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The review of QCD determination of static and dynamical properties of hadrons
is given. Hadron masses, their transition constants into quark currents, meson formfactors
at intermediate momentum transfers, mesonic partial widths and structure functions at small
x are considered. A special attention is paid to calculation of static parameters of hadrons
in external fields (nucleon and hyperon magnetic moments, interaction constants with axial
currents).

PACS numbers: 12.35.Eq

1. Introduction

In the last few years we have a considerable progress in QCD in finding various static
and dynamical properiies of hadrons using the nonperturbative method based on the
assumption of existence of nontrivial (nonperturbative) vacuum expectation values of
quark and gluon fields in QCD. A great number of resulis has been obtained this way:
masses of almost all the lower hadronic states with spin s < 2 were determined, a number
of widths and formfactors at small and intermediate momentum transfers were found,
static characteristics of hadrons in external constant ficlds were calculated etc.

This approacn possesses great predictive power since it proceeds from the basic prin-
ciples of QCD, does not resort to any model considerations and exploits a very small
number of phenomenological constants.for obtaining the results. In my lectures I will
try to bring the light to the basic ideas of this method, to the main results concerning the
properties of light (consisting of u,d,s-quarks) hadrons, obtained with this method, and
possible outlooks for its development. I will dwell also on comparing these results with
those following from some models which enable one to make certain conclusions on advan-
tages and disadvantages of these models.

First, some general remarks. QCD is the strong interaction theory: even at the highest
accessible in the foreseen future momentum transfers the coupling constant «, = g2/4n
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is not very small, a, > 0.1. At not very large momentum transfers, besides perturbative
effects, there appear nonperturbative ones which excecd them. Calculation of high orders
of perturbative theory is unreal and because of divergence of the series it may be even
unreasonable. Exact taking into account of nonperturbative effects is even more unreal.
What can be expected is the development of some approximate methods. That is why neither
at the present time nor in the future one cannot expect a high accuracy of QCD predictions,
such as, say, in QED. As a rule, (wiith rare though very importani exceptions) the accuracy
of such predictions is at one or few tens of per cent. But in my opinion, ihis is not the reason
to be grieved. As not only that experiment is brilliant which has high accuracy but also
that one in which a new result is obtained with a sufficient confidence, so the reliability
of theoretical results in QCD controllable inside the theory itself is important first of all.
And this is an essential difference between the QCD and 1he model approaches where
usually one has 1o leave the framework of a mcdel to conirol reliability of its resulis.

2. Light hadron masses

The method in view which is often called the sum rule QCD method, has been origi-
nally suggested by Shifman, Vainshtein and Zakharov [1] and has been applied by them
for determining masses and leptonic widths of light mesons (g, n, A, K*) and for studying
some parameters of charmonium.

The methed is based on the following considerations:

({) in the viriuality region of order Q® ~ 1 GeV? the strong interaction consiant
o is already rather small, «, ~ 0.3-0.4, so that perturbaiive terms are small, o /m ~ 0.1
and the leading logarithmic corrections ~ [0 {Q?) In Q%/A?]" can be easily taken into
account,

(i) the nonperturbative effecis which reduce to appearance of vacuum condensates
play a fundamental role. Of the vacuum condensates the most essential are the quark
condensate density <0|qq|0>, ¢ = u, d, 5, and the gluon condensate density (0|G;}, G,[0).
Vacuum condensates in this approach are considered as phenomenological parameters
determined either from experiment or from self-consistency of the sum rules obtained.

1t is convenient to present characterisiic features of the method on an example of
proton mass calculation [2, 3] to which I now turn. Consider the polarization operaror

I(p) = i | d*xe™(O|T {n(x), (0)}I0D, (1)

where 5(x) is the quark current with proton quantum numbers and p? is chosen to be space-
ike: p* < 0, |p?|~ 1 GeV2. The current # is the colourless product of three quark fields
n = £°°4°q"q°, q = u, d, the form of the current will be specialized below. The general
tensor structure of II(p) is

(p) = pfi(P*) +12(P?)- ()
For each of the functions f{(p?), i = 1, 2 the following operafor expansion can be written:

f(p*) = ¥, C(p*) <010,°(0), 3
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where <0/0{?|0> are vacuum expectation values (v.e.v.) of different operators (vacuum
condensaies), C{’(p?) are functions calculated in QCD.

As is known, the current u- and d-quark masses entering the lagrangian of QCD are
very small — of order of several MeV, so they can be neglected with a very good accuracy,
ie. u- and d-quarks can be taken massless. Then accounting for only u- and d-quarks,
the QCD lagrangian is chirally-invariant and if chiral invariance would not be sponta-
neously broken, the function f,(p?) would be identically zero. In reality, however, the
chiral invariance is spontaneously broken in QCD. The first evidence of this is, of course,
the exis:ence of baryon masses. Anoiher signal of the chiral invariance sponianeous break-
ing in QCD is the fact that the chirality viclating density of quark condensate (0|qql0)
is non-zero. As is well known, in the low-energy limit

2m2
017q|0> = —F —"—"— = —(240 MeV)?, 4
my+my

where m, is the pion mass, f, = 133 MeV is the © — pv decay constani. The question
arises, how these two phenomena are connected and, pardcularly, if the proton mass
can be expressed through (0]gq|0). This question can be answered affirmatively and a bit
later I shall demonstrate the corresponding formula. Since (0]qq|0) is the lowest in dimen-
sion chirality violating operator, the operator expansion for f,(p?) starts from the term
proportional to <0|gq|0).

To demonstrate how the operator expansion (3) is built I present several of its first
terms, classifying the terms according to the operator dimension. The zero term of the
operator expansion with d = 0 corresponding to the unit operator is described by the graph
of Fig. 1 and has the form

Cobp* In (45/(—p*) + polynomial, &)

*Sx

Fig.1 Fig.2 Fig.3

Fig. 1. The simplest quark loop contributing to polarization operator II(p): solid lines — quark propagators
Fig. 2. The graph corresponding to v.e.v. <0[gg]0> contribution into polarization operator: circles sur-
rounded by dots mean v.e.v.

Fig. 3. The graph corresponding to v.e.v. <0|gg]0>* contribution to the polarization operator

where C, is a constant, 4, is the ultraviolet cut-off. This term preserves chiral invariance
and contributes to the function fi(p?). The chirality violating operator qg with d = 3 is the
next-in-dimension. The diagram of Fig. 2 corresponding to operator qq gives to f,(p?)
a contribution which is equal to
A2
C;p* In —; 0/gg|0) + polynomial. )
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The most essential correction in the opcrator expansion for f,(p?) arises from the four-
-quark operators gI ®g - gI' ¥g with d = 6 whose coniribution is described by ihe graph
of Fig. 3 and has the form

; CP<0igr ¥q - gr*qi0) (p/p?). ¢)

The contribution (7) s very important numerically since unlike the graph of Fig. 1 contain-
ing two-loop integration which is suppressed by the factor (2n)-*, the diagram of Fig. 3
has no such integration, so 1that C,/C,~ (2n)*.

When calculating v.e.v. (7) there is often used the factorization hypothesis according
to which in expansion of the four-quark operator product over intermediate states the
main contribution is given by the vacuum state. The argumen.s based on the 1/N, expansion
are in favour of this hypothesis (N, is the colour number, in QCD N, = 3). As can be shown
for any colourless operators O, and O, at large N,

1
0{0,0,10> = €0/0,|0} <0{0,/0> <1+0 (—&—» ) %)
i.e. in the limit N, — oo factorization becomes exact. The same considerations based on the

1/N, expansion indicate suppression of v.c.v. of nonfactorized operators comparing with
those of factorized operators of the same dimension

v.e.v. of nonfactor operators 1
~0 ®

v.e.v. of factor operators .

Relation (9) will be needed in what follows when considering magnetic moments. By
virtue of factorization and taking into account the relation

<0193(0)7(0) 10) = —1' 5°6,5<013410) (10

(a, b = 1,2,3 are colour, a, B are Lorentz irdices) all four-quark v.e.v. reduce to the
quark condensate square <0lqq|0)2.

