modify these quantities and, alhough difficult to calculate
reliably, they also tend to bring down the theoretical estimates. But on the whole we have
a reasonable good qualitative undersianding of the presently measured, radiative widihs
although theoretical uncertainties at the 209, level seem difficult to avoid.

6.3. Light quarkonium. Signs of mixing angles and mass splittings

For light quarkonium the non-relativistic model is clearly insufficient at least as far
as qq wave functions are concerned. However, as long as we resirict ourselves to the ground
states \he detailed form of the spatial overlap or the hadronic form factor F(s) in Eq. (5.23)
is not very important. We can as a first step assume it to be independent of flavour quantum
numbers and parametrize it by a cutoff parameter related to hadron size. Since light mesons
are generally believed to be roughly of same size ~ 0.7 fm, it is reasonable to as a first
approximation assume this cutoff to be independent of the meson in question. Then,
as discussed in Sec. 5 we can consiruct a model which is at least formally relativistic.

Such a model is useful in order to study the direction of flavour and SU6 symmetry
breaking. For the 0—*(P) and 1--(V) mesons this implies a kind of bootstrap, since the
nearest thresholds (PP, PV and VV) involve the same mesons. Thus one looks for self-
-consistent solutions for the lightest mesons. One calculates how much is e.g. the g mass
shifted by the nn, KK, no, KK*, go, ... thresholds and compares this with the correspond-
ing shifts of ithe other mesons. One has a set of highly nonlinear equations and it is not
simple to see what is their actual soluiion.

A calculation along these lines was presented already some time ago [8]. Some of the
theoretical ideas are in fact quite old (see e.g. Refs. [4-6, 42, 49] and our contribution
has mainly been to put all the right ingredients together and study all hadrons whithin
the same framework. If one estimates e.g. only the ¢ mass shifi due to nm, it is not very
useful since we do not know 1he bare o mass anyway. However if one relaies this shift
to other SUG6 rclated mass shifts one can find much more intercsting and reliable predic-
tions.

Since individual mass shifis need not be small and since the weigh's of individual
thresholds vary within large limits, it is crucial that one sums over all SU6y, related thresh-
olds. Then it is obvious that one solution to ihe nonlinear equations is that of exact
SU6, i.c. with degenerate SU6 multiplets as input the ouiput masses are also degencrate,
although all physical masses are shifted compared to the bare masses by the same amount
(cf. Sec. 4.5). Wirh some explicit symmetry breakirg such as quark mass differences or
V —P “hyperfine” splitting the output specirum is clearly not SU6 symmeiric, and because
of the highly nonlinear effects the actual solution can deviate substantially from the naive
bare mass spectrum.

When the mass shifts are large, it may also happen that the nonlinear equations are
not stable, i.c. a small perturbation from the SU6 symmeiric solution is enhanced by the
loop diagrams. Then the stable solution need not be SU6 symmetric, i.e. one has sponta-
neous symmetry breaking. In fact, our order of magnitude estimates of mass shifts indicate
that this in fact could be the actual situation for the light mesons. This need not be basically
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a different mechanism for the spontancous symmetry breaking, which generally is believed
to take place within QCD. Ii would only be a different manifestation of the same physics;
the complex structure of the vacuum being phenomenologically included through the hadro-
nic form factors. In fact, if one assumes that the nearby singularitics dominate the low
energy physics, and that all “low energy physics” is known from experiment, then this
conclusion almost inevitably follows by self-consistency.

In the following we discuss the application of the linearized form of the UQM to the
light mesons. Although it is clear that the linearization must be a very crude approxima-
tion (much cruder than for the ground state baryons), it is useful in order to see easily
the direction of symmetry breaking.

