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GENERAL FRAMEWORK FOR THE DESCRIPTION
OF KINETICS OF MUON CATALYZED SYNTHESIS
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A general framework is proposed for description of the cycle-by-cycle evolution in
time of the processes forming the muon-catalysis chain leading to nuclear synthesis in mixtures
of hydrogen isotopes. In the approximation of constant transition rates, practically any
p-atomic and y-molecular processes can be taken into account and treated strictly. Energy-
dependent rates can be also dealt with in an approximate manner. Formulae in which the
experimental detection efficiency is taken into account are also presented.

PACS numbers: 25.70.1j

1. Introduction

With the upsurge of interest in the muon-catalysis of nuclear fusion [1] the need of
a comprehensive framework for the description of kinetics of the associated processes
becomes evident. Such a framework is primarily necessary to interpret the data which
have become [2] or may have soon become available [3] as well as (in an optimist’s point
of view) for its possible usefulness when the muon-catalyzed nuclear energy production
turns out reality [4].

In a classic paper on the subject Gerstein et al. [5] have developed a framework for
the description of the “all-cycles” (AC) kinetics of muon-catalyzed fusion in the deute-
rium/tritium mixture, the case most interesting for the expected (now confirmed) resonance
character of the cross section for p-molecule formation.

In such an approach the appropriate time distributions of fusion events are sums
over all cycles initiated by a single muon as it re~enters the chain of processes after being
released from a p-molecule upon catalysing the nuclear synthesis reaction. The (AC)-
-kinetics has been treated with varying emphases also in Refs. [6-11].

In Ref. [12] the (AC)-kinetics has been considered in detail for one-component media

* Present address: Instytut Fizyki i Techniki Jadrowej AGH; Al. Mickiewicza 30, 30-059 Krakéw,
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(pure deuterium or tritium) with the aim of finding optimum conditions for the experimen-
tal investigation of the corresponding simple branches of the muon-catalysis graph.
Recently, in an advancing degree of completeness of the processes taken into account,
the simple-branch kinetics has been extended to the description of the separate cycles in
the muon catalysis chain [13-16].

In the present paper we develop a general framework for the cycle-by-cycle description
of muon catalyzed nuclear synthesis in arbitrary mixtures of hydrogen isotopes, possibly
contaminated by heavier elements. Strict solutions of the kinetic equations are presented
in the approximation of constant transition rates. The energy-dependent rates can be also
dealt with in an approximate way within the proposed scheme and a manageable computa-
tional prescription follows. Creation of p-atoms and p-molecules in excited states and the
ensuing transitions can be taken into account as well as explicit inclusion of the muon
shaking-off from the final state p-atoms [17] is possible.

The formalism we use is familiar from the theory of signal-flow graphs [18]. However,
since very simple graph-theoretical ideas are chiefly involved the formalism is developed
in an independent way, mainly to elucidate the specific problems and to introduce a com-
prehensive notation.

In Section 2 we present the kinetic equations and introduce the associated graphs.
The resulting formulae for the time distributions of different objects in the muon-catalysis
fusion chain are also written down. Analogous formulae are derived and discussed in
Section 3 with inclusion of the experimental registration efficiency. Section 4 contains the
discussion of possible extensions of the scheme to incorporate energy-dependent transition
rates and to include reversible processes. Concluding remarks end this Section.

2. Kinetic equations
2.1. Kinetic graphs

The processes forming the muon-catalysis chain can be represented by drawing the
corresponding kinetic graph. The general structure of such a graph describing k cycles
initiated by a single muon is shown in Fig. 1. The graph consists of k identical subgraphs
connected to input-output vertices. Each subgraph corresponds to exactly one fusion
act catalyzed by the muon. The primary input vertex (p,,) represents the source of muons.

Transitions to the following cycles occur via the muon which is freed after having
catalyzed a synthesis reaction (either directly or in a collision of the final state p-atom
with a target center) as well as via the p-atom (tp or py) produced in the (D +D)p-fusion.
The rightmost vertex (V) in the k-th cycle represents the node for which the solution is
sought for.