The above three terms are basic in the operator expansion I1(p). To improve and
control the accuracy in the mass calculation other v.e.v. will be also 1aken into account:
gluonic condensate (0|(o,/n)G},G, 10, v.e.v. <0iao“v(}"/2)G"vq {0> and (assuming factoriza-
tion) higher dimension v.ev.’s <0{gql0) <Olqo,("/2)G}.q10>, =,{0lgq|0)>*, <{Olqqi0)
{O0l(a,/7)G},Gy 10>, The gluonic condensate gives a cont ribution into the chirality preserv-
ing structure fl(pz). Though its dimension d = 4 is smaller than the dimension d = 6
of the four-quark operator (7) its role in the sum rules for baryons is inessential since its
contribution is determined by the two-loop diagram ard is numerically suppressed.

The polarization operator I1(p) in QCD is calculated in this way, i.e. the left-hand
side of the desired sum rules is found. On the other hand, functions fi(s), s = —p? may
be expressed via the characteristics of physical states using the dispersion relations

1 (1
7(s) = _J n;f(p)

dp*+ polynomial. (11)
i
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It is useless to directly equate (3) and (11) because left-hand side and right-hand side of the
resultant equality contain unknown polynomials. In order for this equality to acquire
a meaning one has to apply to both its sides the Borel (Laplace) transformation [1] de-
fined as

sn+1 d n

Bref(s) = lim (— —)f<s)
B+ w,5 @ n: ds
s/n=M?=const

L exp(-— p_z Im f(p*)dp? (12)
T M? P
0

if f(s) is given by dispersion relation (11). Notice that

1 1

The Borel transformation permits to aitain three goals at once:

(1) to nullify subtraction terms;

(2) to suppress the contribution of the highest excited states compared to the desired
lowest state (proton);

(3) to suppress the contributions of high order terms in the operator expansion (owing
to factor 1/(n—1)! in (13)).

The lowest state (proton) contribution to the imaginary part of II(p) has the form.

Im I(p), = n{0lnip) <piFi0D(p> — m?) = mAR(p+m)s(p*—m?), (14)
where

Olnlp> = Anv(p), 15)

Jx Is a constant and v is the proton spinor. It is clear from (14) that the proton contribu-
tion will dominate in some region of the Borcl parameter M2 only in the case when both
QCD calculated functions f; and f, are of the same order, and the spontaneous violation
of chiral invariance characterized by the value of quark condensate has to expiain the
numerical value of the proton mass.

To improve and control the accuracy in the dispersion representation (14) one should
also take into account the highest states confribution. It is usually done by replacing
Im f{p?) by contributions of the simplest quark loops (Figs. 1, 2) starting from some “contin-
uum threshold” W.

It should be emphasized that in the sum rule method the presence of structure in.
hadronic spectra in the small mass region, i.e. the appearance of resonances separated
by a dip from the region of smooth continuum which corresponds to parton model, is not
introduced into the theory from outside but follows from existence of power corrections.

A few words on the choice of the quark current #(x). In case of baryons (unlike mesons)
even if we restrict ourselves by currents without derivatives, there exist, as a rule, several
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currents with quantum numbers of a given baryon. The choice beiween them should be
done from physical reasons in order to provide: (1) renormcovariance, (2) existence of
nonrelativistic limit, (3) the above formulated requirement (for proton) for the functions
/. and f, to be of the same order, (4) covergence of the operator expansion series within
accounted terms. In case of proton all these requirements are satisfied by the current [2, 4]

n = uCyuly,ysd® - ™. (16)

[ will present now the explicit form of the sum rules for calculation of the proton mass [2, 5]

2

114 w?
MCE, <——2) L% 4% a21° + L bMPE, ( M")

M
ma m?
—~ 1a? —I‘—/I-(;— = A2 exp (— —M_z) (17
2 x a3
2aM*E, (—-—2) + 2—8’—1-2-7 v —+7 ab = mi} exp (—m?/M?). (18)
Here
a® = —(27) {0igql0> = 0.55 GeV3, (19)
2 ) n n 4
b = (2n) <0 = GG, 0> ~ 0.5 GeV*, (20)
Vi
-8 <0 40, EY Gapd 0> = m3(0|gq|0), 1)
m2 ~ 0.8 GeV2.
The factors

2
Eox) =1—e7%, EX)=1—-e""1+x), E)(x)=1-¢"" (1 +x+ i;—)

take into account (transferred into the left-hand part) continuum coniribution,
% = 327%33, 22

the factors L = In (M/A)/In (u/A) take into account the anomalous dimensions of the
operators (A is the QCD parameter, u is the normalization point, numerical values hereafter
correspond to u = 0.5 GeV).

The proton mass m and the proton transition constant into the quark current Ay
(W is also a variable parameter) may be found from the sum rules by the best fit. Such
a fit should be made within a restricted interval of M? where, on one hand, the continuum
contribution is rather small (say, less than 50 %) which restricts M?2 from above, and, on
the other hand, highest power corrections are small (say, < 10%) which restricts M?
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from below. Outside of this interval the accuracy of the theory is noncontrollable, for in-
stance, at very large M? the lowest state (proton) contribution is hidden in the background
and the result for m and Ay depends cardinally on continuum model. I wish to emphasize that
without estimating the contribution of highest states and highest power corrections the
results obtained by the QCD sum rule method cannot be considered as reliable. The best
fit in the permissible interval 0.7 < M? < 1.2 GeV? at the chosen values of v.e.v.’s (for
discussion of their numerical values see below) and W = 1.5 GeV gives

m=1.010.1 GeV. 23)

Note that the value of m can be determined dividing (18) by (17). In doing so, a simple
approximated formula arises for m

m ~ [—2(2m)* 0jgqi0y]'> (24)

which reflects the faci that appearance of proton mass is connected with spontaneous viola-
tion of chiral invariance — i.e., with the presence of quark condensate.

The accuracy of sum rules (17), (18) can also be checked by another method — giving
experimental value of m and plotting the graphs of M? dependence of 13 from (17), (18).
As is seen from Fig. 4, the difference between 12 determined from (17) (solid curve) and (18)

-

ha(eeve

5

05 10 15 M2(Gev2)

Fig.4

(dashed curve) and deviation of A2 from a constant within the interval 0.7 < M? < 1.2 GeV?
does not exceed 10%;. Such an accuracy is natural because highest power corrections are
in this case of the same order. As a result of such procedure we find

% =2.140.2 GeV®. (25)

This value will be used in the following, particularly, in calculating nucleon magnetic mo-
ments.
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Masses and leptonic widths of meson decays and masses of other baryons are calcu-
lated analogously. Without dwelling on details I give the results of the calculations (Tables I
and IT).

Table I does not contain predictions for n, ' and for scalar mesons: QCD sum rules
do not work in the case of scalar and pseudoscalar channels as well as in the case of longitu-
dinal axial channel with isospin zero. In particular, the sum rule approach cannot explain
the 100 % violation of the Okubo-Zweig-Tizuki rule in the pseudoscalar (or in the longitu-
dinal axial) channel with 7 = 0, i.e. the fact that n-meson is an octet component and 7’ is
a unitary singlet. A possible (though not proved) explanation of this fact is in an important
effect of direct instantons [9, 10]. When calculating meson and baryon masses with no
strange quarks, only the above mentioned v.e.v.’s (19)«21) enter. In considering hyperons
and mesons with strange quarks there appear two new parameters — the strange quark

TABLE 1
Meson Jre Mass (GeV) Leptonic decay constant
(Ref.) theor. exp. theor. exp.
e 1] 1— 0.78+0.04 0.770 g4n =2.4+02 2.54+0.23
o [1] 1— 0.78+£0.04 0.783 2242 18.4+1.8
o l1] 1— 1.07+0.05 1.02 14 11.740.9
K*[1] 1— 0.93+0.05 0.892 1.4 —
7 {1} o+ —_ 0.140 Je = 125 MeV 133 MeV
A, [6] 1++ 1.25+0.15* 1.27 g¥dn ~ 6 ~6
D [6} 1+ 1.25+0.15% 1.28 glan= 6
fi71 2+ 1.25+0.05 1.27 gr = 0.040 —_
Iiex = 200+ 30 MeV 180 MeV
Az (7] 2+ 1.25+0.05 1.32 — —
A; (7] 2+ 1.63+0.1 1.68 — —_
* Corrected numbers (B.L)
TABLE II
Baryons
Baryon P T Cal"“(’é‘:gova‘“" Theor. [2, 5] Exp.
N 1/2+ 12 mN 1.0 +£0.1 0.94
A 3/2+ 32 ma 1.37+0.15 1.23
N* 3/2- 1/2 mye 1.754+0.25 1.52
A 1/2+ 0 maA— MmN 0.19 0.175
% 1/2+ 1 mg—mN 0.23 0.25
= 1/2+ 172 mz—mnN 0.40 0.38
P 32+ 1 mys—ma 0.14 0.15
A** 3/2- 0 Mp*+s— MmN 0.14 0.17
PSS 3/2- 1 Higes— NN 0.18 0.15
IR 3/2- 1/2 Mzee— MNs 0.30 0.30
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mass m, and the parameter