Using Tables I, II it is easy to derive the following weights for the various PV and
VV thresholds contributing to the pseudoscalar and vector masses:

T o 24mQ + 12KK* 4 2400 + 12K*K*, (6.1)

K ¢ 9K*n+9Ko+ 3K+ 6K+ 9 K* +18K*0 + 6K*0 + 12K *¢, 6.2)

(:‘]iz ::) o (38 g) KK*+12 (—.1/5 —;/i) )
1 =2 1 22\ v 3
4(—\/5 3/)0)0)—6-4(2\/5 8\/2>K*K*+8(f/§ ;/2>q>q>, (6.3)

o oc 4nm+2KK + 871w +8KK* +2 ngo+42 n,0+2800 + 14K*K*, (6.4)
K* oc 3Kn+3Knz+6Ko+6K*n+2Kw+4K$
+2 K*ng 458 K*n, +21K*o+7K*o + 14K *¢, (6.5)

where the shorthand notation should be obvious and where KK* stands for KK*+c.c.
We do not here consider the @ and ¢ because the SU3 singlet, even in the limit of degenerate
thresholds, is shifted differently from the octet (cf. Sec. 4.5). Therefore for ® and ¢ one
would either have to include more thresholds or introduce an explicit cutoff. The weights
in Eqgs. (6.1)«6.7) all add up to the same number (72) i.e., putting the P and V masses
equal only a constant overall mass shift is obtained.

Using the linearized UQM these equations lead to the following relations for mass
splittings and for the pseudoscalar mixing angle 0p

K—n = 3c[—5n+2K +3n3—7¢— 50+ 6K* + 601+ (m,—m,)pare (6.6)
Mm+n)2—K = 3¢[—-3n—-3n3+30+0+20], 6.7)

~2 /2 (60— 2a)+4K*+4(p)+\/ (=M Ypare
Cc

(m mu)bare

(—9K +60+204+5K* —4¢)—
12¢
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where the particle name stands for its mass, (#,—m,)y,,. is the bare strange-nonstrange
quark mass splitting and ¢ is the overall slope of the mass shift function without internal
symmetry factors. Since using very general arguments c is a positive number, we see that
part of the K—m splitting comes from the loops ard that Eq. (6.7)-(6.8) go in the right
direciion compared to experiment. The ratio of (6.6) and (6.7) (where ¢ essentially cancels)
is remarkably good for small (m,— m,)p,c.. The left hand side is 1.39 and the right hand
side varies between 1.34 and 1.54 when (m,—m,),.. varics between 0 and 50 MeV. With
the latter value for (m,—m,)y,.. the mixing angle is also reasonable (6 = 65°) not too far
from the conventional values of 79° (quadratic mass formulas) or 66° (linear mass for-
mulas).
For the p—n and K*—K mass splitting one similarly finds:

-7 = 8c[—m—2(e—w)+sin® dpn+cos® 5pn’] + effect from open @ — nw,  (6.9)
K*—K = --8c\/§ sin 6p cos p (" —n) + effect from open K* — Kn channel. (6.10)

Both these relations show that the “hyperfine” spliting V—P is enhanced by the loop
effects. As indicated in Egs. (6.9)-(6.10) the fact that ¢ —» nn and K* — Kn are open
also increases these splittings. For a discussion of this open channel effect, and with
a sensitive application to the upsilon states see Ref. [15].

We can roughly estimate the value of the slope parameter ¢ using ¢ or K* widths
(cf. the discussion in the inireduction). One then finds values of ¢ in the range 0.01 to 0.03,
i.e. consistent with the value 0.028 one would get from Eq. (6.7). Clearly these estimates
using the linearized model should only be believed as order of magnitude estimates, since
nonlinear effects are large for the light mesons.

Of special interest is, however, that such a value of ¢ is perfecily consisient with a small
initial SU6 breaking. As casily seen from Eq. (6.6) a small (m,—m,),,.. €énhances the K—n
splitting by a factor (1472¢) (m,— My )pare, in the firsi iteration of Eq. (6.6). Summing the
icerations one geis roughly (1—72¢)~ (m,— my)pare'- With ¢ in the range discussed above
we have consistency with small (n,—m,)pare. In fact one seems 1o be in the range where
the spontaneous symmeiry breaking discussed above becomes operative. An iniiially small
chiral and SU6 symmetry breaking through (m,—m,),.. and hyperfine splitiing, seis off in
the right direction, a large symmeiry breaking of the physical mass spectrum.