Fig. 2 shows a more detailed map of the processes in the subgraphs of Fig. 1. The links
between the consecutive cycles are shown here as feedback lines (dashed arcs)'. The
vertices can be grouped in three sets representing: the muon (p), the p-atoms (pa) and
the p-molecules (um). By adding wavy bars we denote “fast” muons and p-atoms for

1 As we shall see later, this is a presentation appropriate for the (AC)-kinetics.
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which the cross section for creating a p-atom or p-molecule, respectively, are negligibly
small. The vertices in Fig. 2 have their own structure as indicated in Figs. 3-5. Therefore,
the edges of the graphs in Figs. 1 and 2 should be understood as sets of edges connecting
the corresponding subgraphs. All output vertices representing the released muon are
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Fig. 1. General structure of the graph representing k cycles of muon-catalyzed fusion chain (top), and
general structure of a one-cycle-graph (bottom). Meaning of symbols is explained in text

Fig. 2. Kinetic graph representing main p-atomic and p-molecular processes leading to muon-catalyzed
nuclear fusion in a mixture of H,, D, and T, with admixtures of Z > 1 elements. Wavy lines indicated
at the nodes lead to the (evv) vertex. Other details are described in text
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connected to a subsidiary vertex (p'). This is merely a formal procedure which facilitates
the description and, therefore, the content of (p’) is to some extent arbitrary. For the sake
of definiteness we suggest to include in (') muons with energy E ~ 100 eV, which is smaller
than typical energies of the released muons and still larger than the energies at
which muonic atoms are formed [19].

Similarly, for the final-state hydrogen p-atoms, which can also initiate another cycle,
one can assume conveniently that the (Hyp') nodes in Fig. 3 correspond to energies at
which the inverse isotopic exchange transitions become energetically forbidden [20]
and the (Hp)-ones, to thermal energies.

Fig. 3. Graph presenting a more detailed structure of the p-atomic and p-molecular vertices in Fig. 2

The p-molecular nodes of Fig. 2 are split in Fig. 3 into three vertices each: (pm)y,
(um)p and (um)y, reflecting the three possibilities of creating the (*‘H, “’H)p-molecule
in an [(*H*H)p, “H,e]* or [(*'H, “H)p, “*H,2e]* molecular compound [1]. The inset
in Fig. 3 illustrates the structure of the p-atomic vertices. Analogous structure for the y-mol-
ecules is shown in Fig. 4 where the nodes represent different vibrational and spinfangular
momentum states [20, 21]. Fig. 5 exemplifies fusion in the p-molecules showing different
channels for the (ddp) node. In Fig. 6 fusion in flight [1, 24, 25] which has been omitted
in the previous figures in the interest of keeping the diagrams readable, is additionally
included.

Some of the edges of the graphs in Figs. 2-6 correspond to transition rates which
are negligibly small (e.g. (dp) — (dtp) etc.). We prefer to include them, however, to
emphasize the general character of the proposed framework and we leave open the
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possibility of the experimental verification of their contributions. If necessary, such
transitions can be eliminated by putting the corresponding rates equal to zero.

On the other hand, some processes included in the diagrams are very fast (e.g.
{1) = (Hw)), and may become visible in the data only at very small times [16]. If these
are below the experimental resolution the corresponding vertices can be replaced
by a single node (e.g., in Fig. 2 all cascade transitions within the Hy-atoms and u-molecules
are contained in single (Hp) and (um) vertices). We anticipate that with the advent of
high-statistics and high-resolution experiments the choice of vertices to be included
.explicitly in the kinetic graph will become quite crucial for the description of the data.