_ <0j3s10)
T (Olauloy

(26)

which characterizes the difference between quark condensates of strange and usual quarks.
In Ref. [8] the values of m, and f were determined from the best fit conditions of the sum
rules for all the given in the Table mass differences in the linear approximation in m;, fand
My — My, My«—My., Ms.—m, and it was obtained

m, = 0.105+0.030 GeV, f= —0.11+0.05 @27

(the mass differences given in Table II correspond to these values of m, and f). In fact,
the linear approximation in the hyperon and nucleon mass differences e.g., in kinematic
factors exp [ - (m3 —mZ)/M?] gives poor accuracy and to find m, ard fwith a higher accuracy
one should substitute into sum rules the experimental values of hyperon masses and make
the best fit not employing the expansion in the mass differences my—m. This gives

m, = 150430 MeV, f= —0.2204,. (28)

A few words on the quantity Ay which determines the transition amplitude into quark
current 7. As was seen from (25) and from Fig. 4 Ay can be found from sum rules with
a good accuracy. Exact knowledge of the constant Ay and of other consians of such type
is very important since they: (1) ave used in calculating baryon magnetic moments (see
below); (2) determine the proton life time in the grand unificaiion SU(5) theory; (3) deter-
mine the constant in the asymptotics of the neutron electromagnetic formfacior. The
latter point needs a more detailed explanaiion. The neutron cleciromagneiic formfactor
in the asymptotics at Q2 — oo has ihe form [11, 12]

3 4/27 ) 1
Fis@ oo = @ [ 20 [ ag02 29)

where f;, is determined by proportional 1o p, part of the matrix element
0] (u*Cy,u")dC1p) = (Pufo+7.8)0(P)- (30)

The matrix element (30) was determuned from the sum rules [5] and 1t was found that
fo = 0.8 - 10-2 GeV2, Substiiutng it inio (29) av ihe largest experimentally accessible
02 = 25 GeV? gives

12-1072
Q4—
ie. the value by two orders of magnitude smaller than the experimental one,
FToQY) ~ —1/0% (32)

Fln(Qz)Q1=ZSGcV2 =

(31
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(and of ihe opposiie sign). Hence it follows thai asymptotic formulae for the nucleon
electromagnetic formfacior have nothing to do with wha is being observed (or will be
obse: ved) at accessible Q2. The analogous conclusion has been obtained by Isgur and Lle-
wellyn-Smith [13] on the basis of the nucleon quark wave funciion model. Constants Ay can
also be used for checking and correciing the bag model. Since in the bag model
A% ~ |9(0)|> ~ R- where R is the bag radius, the knowledge of Ay enables one to find
R with a high accuracy [14).

3. Formfactors and hadronic widths

The sum rule me.hod was generalized to consideration of hadronic formfactors and
widths [15, 16]. The initial point of such generalization is the studying of the vertex funciion

I5(p,p's @) = — § d*xd®y exp [i(p'x—qy)]
x COIT{jz(x), j(»),j40} 10>, q=p'—p, (33)

where j,, j» are quark currents with quantum numbers of hadrons 4 and B and j = j if we
are interested in the electromagnetic formfactor I', 5(¢2). I' 45(p, P'; q) (33) is studied in the
kinematic region p? < 0,p'2 <0, g2 = — Q2 <0 at [p?| ~ p'2 ~ 1 GeV?, 0% 2 1 GeV?3,
After this, on one hand, I' 45 is calculated in QCD using the operator expansion and on
the other hand, is represented via physical state contributions with the help of the double
dispersion relation in p? and p’2. In QCD calculations two condensates (0|G,,G,,|0>
and «,{0|qq|0>? are taken into account. The effect of power corrections and of excited
state transition increases with Q2 rising. The latter is evident since at large Q2 the main
role belongs to transitions with production of a great number of particles. This circumstance
restricts from above the @2 region where the approach in view is applicable. At small Q?
this approach is also inapplicable because at g - 0 in t-channel large distances are impor-

£
En | l':2/|=1
- 04
04 {3
03t 0.3t
12
02} 02}
01} 171 2 N St 1
L C-®me

10 20 30 4D gloew?) 10 20 30 4D qZgevd)

Fig5 Fig.6
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tant which is signaled by appearance of nonphysical singularities ~ 1/0?, In Q? etc. As
a result, the whole consideration appears ‘o be valid in the region of iniermediae Q2,
0.5 < 0% < 3 GeV2. Several hadronic formfactors were calculated on this way and I give
here the results. Fig. 5 represents the QCD found valucs of the pion formfactor [15] (solid
curve) in comparison with the experimental dafa. Fig. S shows also the vector dominance
model predictions (dot-dash curve) and the asymptoiic QCD formula [11, 17-20]

Smxs(g_z)
QZ

Fx(Qz)asymp = fgzy f;, = 133 MeV. (34)

The QCD calculated curve agrees with experimeni in the vegion where QCD formulae
are valid. The VDM curve differs a litile from QCD and also sufficiently describes the
experiment. However, the asymptotic formula (34) in the region Q2 ~ 3 GeV? results
in the values of F(Q?) few times smaller than QCD formulae (and experiment). Fig. 6
shows the QCD calculated g-meson formfactors [15]: electric F,(Q?), anomalous magnetic
F,(Q?) and quadrupole F3(Q?) as well as the ratio F,(Q%)/F;(Q?) (dot-dash curve, the right-
-hand scale). In Fig. 6 of importance is that at Q% — 0 F,(Q?)/F,(Q*) — 1. The property
F,(0)/F,(Q) = 1, i.e. that the gyromagnetic ratio for g-meson is 2, is a characteristic feature
of VDM in which g-meson is considered as the Yang-Mills boson [21-23]. Thereby, at
small Q> QCD surprisingly confirms VDM. The coincidence of the QCD and VDM
results disappears, however, with the rise of Q2.

ﬁsevz)

Fig.7

One can also compare the g-meson formfactor behaviour with expectations of
asymptotic QCD. To this end, it is convenient to plot graphs for longitudinal-longitudinal
F;1(0?) and longitudinal-transverse F; 1(Q?) formfactors (Fig. 7). I is expected that in the
asymptotics [17, 24] F(Q?) ~ 1/Q?, Fi(Q*) ~ 1/Q?, ie. Fy > Fiy. We see that at
intermediate Q2 there is an inverse relation.



554

In Ref. [25] the electromagnetic @ — © transition formfactor in the intermediate region
0.5 S 0* S 3 GeV? was calculated. Now and again, there is a good agreement between
QCD and VDM resul's Fo(Q?vpy = (8uge/8) (m2/m2+ Q%) and strong disagreement
with the asymptotic QCD where F,(Q?%) ~ 1/Q* is expected.

Knowledge of formfactors in the intermediate Q2 region enables one to determine
some interaction constants and, respectively, hadronic widths using dispersion relation
for F(Q?) in Q2 and saturating it by the lowest state contributions. Thus it was found

g2.dn = 34403 [15], Iy = 175 MeV£10%(Fgm = 15545 MeV), (35)
Boge = 1723 GeV ™' [26], Tgoz. = 114 MeVE30%(I5%,, = 89 MeV).  (36)

Finally, I will demonstrate the proton and neutron magnetic formfactor curves in the
region of small 02 < 1 GeV? region obtained in the recent paper [27] (Figs. 8, 9). Form-

Gl
3 -

e 02 fray2
02 04 05 08 10 Q(GeV)

Fig.8
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factors G, and Gjy are calculated employing a rather different technique than one discussed
above: to calculate them one should know field induced v.e.v's, particularly, the determined
below quantity x(¢?). The advantage of the method used in Ref. [27] is that it makes it
possible to pass into the small Q2 region. As is seen from Figs. 8, 9, the agreement with
experiment is good enough. In this case the VDM curves significantly differ from QCD
(and from experiment).