We conclude this subsection with one final remark already discussed in Refs. {9, 12].
This is the sign of the / = 0, I = 1 mass spliiting (0 —g etc.) and the angle measuring the
deviation from ideal mixing 8. Assuming only that the nearest group of threshclds (PP,

! More exactly, within the linearized model we can write Egs. (6.1)<6.5) in the form:
m; = m?+c2 Wi
i
where w;j are the weights discussed above. The solutions are given by the matrix (1—cw)~!, which for

sufficiently large ¢ develops a pole. This pole signals spontaneous symmetry breaking. Nonlinear effects
are important for already smaller values of c.



538

or PV if parity forbids PP) determine the direction of symmetry breaking the sign is given
by S of Eq. (4.11):

sign (m;—; —my=o) = C,CpCe, (6.11)
sign (§,) = —C,CyCc. (6.12)

For the five multiplets 0—, 1-—, 1++, 1+, 2++ this simple rule predicts 10 signs of which
9 can be tested with experiment and which all agree (cf. Sec. 2.1). The tenth sign predicts
that 6(1*-) is negaiive which essentially implies [9] that the missing H' (the 1+ ss state)
is lighter than the 1++ ss state. A similar sign rule [50] can be derived for the Q,—Qa
mixing, which is deiermined by whether the K*n or Ko threshold is lower. Again the sign
is correct. Altogether these 10 correctly predicted signs constitute considerable evidence
in favour of the hypothesis that the unitarity loops are the dominant mechanism distorting
the physical mass spectrum. In fact, these 10 signs, which have not been predicted correctly
reliably by any other mechanism of which T am aware, constituted the main motivation
and impetus for me to initially pursue this line of research and to formulate an explicit
model (the UQM) wiih which one can make detailed comparisons with data.

6.4. The scalar masses and other broad resonances

The scalar mesons cannot be discussed using the linearized model of the previous
subsection because the nonlinear effects, most notably the cusps related to the strong S-wave
decays are very large, and in addition most siates lie well above an open channel. For the
same reason the Gell-Mann-Okubo mass formulas break down when applied to the scalar
nonet.

Conventionally the scalar mesons are known to be problematic since they have a very
anomalous behaviour, not fitting into any conventional SU3 nonet. Therefore some
authors have advocated that they are 4 quark states either in a bag [51] or in the form
of meson-meson “molecules” bound togeiher by hyperfine forces [20, 52]. These suggestions
either neglect the unitarity loops entirely or use a P-matrix framework. The latter is in
principle unitary, but the way the model is formulated and interpreted physically the
SU6 breaking induced by the right hand cuts is not studied systematically. For example,
the model calculations presented do not include complete sums over SU6y, related (open
or closed) thresholds. Without such complete sums the definition of a bare mass, or in the
P-matrix model of a “primitive’” mass, becomes rather arbitrary.

The solution which we presented in Ref. [10] explains the “anomalously large”
x(1350) — 8(980) splitting as a result of the fact that the nn, KK and nn’ thresholds shift
the 8 down much more than what the k is shifted by the rather distant K= and Kn’ thresh-
olds. The S(975) Clebsch to KK is the largest and the associated mass shift is also large
explaining the anomalously light ss state. Both the 8(980) and the S(975) are just below
the KK threshold, not because of accident, but because of the sharp drop in Re IT below
the threshold. The large deviation of the ratio I'(k)/I'(8) from the SU3 value is again
at least partly understood as a result of the non-Breit-Wigner shapes of these resonances,
as already noted by Flatte [46] several years ago. Other broad S-wave resonances, in parti-
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cular the A, should show similar deviations from naive Breit-Wigner shapes. The mixing
between the isoscalar states the S and the € becomes strongly energy dependent and complex
explaining why a naive constant mass matrix, as assumed in the Gell-Mann-Okubo mass
formula, is a bad approximation for the scalar mesons.