Fig. 4. The structure of the (tdy) vertex shown to exemplify the structure of the u-molecular vertices in Fig. 2

In order to secure the overall particle balance in the kinetic graph we introduce in
Fig. 2 two common sink vertices (no outgoing lines): (evv) and (Z~ 1), representing the
‘decay and nuclear capture of the muon, respectively. Below we shall often refer to the
one-cycle graph (OCG) which represents a single cycle in the chain. For such graph the
following cycle can be, for convenience, considered also as a sink node. Included in the
graph of Fig. 2 as examples are also two “‘signature” vertices (n) and (y.). The first one
represents the 14 MeV neutrons produced in d+t —» *He+n? and the second one the
y-rays associated with muon capture by a Z > 1 nucleus. Similar signature vertices can
be associated (at least in principle) with each edge of the kinetic graph. They do not
strictly belong to the graph, as they do not contribute to particle balance, but including
them in the scheme makes the presentation more transparent and helps to incorporate
. consistently the experimental registration efficiency in the description of the muon catalysis
chain.

The most important topological feature of the kinetic graph is absence of links between
different cycles other than via the (p") and (Hp) exit nodes. Other features are: absence

2 E.g. we consider the outgoing neutron as a signature of the fusion act in the dtp-molecule.
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of (p) = (pm), (Ha), (1), (0') and (Hp) — (pa), (1), (1') edges as well as absence of links
between different p-molecules, and molecular compounds of Figs 2 and 3. Additionally,
only one-way links exist between most of the vertices. In fact, in Figs. 1-5 only such links
are admitted which means, in particular, that there are no closed loops in the OCG.

Indeed, reversible processes may occur only within the p-atomic nodes. The isotope
exchange transitions (e.g. (dp) — (tp)) are irreversible, at least, up to corrections due to the
high-energy tail of the Maxwell distribution. In practice, in the temperature range
of interest (T < 10® K) important reversible transitions may arise only between the closely
separated hyperfine structure states of du atoms (4Ey, = 0.049 eV [20]). Inclusion of
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Fig. 5. Graph showing different fusion channels for the ddp-molecule. Dashes lines indicate feedback lines:
of Fig. 2. Arrows at the p-atomic vertices represent transitions to (Zu)

reverse links poses no fundamental difficulty. However, appearance of closed loops within
OCG makes the simple one-link formalism slightly more involved. Therefore, in the
interest of simplifying the presentation, we postpone the discussion of the reversible tran--
sitions till the final Section.

2.2. Kinetic equations

Let us follow the history of the muon up to the k-th cycle. The equations describing:
the numbers of particles in the nodes of the kinetic graph are then:

do(1)

dt ’

dN"
dt

= —ANP@D+
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Ay (k)
dt - —A’lvN’lv + l"ij(k), (1)

i
where n, is the number of vertices in a one-cycle graph, 4;; are transition rates from the
J-th to [-th vertex and

Al = z ln- (2)

i
all lines leaving
vertex (1)

N{(t) is the number of particles in the l-th node of the v-th cycle and ¢(¢) represents the
muon source. In writing down Egs. (1) we have exemplified the equations for the inter-
cycle transitions using the topology of the graph in Fig. 3.

After taking the Laplace transforms of Eqs. (1) one obtains a set of algebraic equations
for the transformed functions:

N{(s) = [ e *N{™(r)ds 3
0
which can be conveniently written as

A()N(s) = 1(s) @)

with N(s) = [N{(s), ... N¥(s)]" and with matrix A(s) having the following structure;
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The off-diagonal matrix C links the neighbouring cycles and A, defines the one-cycle
graph of Figs. 1-5. If the equations are ordered so that in N(s) only transitions from
higher to lower N(s) are possible (temporarily we admit only one-way links), one has:

1
1 N 0
\\
A(s) = 1\
AN
- ._’1_‘1_ N 1
Aj+s 1] (6)

...... - U U PI I S | | I,

Fig. 6. General structure of one-cycle-graph with fusion in flight taken into account. The vertex denoted
by (coll) is a subsidiary vertex representing the nuclear interaction without creation of the p-molecule
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Then
det A(s) = det A,(s) = 1. )

The unit entries in the diagonal arise atter dividing each transformed equation (1) by the
coefficient at the LHS function N{(s): (4;+5). Thus, in accordance with Figs. 1, 23