4. Hadrons in external fields

I will turn now to the problem of calculating hadron characteristics connected with
their behaviour in static (or slowly varying) external fields.

Among such quantities of primary interest is, of course, the calculation of proton
and neutron magnetic moments. Hopeless attempts 1o calculate them were made starting
from 40-ties (for a review of earlier papers see Pauli [28]); The necessity of calculation of
proton magnetic moment in quantum chromodynamics was especially emphasized by
Feynman [29].

Recently the problem of determining hadronic properties in static external fields has
been solved and, in particular, nucleon and hyperon magnetic moments have been calculat-
ed. The method developed is general enough and can be applied not only to calculating bary-
on and meson magnetic moments but also to find a number of other static characteristics
of hadrons, such as axial weak interaction constant of nucleon g,, interaction constants
of baryons with soft pions etc. It should be noticed that together with calculation of various
physical characteristics of hadrons one managed to obtain (using the same method) some
information on the properties of vacuum in QCD which, as it should be expected, will
prompt a better understanding of the structure of QCD and may be useful in developing
various models.

In this lecture I will describe the grounds of the method in view on an example of
calculation of nucleon magnetic moments. I shall follow here papers [30, 31].

The standard QCD sum rule method with which the masses and formfactors were
calculated, is inapplicable for calculating magnetic moments since it is based on the calcula-
tion of the polarization operator II(p) or of the vertex function I'(p?, p'?, ¢*) in euclidean
region p?, p'?, g < 0 at large enough virtualities in all the channels when nontrivial QCD
effecis reduce to calculable corrections in perturbation theory. Thus, in this case one cannot
exploit the technique presented in Sections 2, 3. It we try to analytically continue the
formulae for electromagnetic formfactors valid ai intermediate Q2 = —g? to the point
0? = 0 we encounter with singularities of the type 1/0?, 1/Q% In Q2 eic. or if they are
absent in some particular cases with unknown contributions not accessible to a standard
operator expansion. The appearance of such terms makes the whole procedure invalid.

To solve thé problem we consider quarks to be in a constant electromagnetic field
F,,. The initial point of our approach is a statement that even if one of the external mo-
menta is zero, formulae of the operator expansion including, however, new phenomeno-
logical parameters, can be written. The meaning of these parameters is evident : they describe
a response of v.e.v. to the presence of external colourless field. For instance, v.e.v.
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{0|g0,,910)> where q is the quark field ¢ = u, d, by virtue of Lorenz invariance is zero when
external fields are absent (the mean value of quark spin in the condensate is zero). If quarks
are in a constant electromagnetic field, then there exists an external tensor F,, and in general
case one can write

£0136,,4105F = V/4ma 3, F,,<0I7g|0D, (37

where x, is a new parameter. The physical meaning of Eq. (37) is clear: in the presence
of external magnetic field the quark spin in condensate is oriented along the field and in
the case of small fields the value of the mean spin is proportional to the field. The proportio-
nality coefficient x, can be called magnetic susceptibilily of quark condensate and hereafter
I shall use this term. If in QCD with massless u- and d-quarks the chiral invariance would
not be violated, the Lh.s. of Eq. (37) would be zero (¢o,,q is non-invariant at-chiral trans-
formations). But, as we know, in QCD chiral invariance is spontaneously broken. The
simplest and the most important v.e.v. which features chiral invariance violation is the
quark condensate density {0/gq|0>. For this reason it appears to be convenient to expli-
citly insert it into the r.h.s. of Eq. (37). As will be seen in the following, the role of magnetic
susceptibility is of great importance in the problem of calculating baryon magnetic moments.

4.1. The method

Consider the polarization operator of quark currents with nucleon quantum numbers
assuming quarks to be in a constant weak external electromagnetic field F,, and restrict
ourselves to the linear in F,, terms. Then

I(p) = i | d*xe®(0|T{n(x), i(0)} 10D
= Ip)+/4na I, (P)F sy, (3%)

where I1°)(p) is the polarization operator in the absence of field, n = ,, 1, are the currents
with proton and neutron quantum numbers

np(x) = u"(x)C)’,;u"(x)msdc(x)e“bc, (3%
Ma(x) = dX)Cy,dCxyp,ysu’(x)e™, (40)

#(x), d°(x) are the fields of u- and d-quarks.

Following the idea of the QCD sum rule method we calculate the polarization operator
in euclidean region p? <0, [p?| ~ 1 GeV? as an operator expansion whose coefficients
are expressed via v.e.v.’s of various operators. On the other hand, let us write for I7,,(p)
dispersion relations and saturate them by the contributions of the lowest states. As usual,
in the QCD sum rule method, in order to suppress excited state contribucions into sum
rules, apply the Borel transformation to structure functions of the polarization operacor
1(p?.

Let us now dwell on the operator expansion and classify v.e.v.’s of the operators
according to their dimensions d. Suppose that u- and d-quarks are massless. Since in (38)
we are interested in the linear in F,, terms, F,, is itself the lowest dimension operator (d = 2).
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The next-in-dimension, with d = 3, is the electromagnetic field induced v.e.v. <0|45,,4/0)F,
Oy = i2(y,y,—7,). The minimal value of dimension of this v.e.v. is the origin of its
significant role in the problem under discussion. V.e.v.’s with d = 4 are absent, since
a possible in principle operator g(V,y,— V,»,)g has positive C-parity and its v.e.v. cannot
be induced by C-even electromagnetic field. Three v.e.v.’s, multiplied by F,, quark conden-
sate density <0|gg|0)F,, and field induced v.e.v.’s

g{0lG(X"[2)Ggql0) s = v4ma i F,,<0|34l0), (41)
2€01775(A"/2)E10G0q10>F = i Vana {F,,<074!0), (42)

have d = 5. Here x, and ¢, are new unknown parameters. Of the v.e.v.’s of d = 6 operators
the most essential is

<0i34|0> <0i70,,910>. 43

For this v.e.v. the factorization hypothesis is adopted.

Except for (43) there are still four v.e.v.’s with d = 6, these are (0]G7;G350)F,,,
and three field induced nonfactorizable v.e.v.’s. The contribution from all of them is small
comparing to (43) and will be neglected in the following since they enter (38) with small
numerical factors: the first with (2)~* and the rest three with (21) 2N, * (according to (9)).
A great number of operator v.e.v.’s corresponds to d = 7. Some of them are known but
a considerable number of d = 7 v.e.v.’s is nonfactorizable and unknown. In order not
to introduce a great number of unknown parameters into theory it is thus reasonable to
avoid the sum rules where v.e.v.’s with d = 7 can be essential. Restricting ourselves with
the operator v.e.v.’s with d = 6 (and in the case of chirality conserving structure with
factorizable v.e.v.’s with d = 8) we are left with three v.e.v.’s induced by electromagnetic
field and defined in (37), (41), (42).

Let us now make the basic assumption on which, as will be seen from what follows,
the calculation of baryon magnetic moments is grounded, namely, assume that y,, k, and
{, are proportional to the quark q charge

Xq = €X> Kq =€k, {q=¢e. (44)

This assumption corresponds to taking into account only the graphs of the type Fig. 10a
where the same quark whose field enters v.e.v. interacts with electromagnetic field. So the
diagrams of the type Fig. 10b are neglected. It is clear that for massless quarks the diagram
Fig. 10b with gluon exchange are zero in any order of perturbation theory by virtue of
chirality conservation. Chirality breaking could appear due to instantons but, as was

-

6, x W 6 (“nonpert ™, Fuv
("] v X gluonic
o fields 7’
a) b)
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shown in [9], instantons (in the diluted gas approximation) do not contribute to diagrams
of Fig. 10b. The Fig. 10 amplitudes rather resemble the ¢ — ® mixing amplitude. The only
difference between these two amplitudes is that in the first chirality is violated and in the
second conserved. That is why the experimental smallness of ¢ — ® mixing is also an argu-
ment in favour of the assumption made.