Of particular interest is that it is possible to understand the isoscalar O0++ phase shifts
with qq states alone. There is no experimental evidence (see also Ref. [25]) for a light
glueballs (m < 1 GeV) state as present lattice QCD calculations seem to require.

6.5. Baryon mass splittings

For the baryons the relative size of the mass splittings are smaller than in the meson
case, and in the case of the ground state baryons almost all states lie below all thresholds.
This makes the linearized model especially well suited for studying the ground state bar-
yons [16].

Using the techniques described in Sec. 6.3 and a table of 3P, model internal symmetry
weights, (for the ground state these are the same as SU6y weights), which were calculated
and listed in Table I of Ref. [16] one can derive simple mass relations which are remarkably
well satisfied. Taking only into account the meson mass splittings in the loops one finds
(letting the particle name again stand for its mass):

A-N  o=2n+3n'+37
Z*-L  K*-K+in'-in’

(6.13)

*-A4 K*~K+20+2n —4n

=1 , 6.14
*—3  * K*—K+2Zn'—-%q .19

=1 (6.15)

Of these the last one can also be derived from SU6 alone [53]. The left hand side of these
relations are 1.54, 1.41 and 1.13 respectively, while the right hand sides 1.96, 1.64 and 1.00
respectively. By adding also the baryon mass splittings in the threshold position one finds
similar relations involving also baryon masses on the right hand side, which even better
agree with experiments (1.55, 1.32 and 1.00 respectively). These numbers show that it is
perfectly possible that most of the baryon mass splittings (apart from effects from
(m,—m)p,. and small hyperfine splitting) are induced by the unitarity loops. A more
detailed fit including the nonlinear effects, imaginary parts and widths has also been done
by Zenczykowski [17] with a considerable amount of success. The P-wave baryons have
also been treated within the linearized model [18] with many clearly nontrivial predictions
for the direction of symmetry breaking. One can also successfully relate the size of
the P-wave baryon splittings to those of the ground state splittings in particular the A—N
splitting. A more detailed analysis including 1the nonlinear effects and adding more thresh-
olds, involving the P-wave baryons themselves in the loops, is in progress.
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7. Concluding remarks

We have in these leciures discussed in some detail of how one can estimate the effects
of quark loops, in particular the nonperturbative quark loops, to quarkonium masses.
Traditionally 10-20 years ago, when the quark model was in its infancy, such “unitarity
effects” were considered to be crucial and dominant. Today they are often neglected or
“swept under the rug” hoping that they are not too large. In these lectures I have tried
to convince you that such hopes are in fact unfounded, and that with the large amount
of new data and theoretical input available today many, almost model independeni, predic-
tions can be made, which can be tested against experiment with remarkable success. In
particular the recently discovered Y(5S) turned out to be a surprisingly gocd place to test
the underlying ideas [15], since its mass is ~ 80 McV heavier than naive models predict.
Clearly if nonperturbative quark loops are important for the heavy upsilons they should
be much more important for the light mesons and baryons.

In the wriiten version of these lectures I have mainly commented on work which
already have been published, adding clarifying material which was not included in the
previously published papers. Only some of the most important comparisons with data
are included here. Therefore the reader should consult the references [7-18] for more
details on the fits to experiments.

Let me also conclude by referring to a few and by no means complete set of related
work (Refs. [54-65]), which like the ones mentioned above (Refs. [4-6, 42-46]) generally
agree with our philosophy. Within another context, the final state corrections to weak
and clectromagnetic decays, the work of Truong and collaborators [66] bare much in
common with our work.

I thank my collaboraiors K. Heikkild, S. Ono, M. Roos and P. Zenczykowski for
many discussions on topics included in this paper. To the organizers of the 1984 Cracow
School of Theoretical Physics in Zakopane I also wish to express my deep gratitude for
the kind hospitality and for creating the inspiring milieu during the school.
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