0, 0, - .flPL
A +s
_ My _ Aoupi 0
N A +s’ A +s’
&) = P P @)
_ e A 0 |
Agy+s ’ Agy+s ’
— }"F"ﬁr - A‘F‘»;}T
| Ayts’ Ay+s’ 1

If fusion in flight (Fig. 6) is taken into account, the number of rows in € will correspond-
ingly increase. The vector describing input into the chain is

T
T(s) = [;1¢(+S)s ,0,0, ... 0] . ©)

n”

Let us remark that in our notation the muon sticking coefficients, «;, and fusion
channel branching ratios, b;, are included in 4;;. E.g., referring to the conventional nota-
tion:

Aiaap = A0b Wy, (102)

For transition rates which are determined by collision cross sections
Ay = nof); (10b)
also included in A;; are: relative concentration, ¢, of the respective target centers and the
overall target density, ¢ = n/n, (n, is usually assumed to correspond to liquid hydrogen
density: 4.25 + 10?2 cm3).
By inspection of the matrix A(s) one can easily find the solution for any node (/) in
an arbitrary k-th cycle: ‘
N®(s) = TAET ' Ty(), ¢8))

where T((s) is a (n,xn,,) matrix the entries of which are
Ty = (=1 'My(s), (12)

M, (s) are minors of A, corresponding to the i-th row and Ith column, n, and n,;, denote
the number of all vertices and the number of input vertices in the one-cycle graph, respec-
tively, index / running over all OCG nodes and i over all input ones. Analogously, T(s) is
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a (n,,, X n;,) matrix with elements defined by Eq. (12), the first index running now over
all exit nodes of OCG: 1, ..., ngy,. 7,(s) is given by Eq. (9), being now a n; -dimensional
vector representing input to the first cycle.

It is convenient to consider Eq. (11) as a result of an iterative procedure of constructing

N®(s) = [N®(s), ... NO@)IT
N® = 11, = T,6W,_, = T,CTI,—, = ... = T(CT ', (13)

where 'I.,, = f,(s) represents an input to the v-th cycle and W, = W,(s) the set of the resulting
solutions for the exit vertices of the same cycle.

Yet another way of viewing the solutions for N®(s) follows from the graph-theoretical
interpretation of Eq. (11). Namely, the solution for N®(s) is a sum of terms:

A . Ay A s¢(s)
Ap+s Ap+s  Ay+s A“+s’

gn(s) = (14)

where the set {4y, Ay, ... 43,} can be associated with an m-th “forward path” from
(1;,) to (), which is a sequence of forward directed edges, one following another, leading
from the primary input vertex (u;,) to the vertex (I) in the k-th cycle {18]. Thus?

N | (-
#n i

all forward m-th
paths forward
(W1—=~Ux  path

Therefore, the solutions for N{¥(s) can be found either by direct application of Eq. (11)

or by inspection of the kinetic graph.
A general structure of N{¥(s) is:

5

k OCG edges
N§ )(S) = S¢(S) l—I (A +s)l',. 3 (16)
all forward OCG nodes "
paths (u)1 -+ (D

where k;; and 7, are multiplicities of 4;; and (4,+s5) in the forward path, respectively,
and Xr, = Zk;;+1.
Analogously, the time distributions of signatures associated with the vertex (/) in the
k-th cycle
ds®
dt

= A=NM(), an

3 1t is easy to check that for the matrix A given by Egs. (5)~(8) all terms in (15) are positive, as should
be expected from the physical interpretation. The terms in (15) are often referred to as path transmissions
or path products [18].
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where A[*® is a sum over the registered transitions

)n:e‘ = Z ;. ji (18)
registered
transitions
[GRI)
is given by
sS(s) = AENI(s). (19)
The total yield of signatures defined by Egs. (17), (18) follows immediately from (16)
and (19):
d k) :‘u
Y'(k) J‘ dt = 1 Z ]-_I A:n [s6()]s=o- (20)
(ﬂ)n"’(l)k