Now we can start to construct sum rules for calculating proton and neutron magnetic
moments. The Lh.s. of the desired sum rules, the term proportional to F,, in the polariza-
tion operator (38) is calculated at p? <0 in QCD from the operator expansion, the r.h.s.
is represented using dispersion relation via physical state contributions. I1,,(p) is composed
of three different tensor structures: ﬁam+amﬁ, i(pyyv— pvy,,)ﬁ and o,,. The first structure
contains three y-matrices and conserves chirality. The second and the third structures
contain even number of y-matrices and violate chirality.

Let us first consider the Lh.s. of the sum rules with odd structure facr“v+a,,vﬁ. The
lowest dimension operator contributing to this structure is F,, (d = 2), the corresponding
Feynman graph is shown in Fig. 11. Because of chiral invariance the d =3 and d=5

Fig.11

Fig. 11. The simplest quark loop contributing to the polarization operator in external field. Here (and
in the following figures) solid lines -— quark propagators, dashed lines — gluon propagators, wavy lines
correspond to electromagnetic field

Fig.12 Fig.13 Fig.14

operators do not contribute to the odd structure so that the next in dimension are the
d = 6 operators. Taking into account of the fied induced v.e.v. <0{qq|0)> (0[50,"4110),,
(d = 6) corresponds to the graph of Fig. 12. The contribution of the F,,G33G,s (d = 6)
operator is determined by the two-loop graph of Fig. 13 which contains a small factor
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(2m)~*. The direct calculation of the operator G,G%, contribution in IT”(p) showed that
its presence did not practically affect the nucleon mass [5]. Thereby the term in the operator
expansion proportional to v.e.v. F,,{0]|G;Gz4/0> can be omitted.

In the sum rules with the odd structure fm,,,+ a“,f) we take into account also (assuming
factorization) the d = 8 operators contribution. There exist four such v.e.v.’s: F“,(OIquo)z,
—8401q04(2"/2)G2pql0) (0190,,910>r = /dmae,ym3F,,<0149|0)* where m} was determined
in Ref. [9], m} = 0.8 GeV?, /4naexF,,(0|qql0>* and \/4nae,(F,,<0lqq|0>*. The corre-
sponding diagrams are presented in Figs. 14-16. The estimate of the d = 8 terms is very

Fig.17 Fig.18 Fig.18

mportant. Indeed, as will be seen in the following, the d = 6 term contribution to the
sum rule is very large, even larger than the contribution of the diagram of Fig. 11 since
the magnitude of magnetic susceptibility of quark condensate is large. The d = 8 terms
(especially the term ym3{0|q4|0)?) can be considered as the first corrections to the d = 6
terms. Thereby the size of their contribution is necessary to know in order to check the
convergence of the operator expansion series. Of course, the results will be convincing
enough if it will appear (and really this is the case) that the d = 8 term contribution is much
smaller than that with d = 6.

The lowest dimension operator contributing to chirality violating structures in IT,,(p)
is 40,9, d = 3, see Fig. 17. The next in dimension (d = 5) operator v.e.v.’s are <OIEqIO>F“,
and (41), (42) corresponding to the diagrams of Figs. 18, 19. Assuming factorization again
we have at even structures two operator v.e.v.’s with d = 7:

0176,,910>F 01G;5Gz4!0)>
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and

n

A
—g<0lqauﬂ '2_ G:ﬁqlo>an = nl(z)Fyv<OquIO>'

The corresponding diagrams are shown in Figs. 20, 21. (Note that the higher the dimension
the less reliable is the factorization hypothesis.)

As is seen, the accounted for dimension interval d = 2-8 for odd structures is larger
than that of dimensions d = 3-7 for even structures. Thereby, one can expect a better

Fig. 20 Fig.21

accuracy for the results obtained from sum rules at cdd structures. As for even structures
it is reasonable to use only sum rule with the structure i(p,y,— pvy,,)ﬁ. The reasons for this
are the following:

(1) The structure l'(p"‘y,—py'y“)}; comparing with ¢,, contains {wo extra momenta
in the numerator. This leads to appearance of an extra factor 1/p? in nonperturbative
corrections. As a result, the Borel transformation (see Eq. (13)) brings about an extra
factor 1/n in the higher-dimensional terms to the structure i(p,y,~— pvyp)ﬁ as compared to
those in ¢,,, which improves the power series convergence. At the same time, the role
of excited states (continuum) in the r.h.s. of sum rules with the structure i(p”yv—pvyﬂ)ﬁ
is also less than that with o,,.

(2) The sum rule with the structure ¢,, contains infrared divergence which evidences
the presence of unknown nonfactorizable v.e.v.’s. Under the procedure used in the following
the unknown higher-dimensional contributions change the results obtained from sum rules
with this structure rather significantly. '

Let us turmn to calculating the r.h.s. of the sum rules expressed versus physical state
contributions. The part of the polarization operator I1(p) linear in the field F,, can be phenom-
enologically presented as a sum of the ccntributions shown in Figs. 22-24. Our interest
is concentrated on the graph of Fig. 22 where current # prcduces a nucleon which interacts

N N N N® N* N®

Fig.22 Fig.23 Fig.24
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with electromagnetic field and afterwards is annihilated by the current #. The contribution
of this graph contains the double pole and is proportional to AZu(p? —m?)-2 where Ay is the
transition amplitude of current # into nucleon state (Op|N)> = Ay, v is nucleon spmor,
1 is the nucleon magnetic moment (the total magnetic moment for the structures paw+ 0D
and o, and anomalous magnetic moment for the structure i(p,y,— pv'y“)p) After the Borel
transformation it gves the term ~A3u exp (—m?/ M?)/M?. The diagram of Fig. 24 corre-
sponds to transitions between excited states which appear to be exponentially suppressed
by the Borel transformation and as usual, can be approximated by continuum. The graph
of Fig. 23 which contains transitions from nucleon to excited states is a nondesirable back-
ground. The contribution of such transitions to IT,, is proportional to 1/(p? —m?) (p* —m*?)
where m* is the excited state mass. The Borel transform of this expression contains the
term (m*2—m?)-! exp (—m?/M?) not suppressed exponentially as compared with Fig. 22.
At reasonable values of M2 it is of the same order and must be taken into account. The
transitions N — excited states can be taken into account by introducing two new phenom-
enological constants Ay and By

OlINYF = | d*x{OIT{j5(x)4,(x), n(0)} INY — pole term
= \/I;‘;; % A’N[ANO.‘JV_“ iBN(P,,')’y“Pv')’“)/m}vaU- (45)

As a result, the one-proton contribution into I7,,(p) is given by

2
N
(p*—m?)?

+ Juvﬂap(pz - mZ)/m + 21”:(1’;;)% - vau)ﬁ/m}, (46)

o,.p)= -3 {up(0,nb + Po,,) +20,,mp,

where y;, and g are the proton total and anomalous magnetic moments in nuclear magne-
tons, Ay is the transition amplitude of proton into current  defined in (15). The term result-
ing from proton-excited state transitions can be safely obtained using Eq. (45). It is
equal to

1
I1,(P)p-ne = % 'll%l.pz__mz {A(oD+Po )

+24,0,,m+2iB(p,y,~ p,y,)P/m}. “n

It should be emphasized that nucleon-excited state transitions give a significant contribu-
tion to sum rules and they can be by no means neglected. This statement refers not only to
the problem of magnetic moment calculation but to all processes of hadron interaction
with external fields. (For this reason the calculation of the constants g, gna made in
[32] where such transitions were neglected are not convincing.) Such transitions must
also be taken into account in calculating magnetic moments on lattices. Their contribu-
tion at large times ¢ is here suppressed as compared with the ground term but only in the
power-like way, as m/t but not exponentially (for details see [31]).
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As usual, in QCD sum rules the continuum contribution into imaginary part of the
polarization operator is represented by imaginary parts of quark loops and starts from
some threshold value W?2. It is convenient to transfer it into the Lh.s. of the sum rule.

Omitting intermediate calculations I will present now the sum rules for invariant
functions with the structures ﬁam—i—cr,,yﬁ and i(p,y,— Py, )P

w2\ _
e.M*E, (Xl—z)L V4 o &P (etd )+ =)

J2
_zeux(MzL—m/zv_% m%L_”/z")] - 4N o mUM? (Al/llpz +Ap>, (48)
w? b
MZ E ) L—16/27
ma {(eu'*' 3 ea)+3 eax l: 1 ( + 24M4]
= 1 J2,~miM? “P B, 49
= 7 Ane M2 + 49)

where the same notations as in (19)-(22) are used. In the sum rule (49) we neglect the
contribution of d = 7 operator gqo,;A"GyyqF,, (for its account see below).

When calculating the continuum contribution into polarization operator it was assumed
that it is described by the double dispersion integral

) (S)
(S 8)2
In numerical calculations the continuum threshold W was taken to be W = 1.5 GeV

(continuum does not affect determination of y, and u, but is essential in finding y and
constants 4, B — see below).

4.2. Determination of proton and neutron magnetic moments and of quark
condensate magnetic susceptibility

The sum rules (48), (49) contain, except for y,, many unknown parameters: ¥, x and
{ in the left-hand sides, 4, and B, in the right-hand sides (for neutron there appear additio-
nal parameters 4, and B,). At first sight, this 1s a serious nuisance so that it seems impossible
to determine magnetic moments from these sum rules with sufficient accuracy. But in fact
the situation is not so bad.

Note that parameters g, x and { enter the sum rule (48) being multiplied by the u-quark
charge e, while in the sum rule (49) they are multiplied by e,. This is a direct consequence
of neglecting closed loops and of assuming the quark condensate magnetic susceptibility
with the given flavour to be proportional to the quark charge. Using this fact one can get
rid of parameters y, xk and { as well as of chirality violating v.e.v.’s of higher-dimensional
biquark operators induced by electromagnetic field.
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Let us multiply the sum rule (48) for proton by ey, for neutron by e, and subtract
one from another. Similarly, let us multiply the sum rule (49) for proton by e,, for neutron
by ey and subtract one from another. The resultant expressions can be written as

2

4a
Hp€a— Un€y +M 2(Aped - Aneu) = 3 zz emz/Mz( — €, )L4/9 (503)
N

:u;eu —~ Uyt Mz(Bpeu - Bned) = h—i‘i— Mz MY (63 - etz'l)'

In order to eliminate the unknown one-pole contributions remaining in the Lh.s. of Eq.
(50) we apply to Eq. (50) the differential operator 1—M?23/0M?>. We get

4a’ 2 2 0 m2/M214/9
Upla— Enly = 3}»2 (e2-e|1-M PYve e L, (51a)
4am G, 2
”peu"ﬂned = eu+ 12 ((?‘2,-—83) (I_Mz éj_w‘z‘) M2e"' /Mz. (Slb)
N

Magnetic moments yu, and yu, can approximately be determined if we put in (51) M = m,
neglect anomalous dimensions, and substitute instead of the residue 1% the value

11%1 _ 2aM*

My (52)

which follows frcm the mass sum rules (17), (18) neglecting anomalous dimensions and
continuum contribution. Solving equations (51) in this approximation we arrive at simple
formulae

=141 %)
Up =3 +°m3 = 2.96, (53a)

a
fo = —3% <1+%ﬁ) = —1.93. (53b)

Theoretical values (53) can be compared with the experimental p, = 2.79, p, = —1.91.

Let us now tumn to a more rigorous treatment. To do this we need to know the exact
value of the residue 1. If the nucleon mass is not a free parameter but is fixed at the exper-
imental value m = 0.94 GeV, the best fit of the sum rule for the nucleon mass can be
achieved at 13 = 2.1 GeV®, W? = 2.3 GeV? (see (25) and Fig. 4). The solutions of Egs.
(51a, b) are plotted in Fig. 25 versus M2. Variations of u, and p, with the change of
M? reflect the uncertainty of our predictions. A permissible interval for M? variation
is 0.8 GeV < M? < 1.4 GeV? where continuum contribution and power corrections are
still controllable. Though continuum does not give a direct contribution to the r.h.s. of
Egs. (51) its concellaiion is a consequence of our model of continuum which may not
work if this contribution is oo large. Besides, at large M2 in the r.h.s. of (48), (49)
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single-pole terms play the main role and extracting of u,, y, in the presence of a large
background becomes inadequate. Note finally that changes in the 43 do not significantly
affect the values of magnetic moments because of ihe presence of the e, term in the r.h.s.
of Eq. (51b) stemming from the difference between the total and anomalous magnetic
moments. The final results for proton and neuiron magnetic moments do not practically
differ from (53): p, = 3.0, p, = —2.0 (£10-15%).

Hy
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Fig. 25. The Borel parameter M? dependence of proton and neutron magnetic moments defined from

Eq. (51). Vertical lines separate the interval inside which in Egs. (48), (49) and in the sum rules for the

nucleon mass the continuum contribution <50% and the higher power correction contribution <15%
of the total theoretical result

To control the accuracy of calculations of magnetic moments one may take into
account the contribution of the operator gq6,,1"GysgF,, to structure i(p,y,— pvyu)ﬁ omit-
ting all the remaining nonfactorizable d = 7 operators. The account of this operator
results in appearance of factor 1 —(m3/4M?)L™*"° at the second term in the r.h.s. of Eq.
(51b). As a result, the absolute values of p, and u, decrease, correspondingly, by 15 and
109 and the agreement with experiment is approximately the same as before. It can be
thought that taking account of this operator leads to overestimating the accuracy
since effects of comparable scale may arise due to nonfactorizable operators, from correc-
tions to relation (44) and from uncertainty in the values of (0|gq|0) and 3.

Substituting the obtained values of u, and p, into (48), (49) and excluding from them
the unknown constants 4, B by applying operator (1—M?23/0M*)M? exp (m?/M?), one
can find the value of magnetic susceptibility of quark condensate y. Putting k = { =0
we find from (48)

1 = —6GeV-2(+25%). (54)

The influence of x and { on the estimate of y is not large: dy/dx = — 3dy/d{ ~ 1+ GeV-2,
(Determination of y from (49) is less reliable.)
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The sign and the value of y are “natural” in the following sense. Let us consider
a simple model in which the current quark acquires a mass in the field of vacuum fluctuation
and the resulting constituent quark interacts with electrcmagnetic field. In such
a model v.e.v.

{0130,,410) = V/4na e xF,,<013ql0y = — | d*p Tr [S(p)s,.], (55)

where S(p) is the Green function of constituent quark in electrcmagnetic field

= ""a3F - o — Iy a
P)= @ \o—m, 2 p—m " p=m, " p—m,
T 1 1 }
- — 0 — | 56
2m, ﬁ——mqapﬁ—mq] (56)

m, is the quark mass, yg its anomalous magnetic moment (in the units e,/2m,). Substituting
of (56) into (55) gives

_ 3 A2 )
x<01gq|0> = samaln m (1+5 pd), (57)

where A, is the ultraviolet cut-off. Since the r.h.s. of (57) is positive and (0lqq|0) <0, ¥
must be negative. The numerical value of y (54) must be reproduced using (57) at

L, = 350 MeV, In Af/mz =~ 3, ug = 0. Note that the same model leads to a correct sign
of the quark condensate density.

The phenomenological constants 4 and B can be found in the same way. They appeared
to be 4, = 1.3 GeV-2, 4, = —0.6GeV-2, B, = 1.0GeV-2, B, = —1.5GeV-2. In the
region M? ~ 1 GeV? the contribution of the single-pole terms into sum rules (48), (49)
are of the same order as the contributions of the terms proportional to magnetic moments.