If we choose ¢(f) to represent a single muon which enters the chainat ¢t = 0 (¢(t) = 0
for t <0, ¢(t) = 1 for t > 0):

sp(s) = 1, @D

the time distribution (17) which is the inverse Laplace transform of (19) is given by a direct
generalization of the formulae of Ref. [16]:

lfl‘m

dS(k) :{re' f.p. 0[(1% edges -A;t
T I =D

allf.p. f.p. OCG nodes

W1 in f p.
ry
ryi—1 p—1 ry—1+4,)!
x g (’ ) E (-1y- ‘( ) o1t o)
ve Gy - Gy, (An_Aj)
p=1 {91..-qa---@n_} SFEF f.p.OCG
nodes # (j)

Before proceeding further let us consider Eq. (11) for the particular case where only
one feedback line: (p') = () is taken into account. Then:

CT - G(s) = a "is) IM e (S)1, 23)
n
where )
Ay
My () = (A, +3) IM (9 (24)

and the summation goes over all lines contributing to (1'). When (n’) and (i”) are re-
placed by common vertices () describing the muons released in the i-th fusion channel
one obtains:
Ay
G(s) = ——*—— AL B —BF™) My 25
() (A“‘*‘s)(/ip"}'s) um Vi ( )I l‘ll'l‘l'i)l ( )

(um),
channels

where w,; are “effective” sticking coefficients corrected for muon shaking-off [17].
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In particular, for the one-dimensional chains (fusion in pure D, or T, targets can be
so approximated) Egs. (23) and (25) give the formulae obtained in Ref. [16].
2.3. All-cycles equations

When the number of particles in each node is summed over all cycles the resulting
equations for

N4 = i N®s) (26a)
k=1
are
ARO(HNA(s) = 1(s) (26b)

with A49(s) being a (n,xn,) matrix:

1 (A
. 9 i (s)]
A4O(s) = N0 @7
Ay N\
— 1
Ai+s 1
Now, in general,
det A4 (s) = A(s) # 1. (28)

The procedure of finding NA9s) is straightforward, although writing down all
contributing terms may become involved. Therefore, it seems reasonable to indicate here
a possibility of constructing ﬁ(“c)(s)‘ by inspection of the (AC)-kinetic graph (ACG)
which is the one-cycle graph (OCG) with the feedback lines included.

~ According to Mason’s topological formula [22, 18] the solution can be found by
enumerating all closed loops in the graph (all edge orientations in the loop have to agree)
and grouping them into vertex-disjoint sets, i.e., sets of loop having no common vertices.

Then*
)A,(5)
NAO(s) = Z 845
ros) 20) (29)
Gt
in ACG

where g(s) are transmissions (14) for the k-th forward path in the ACGS,

AS)=1= Y Ppy+ Y Puz— Y Pps ... (30)

4 Notation of Ref. [18] is followed.

5 Note that if ACG contains more than one feedback line there are more forward paths (@) — ()
in ACG than in OCG. For example: (w) — (um) — (ﬁ'{m) — (Hy) — () is a forward path in ACG if none
of the vertices is traversed twice..
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P,,, are products of 4;;/(A;+s) over the m-th loop in the ACG, P, are analogous products
for the m-th set of two vertex disjoint loops etc. 4,(s) are given also by Eq. (30) with an
additional condition that the contributing loops have no vertices in comimon with the
k-th forward path. As all loops in the ACG contain either (p’ ), (tp) or (pp) and all forward
paths start at (p), enumeration of the vertex-disjoint sets is not a formidable task and
solutions (29) can be written down rather eas11y Additionally, for the solutions for the
exit vertices the number of the contributing loops is further reduced. Let us also remark
that if only (') — () feedback is left, all 4,(s) = 1, as there are no loops vertex-disjoint
with any of the forward paths.
Similarly to Eq. (20) the total (AC) yields of signatures (17) are now:

£:(0)4,(0)
YA = 2 . 31
4(0) Gy
all f.p.
(#)= (1) in ACG
Correspondingly, the (AC) time distributions: are sums of the inverse Laplace trans-
forms of the terms:

[14,+s)
i T el | Ao (32)
ACG nodes .j)

where (k, j) run over all edges in the forward path and in the corresponding vertex-disjoint
loop (or loops) and n over all vertices® not included in I7 ;. In time variable the resulting
expressions read:

v

dsiA©
e Z e MH((A), (4)) 33)

i=1

1 ,
B {4) = 5 Z ( I l lu) (H (Au—Ri)) sgn (P,.,), (33a)

ACG~f.p. k)
(D g OB
v.d.l.

where

D= H (Rj"‘Ri) (33b)
all ACG
nodes # (i)

and where R, are zeros of det fi(“c’(s) and sgn (P,,) are the corresponding signs in Eq. (30).

¢ Let us remark that the sink vertices need not be included here, as the corresponding equations
decouple from the others. The time distributions for the sink vertices are simply sums of Aink,jNj(¢). The
same argument applies to the cycle-by-cycle formulae.



3. Experimentally registered signatures

Due to limited experimental detection efficiency, only a fraction & of actual transi-
tions is usually registered. The relevant formulae were derived for a few simple situations
in Refs. [13-16). In what follows we show how registration efficiency can be included
in the kinetic formulae in the general case considered above.

Let us construct time distribution (17) of the first registered signature. If the detected
transition occurs in the k-th cycle, it means that either it remained unobserved in the
preceding k— 1 cycles or the forward path which led to (/) did not include the “measured”
edge.

Fig. 7. Inclusion of experimental detection efficiency

This can be easily accounted for by a simple modification of the kinetic graph. Indeed,
let us replace the edge corresponding to the measured transition by two parallel links
as shown in Fig. 7. Let one of these links represent transitions which are registered (A}’}"),
and the other one the transitions which remain unobserved (4;7°"). The signature vertex is
then associated with the “observed” edge. The relative probability for the muon to traverse
one of these two edges is determined by the detection efficiency, &;;, of the signature of the
(j} = (i) transition. Thus

j.?jb’ = 6‘:’}.”, }.;I;mb‘ == (1 —su)lu. (34)

According to this picture, theé muon that reached the k-th cycle without giving
a signal could traverse only the ‘“‘unobserved” links whenever it went from (j) to () in
the preceding cycles. Thus, it the first registered transition takes place in the k-th cycle,
the time distribution of the associated signatures is given by Egs. (19) and (16) with the
following substitutions:

AU At = B =Tk (352)
transitions

in (19), and
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in (14) (hence also in N{¥(s)), and with A, remaining unchanged:
A =Y O +A) = A, (35¢)
7

Since the registration may take place in any cycle, the resulting expression (19) has to
be summed over all k:

00
sS{(s) = 2> Z N{P(s; 4y = 25°). (36)

It is easy to recognize that
sS{0(s) = A NIPO(s; Ay — A5°™) D)

which follows immediately from Egs. (26), (32) and (35).
Thus S{*)(s) is determined by the solution of Eq. (26b) with

ﬁ(AC)(s) R A‘(AC)(S; Ay l:;lobS). (38)

Note that in Eq. (29) for the first registered cycle only 4(s) = det 44 s affected by sub-
stitutions (35b, c). Indeed, g,,4,, correspond here to forward paths which terminate exactly
at the vertex for which the solution is sought, thus not including the “measured” edge.
From Eqgs. (26) and (38) one can see that analogous formulae for higher registered
cycles can be obtained using a straightforward generalization of the presented procedure.
Indeed, if an (/;) — (j,) transition is registered at ¢t = ¢, the time distributions of signatures
which follow are response to a step-function input in the /;-th node at ¢ = ¢,. Thus for
the subsequent transitions, (/;) — (j;) registered with efficiency ¢;,;, the corresponding
time-distributions will be given again by Egs. (35)-(38) and (26b) with

I(s) = [o, o,...;si‘—ﬁ-%,o,...o] (39)
151

with the time variable in Eq. (17) properly shifted. Investigation of such correlated time
distributions can be a useful tool in disentangling the complicated kinetic scheme of muon-
-catalyzed nuclear fusion in mixtures of hydrogen isotopes.