The value of magnetic susceptibility of quark condensate (54) was found from the
sum rules for magnetic moments. It can be, however, determined independently using to
this end a special sum rule [33]. The idea of such an approach is in consideration of the
quantity x(q) defined by the equality

§ d*xe™ (0| T{i(x)yu(x), #(0)s,,u(0)} 0>
= (8,29~ 8,19, <Oliu 0> x(g?). (58)

It can be easily seen that neglecting the diagrams Fig. 10b y(0) = y. Let us assume |g?]
to be large and write for y(g®) the operator expansion. Since in (58) there is a chirality
violation, then the operator expansion will be contributed only by v.e.v.’s of chirality
violating operators: (0[qql0), —g<{0lg0,4(A"/2)GsqI0> = m3(0|qql0> etc. Taking into
account the contribution of the two mentioned operators only and neglecting anomalous
dimensions, we find [33]

2 2
1@ = 5 —%—g—%, 0 = —¢*. (59)
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For y(Q?) there is a subtractionless dispersion relation

oo

| e(s)
-xQ°) = j‘S+Q2 ds. (60)

0o

Let us equate (59) and (60) and make the Borel transformation. Because of fast convergence
of integral in (60) it is enough to restrict oneself with the lowest state contributions of @ and’
o' mesons. (Strictly speaking, Eqs. (58) for isovector and isoscalar currents should be consid-
ered separately, taking into account, respectively, ¢ and ® mesons in them, but by virtue
of p— o degeneracy this would not change the result.) Then

Q(s) = f0(s—mg)~fd(s—mg). (61)

The equality obtained after the Borel transformation makes it possible to determine the
constants f, = 4 and f,, = 2 and using Eq. (60) find

2

— 2 — — .
HQ) = G ~ G (62)
One can extrapolate Eq. (62) to the point Q? = 0 and determine
x = (0} = —(5.7+0.6) GeV-2 (63)

{the numerical value of (63) is determined from [33] with the account of anomalous dimen-
sions).

The value of ¥(0) (63) depends very weakly on mZ: Variation of m2, from 2 to 10 GeV?
changes x(0) less than by 10%. The value of y (63) ccmpletely agrees with (54).

In Ref. [34] which was dedicated, just as Refs. [30, 31}, 10 calculation of proton and
neutron magnetic moments, an attempt was made to aetermine y, and p, from oaly one
sum rule with the structure ﬁa,,v—i-a,,vﬁ by substituting into it the value of y determined
with the VDM (and neglecting other unkncwn parameters x and (). In VDM (sce (59)-(61)
at fp = 0) y = —2/m} = —3 GeV-2, i.e., by a factor of two smaller than the values of
(54), (63;. Since in the sum rule (48) the contribution of the term proporticnal to y comprises
about 70-80% of the value of magnetic moments, then according to the arguments given
above, such method is incorrect and must result in the values of U, and |u,] by a factor
of 1.5-2 smaller than the experimert:] ones. (This was not the case in Ref. [34] since
the authors used the values of (0]gqq|0)> larger by factor 1.5 comparing with the acopted
above.)

43. Hyperon magnetic moments

The approach discussed above can be used also for calculation of hypercn magnetic
mcments [35]. The method of consideration is the same :nd only two new moments arise:
one must take into account the strange quark mass m, and the difference of v.e.v. {0}ss|0>
frem <0]qql0), g = u, d, i.e. the value of f (28).
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Just as in calculaiing nucleon magnetic mcments, the sum rules for hyperon magnetic
moments include field induced v.e.v.’s. The most unplezsent here is the magnetic suscepti-
bility of strange quark condensate {0|sc,,s/0) whose velue may differ frcm (0|q0,,910)>
and is unknown. For the case of £ and E hyperons these field irduced v.e.v.’s can be elimi-
nated using a trick analogous to that exploited in calculation of nuclecn magnetic mo-
ments. In such a way the sum rules without new unkncwn paremeters are obtained. The
results of the calculation of £ and E hyperon magneiic mements are given in Table ITI.
For A-hyperon such a proccedure is impossible and Table III gives the value found from

TABLE III
Baryon octet magnetic moments
p n I+ ze z- =0 - A A-X°

— ; S _— ! ’ ;

! I
Sum rule ' 3.0 | —20 % 2.4 | 0.7 | -1.0 : —-1.40 ' -0.90 -0.72 l 1.552

¢ i i H
Quark 2791 —1.91° 267 | 078 ] —1.09 | —144 | —049 | -0.61°] 1.63
model ‘ ;

i i
Experi- | 279 |—191 | 237 ; , —LI8 | —125 | —0.69 | —0.6l S 1.821%%5%
ment | £0.02 ;| +0.03 | +0015] +0.04 ,
= Approximated formulae b Input data.

relation of SU(3) symmetry u, = u,/2 and from formula (53b) into which we substitute
m, instead of m and take into account the kinematic factor m/m, for transformng A
magnetic moment into nuclear magnetons. (£ and E magnetic mements can be determined
in a similar way. Such an approximated procedure leads to values not strengly differing
from those shown in Table I1I.) To determine A hypcron magnetic mement one could
employ a sum rule of the type (48) in which v.e.v. (0}30,“550) is not excluded, determining
the latter from QCD sum rules, analogously to that which was done in the preceding Section
(Eqs. (58)~(63)), but taking into account the strange quark mass. It is, hcwever, difficult
to expect that such a method will permit one to significantly improve the calculation accura-
cy of A magnetic moment. The magnetic mcment of £° —» A transiticn presented in
Table I was obtained using relation [36]

1
= —— (3 o— 2~ 2l z0
Hya 2 \/3( Ha+ Hy Mo~ 2f120) (64)

valid in the linear approximation in SU(3)-symmetry violation when this violation is a 3,3
component of an octet (i.e. strange quark mass).

For comparison, Table ITI presents also the latest experimental data [37] and the
results of the calculations in nonrelativistic quark model in which y,, u,, and u, are input
data determining magnetic moments of constituent quarks. As is seen from the Table,
QCD calculations agree with experiment up to expected accuracy — 10~15%;.
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4.4. Calculation of the nucleon coupling constants with axial current

The method in view can be also applied to calculation of the weak interaction constant
g4 [38]. To this end one should introduce a constant isovector axial field 4 « @s an external
field by adding to Lagrangian the term

AL = (iiy,ysu—dy,ysd)A,. (65)
Similarly as before, let us consider the polarization operator
I(p) = i | d*xe"0|T{n(x), i(0)} 10>, (66)

where quark current n(x) is defined according to (39) and quarks are moving in external
axial field 4,. The presence of external axial field results in appearance of field induced
v.e.v.’s. Classifying these v.e.v.’s according to their dimension one can see that v.e.v.’s
of the lowest dimension operators are

d=3: (Oliay,ysul0d, = —<0|dy,ysd|0),, (67)
d=15 $&5,8 <0 iy, — Ghu 0>
2 A
1 Aﬂ n 2.2
= —% &8 { 0|dy, 5 G,d|0) = fimiA,. (68)
A

V.e.v. of the first of these operators can be easily calculated using the axial current conser-
vation condition. According to (65) we have

{Olay,ysul0>, = | d*xe A KOITj5(), J2(0)) 10>4-0 = M(@)Alg0, (69)
2

where
o = #yysu—dy,ysd. (70
Ju = Uy ysu—dyys )

Inther.h.s. of (69) I1,,(q) is the polarization operator of the axial isovector current. Neglect-
ing quark masses the axial current is conserved, so that

Huv(q) = —(5pvq2 —qnqv)H(qz) (71)

At g — 0 the non-zero contribution into IT,(g) may arise only due to pole at g> — 0 in
II(g?), i.e. due to massless state. The single-pion state is such a state. (In the massless
quark approximation the pion mass is zero.) The constant of the pion transition into axial
current is known — this is the © — uv decay constant f, = 133 MeV. Extracting in (71)
the single-pion contribution and substituting it into (69) we find

0|y, ysul0>x = f2A, (72)
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Determination of v.e.v. (69) is a more complicated problem. It is expressed via the matrix
element
n

A n : 2
aya 5 Guvd )= - lf;tmlqﬂ (73)

% 8aﬁpvg <0

and was found in Ref. [39] from selfcensistency of scme sum rules. It was obtained that
m?~ 0.2 GeV2. (The m? determination accuracy is rather lcw and is given by the factor
2*! but luckily, v.e.v. (73) enters the expression for g, with a small coefficient). An essential
moment in g, calculation is that the difference of g, frcm 1 results only from ncnperturba-
tive effects connected with quark condensate or field induced v.e.v.’s (67), (68). This can
be easily understood. In perturbation theory with massiess quarks chirality is conserved
and the axial interaction constant must be equal to the vector one, i.e. in the adopted
normalization, to unity. Therefore, an appropriate method of g, calculation consists in
writing the Borel sum rules for g, and in subtracting frem them the sum rule (equal to 1)
for vector constant, i.e. by virtue of the Ward theorem, the sum rule for the nuclecn mass.
As a result, we have a sum rule for g, — 1 with no uncertainties cue to continuum contribu-
tion. Among the coefficient functions at different tensor structures of the polarization
operator (66) the most appropriate for the writing sum rule is the function at the structure
2(Ap)pys where the contribution of continuum and higher power corrections is suppressed.
Omitting the technical details of the calculations I will give the sum rules for this structure
function [38]:

1
gA-1+CM2 = '98" ? eml/Ml[a2L4/9+2n2m12 ”2M2L—8/9]. (74)
N

Here C is an unknown constant corresponding to nondiagonal transitions from nucleon
to excited states due to the axial current, analogous to constants 4, B in the problem of
magnetic moment determination. Of importance is the fact that v.e.v. (67) did not enter
(74) and here only higher dimension v.e.v.’s are left. To exclude C let us apply the differen-
tial operator 1— M?29/dM? to (74). After substituting numbers we have

ga—1 = 0.4040.20. (75)

The error in (75) comes from a certain dependence cf g, — 1 determined according to (74)
from the Borel parameter. (The value of g, —1 and the error in (75) differ frcm the values
given in Ref. [38] where g, —1 = 0.30+£0.05. The origin of this difference is explained
in Ref. [40].)

The nucleon interacticn constant gi with the axial isoscalar current

gh =05+0.2 (76)

was determined also [40] from analoguous calculations. The value of this constant is of
interest from the viewpoint of checking the SU(6) symmetric quark model where
(&Jsuy = 1 ( recall that (g,)sy) = 5/3). It is interesting to note that the value g} (76)
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is rather close to its value in SU(6) symmetry due to large contribution of power correc-
tions — the taking into account of only bare quark loop would give a value g} = —~1
quite different from the one of SU(6) symumetry. Constant g} enters the Bjorken sum rule
for the deep-inelastic scattering of polarized electrons on polarized nucleons (see, e.g.

[43)

Wl

1
Of g1 (x)dx = 77 (£gat3 8h) (17)
where the upper and lower signs refer, respectively, to proton and neutron. At g} (76)
the r.h.s. of (77) for neutron is negative. As can be shown at large x gi(x) = 0. From (77)
it thereby follows that at small x gi(x) < 0. It would be interesting to experimentally check
the fact that g,(x) changes its sign.
Knowing g, and using the Goldberger-Treiman relation one can determine the pion-
-nucleon interaction constant
2 2
ExNN 1 2m
PN T gy = 1643
4n an f2 Ea
comparing With (ginn/4m)ey, = 14.5.

4.5. Discussion

The method of consideration of hadron properties in external field presented above
is very general. It is applicable not only to determining static electromagnetic properties
and constants of semileptonic processes of the low-lying hadronic states which were consid-
ered above but to calculating any emission and absorption amplitudes of the fields with
the wavelengths much larger than hadronic dimensions.

In particular, one can in principle determine interaction constants of soft pions with
hadrons. In this case, an extra term AL = jy;s4; is introduced into Lagrangian, where
Jas is the axial isovector current of quarks, A4, is external field considered in the limit when
its momentum g tends to zero. The transversality of the emission amplitude of the axial
field q,T, = O (or ¢,T, = terms with the current commutators) enables one to express
soft pion emission amplitudes via the interaction amplitudes with the field 4, in the limit
g = 0. An essential moment facilitating solution of the problem of soft pion-hadron
interaction is that in this case the field induced v.e.v.’s can be determined (or be reduced
to the simplest ones) using the current algebra commutation relations. Various relations
of such type, besides their own significance, would be of great interest also from the view-
point of their comparison with the chiral models developed nowadays, in particular,
with the bag chiral model (see, e.g. [41]).

A possible comparison of the results obtained with this method with another quark
model — the constituent quark model based on SU(6) symmetry, is also interesting. As
is known in such a model quarks are massive and their interaction is assumed spin inde-
pendent. In the approach under consideration quarks are massless and, at least, in the
zero approximation without taking into account power corrections one should, generaily
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speaking, expect a strong spin dependence. It would be instructive to trace how (it seems;
due to power corrections) SU(6) symmetry arises in this approach and in which cases
one could expect its noticeable violation.

The method discussed can be extended to the case of particles containing heavy quarks.
For example, charmed baryon magnetic moments, D* — Dy and D* - D= decay widths
etc. can be calculated with it. It should be, however, borne in mind that when applying
this method to nondiagonal transitions of the type A - B4y, A — B+ it works rather
well only if 4 and B state masses are rather close, my~my < my~ m, and A and B are
the lowest states in their channels. Otherwise, it is difficult to separate the contribution
of transition of interest from nondiagonal transitions into excited states which comprise
an essential background.

5. Structure functions

The problem of a modelless calculation of structure functions is one of the most
important in QCD. Recently some progress has been achieved in this field: the valence
quark contribution into structure functions at small x and intermediate Q% ~ 5-20 GeV?
has been calculated [42]. Tt was assumed in the calculation that at small x for quark distri-
butions there is the Regge behaviour

u(x)=d,(x) = OO *®,

u(X)+d,(x) = B0)x™*®, (78)
the intercepts o(0) ~ %,(0) ~ 0.5 were taken from experiment and coefficients B(0)
and BX0) were determined. The idea of the calculation was QCD based consideration

of the upper vertex in the diagram Fig. 26 in the vicinity of # = (g—¢')* = m and after-
wards extrapolation of the amplitude as a function of ¢ from ¢ = m? to t = 0.

Fig. 26. The scattering amplitude of virtual W-boson on nucleon due to p reggeon exchange, g, p are
initial, ¢’, p’ are final momenta of W and nucleon
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As a result, it was obtained for small x-distributions of valence quarks in the proton
(at Q? ~ 10 GeV?)

u(x) = 1.65x7 12, d(x) = 0.83x” /2, (79

and in pion
u"'(x) = 0.68x~ 12, (80)

The accuracy of the coefficient in front of x-1/2 is about 30%,. Within the errors the valence
quark distributions (79), (80) agree with experiment.

6. Numerical values of vacuum condensates

All the physical results discussed above are expressed through various vacuum conden-
sates. Therefore their numerical values are very important. When considering baryons
the most essential is the value of quark condensate (0|qq|0), ¢ = u, d. Its low-energy
limit is determined by Eq. (4). The thorough analysis made by Gasser and Leutwyler
[44] taking into account the first terms of expansion in m, showed that

mg
2 = 25.7+2.6.
m,+my

I take for m, the value (28) (at normalization point g = 0.5 GeV). Then
{0lqq|0) = —(240 MeV)*+25% at pu = 0.5 GeV.
If Agcp is taken to be 100 MeV then the renorminvariant quantity
2,017g|0>* = (0.825:3)107* GeV°®.

The numerical value of 5-dimensional quark-gluon condensate

~g<o

was found from selfconsistency ‘conditions of baryon sum rules [5]. The result is
mi = (0.8+0.3) GeV=.

The value of gluon condensate {0|(«,/7)G},G},10> = 0.012 GeV* (see [1]) was taken
in the most of ITEP calculations. It is possible that its real value is 30-40% higher (for
a detailed discussion see Ref. [39]).

n

- 2’ ]
4o, 7 Gud

5 0> = m¥<0|gq|0)

7. Conclusion

As has been shown, the above described nonperturbative method in QCD based
on the operator expansion explains and predicts a great number of phenomena in the low
energy hadron physics. The facts concerning light hadrons enumerated above do not
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exhaust all the results obtained with this method: there are many of them concerning ha-
drons with open and hidden charm (or beauty) which were not included in these lectures.

The possibilities of the method are far from being exhausted. There is a hope, more,
a certainty that a lot of ncw unkncwn parzmeters both of heavy and light hadrons would
be possible to calculate with it.

At the same time, the method is not universal. In some cases two of its basic require-
ments — the smallness of higher power corrections and the smallness of higher excited
states contributions are in contradiction with each other and the method stops working.
Therefore, as a rule, application of this method demands calculations of higher terms of
operator expansion and a proof of the fact that the choice of a continuum model does
not affect the answer. Without fulfilling these requirements the results obtained with this
method cannot be believed reliable.
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