4. Discussion

4.1. Energy-dependent transition rates

In the considerations presented above transition rates were assumed constant. One
can envisage, however, that for some objects in the graph transition rates 4;;, in Eq. (1)
depend on time which elapses from the moment of their creation, e.g. as a result of degrada-
tion of their initial energy. Then in the RHS of Egs. (1) terms A;;N;(#) should be replaced

t
by § A;;(t—1) [dN(x)/dr}dr which by the convolution theorem leaves unaltered the struc-
4]

ture of the equations for the Laplace transformed functions. However, the depend-
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ence of the solutions on s may render the description of the kinetics in the time variable
prohibitively complicated. Another approximate approach which seems to be more.
manageable consists in replacing such vertices by sets of nodes corresponding to
energy intervals in which the transition rates can be assumed approximately constant.
The formalism developed in the previous Sections can be then applied without changes.
The only complication is the necessity to deal with an increased number of vertices and,
as a result, with a larger number of loops and forward paths. Nevertheless, the complica-
tion will amount to replacing the corresponding paths and loops by sets of several ones,
and the changes so introduced can be easily controlled.

42. Reversible transitions

So far in the derivation of the kinetic formulae we have not included any reversible
transitions. In the cycle-by-cycle description this led to Eq. (7) which was the source of
simplicity of the formulae that followed. If reversible transitions are admitted, closed
loops will appear within OCG. Then, as can be easily seen:

det 4,(s) = det AT(s) = 4T'(s), (49)

where fi'l"(s). is a submatrix of A,(s) (situated+on its diagonal if proper ordering is retained)
describing the subset of states between which two-way transitions take place.

Since in a forward path, each vertex can be traversed only once at the most, the cycle-
-by-cycle distributions will be given by equation analogous to (29)

4
NiP(s) = B4 (41)
(47T
allf.p.
W=Dk
with the loops describing now the reversible transitions within OCG, which by analogy
with Eq. (31) gives immediately the general formula for the total signature yields. The
expressions for signature time distributions get slightly more involved in comparison
to Eq. (22) where now A4; — R;, R; being zeros of 47"(s) for the vertices in the loops and

R; = A; for the other vertices, and the rightmost sum is replaced by

p—1
P DI R | =
el ) qi -+ qs -+ qp, (Rn_Rj)

{41...qs.-.qn, 0CG
s#]

M nodes # (J)
q1 --- 4y, (Qn_qu)!
{q1--an} ocG
qs< s nodes

where g, determines the multiplicity of (A4,-+5) in an analogue of Eq. (32). As is s¢en,
although the original simplicity of Egs. (15)—(22) is to some extent lost, inclusion of
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reversible transitions into the kinetic scheme poses no fundamental difficulty and can
be accomplished in a straightforward manner.

4.3. Concluding remarks

The presented framework gives a practical tool for the analysis of the experimental
data on muon-catalyzed nuclear fusion in arbitrary mixtures of hydrogen isotopes with
possible admixtures of heavier elements. Evolution in time of separate cycles in the chain
can be described with inclusion of the experimental detection efficiency. Practically any
p-atomic and p-molecular processes in the chain can be treated strictly in the approxima-
tion of constant transition rates. Thus, the formalism provides means to extract from
the data the energy-averaged values ot the parameters characterizing the muon-catalyzed
fusion process, without making additional simplifying assumptions. The topological
graph-theoretical approach to construct the kinetic formulae is shown to be particularly
useful and simple in application due to a very limited number of the vertex-disjoint loops
which can appear in the ACG. It permits also a direct physical interpretation of the terms
contributing to the time-distributions of the signatures and, thereby, enables one to control
easily the influence of different processes on the kinetics of the chain.

The general character of the presented formulae opens several new possibilities for
the experimental investigation of muon-catalyzed nuclear fusion of hydrogen isotopes.

The author is deeply indebted to Prof. L. I. Ponomarev for the stimulating discus-
sions and to Prof. V. P. Dzhelepov for his hospitality at JINR.
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