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Supersymmetric confining gauge theories are interesting candidates for a theory of
quark-lepton substructure. We review some general features of supersymmetric composite
models and illustrate various technical developments by means of a toy mode! based on the
group U(6). We also discuss some constraints on models with composite W-vector bosons.

PACS numbers: 12.35.

1. Are quarks and leptons composite?

The topic of supersymmetric preon models is very speculative. There is neither experi-
mental evidence for supersymmetry or quark-lepton substructure [1] nor does a satis-
factory theoretical model exist. Yet the considerable amount of recent work [2] on this
subject is not without motivation: it is based on the belief that the Higgs sector of the
standard model is only a low energy effective Lagrangian and the experience that the
dynamical understanding of a mass spectrum generally involves more fundamental
constituents. Indeed, focusing on the family replication and the quark-lepton mass spec-
trum, it seems difficult to escape the problem of quark-lepton substructure. If quarks
and leptons are composite, however, their structure must be very different from the bound
states we know. Contrary to atoms, nuclei and hadrons, quarks and leptons are very
pointlike, i.e., their size r; is much smaller than their Compton wavelength:

1\1
$an = (—)——- > 1. €y
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This inequality represents the main dynamical problem of composite quarks and leptons.
’t Hoof't [3] has shown that unbroken chiral symmetries imply the existence of massless
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composite fermions. Furthermore, it appears that the most interesting models which
satisfy °t Hoof’s consistency conditions require spin-0 preons in addition to spin-1 preons.
Fundamental scalars, however, are “unnaturally” light unless they are part of a super-
symmetric theory. Thus one is led to supersymmetric theories as the most promising
candidates for a theory of quark-lepton substructure. Indeed, as we will see in the next
section, supersymmetric confining gauge theories lead almost unavoidably to light compo-
site fermions.

An important issue in the context of composite models is the nature of the weak
interactions. It is conceivable that the W-vector bosons are also composite and that the
substructure scale is related to the Fermi scale, i.e., 1/ry; ~ Gx * + 300 GeV. It is believed
[1, 2] that composite W-bosons are consistent with the neutral current phenomenology
as well as the successful mass predictions of the standard model if the heavy bound states
predicted by the preon theory have masses of the order of 1 TeV.

Tn these lectures we will discuss a supersymmetric toy model in which the left-handed
particles of one family and the W-bosons are bound states, and we will use it to illustrate
some techniques which are important in the context of supersymmetric composite models.
In Section 2 we discuss the idea of quasi-Goldstone fermions and the structure of their
residual interactions. Section 3 deals with the coset space U(6)/SU(2) x U(4), and in Section
4 a particular preon model is described which realizes this symmetry breaking. Section 5
contains some remarks on how .he U(6) toy model may be extended to a more realistic
theory and some constraints on models with composite W-bosons are listed.

2. Quasi-Goldstone fermions

The only known bound states, which are light compared to their inverse size, are
the pions for which one has & ~ 2.0 [4] (cf. Eq. (1)). They arise as pseudo-Goldstone
bosons from the spontaneous breaking of chiral invariance. As the Goldstone mechanism
plays a crucial role in supersymmetric preon models, let us briefly recall some features
of dynamical symmetry breaking in QCD. In the case of two flavours u; g and dy y the
QCD Lagrangian possesses the (approximate) global symmetry

G = SUQR), x SU(2)g x U(1),, )
where the two SU(2) subgroups are generated by the charges
Oir = 3 (T'FXY,
with
T = | &xq(x)o ¥ v*a(x),

X4 = [ d*xq(x)yoys Frha(x), q= (d) . 3)
The formation of the vacuum expectation values

<0Jiu|0> = €0|dd|0) ~ Aep @
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breaks the chiral symmetry G dynamically to the diagonal subgroup H = SU(2), x U(1),.
The spontanecous breaking of the axial gencrators X* leads to an isotriplet of (almost)
massless (pseudo) Goldstone bosons, the pions,

w(x) ~ q(x)ys & Ta(x). &)

It is a crucial feature of the Goldstone phenomenon that the interactions of the Gold-
stone bosons at energies small compared to Aqcp are determined entirely by the coset
space G/H [5] and do not depend on details of the dynamics of the underlying theory.
In order to obtain the effective low energy Lagrangian one constructs a representation
of the full group G acting on the pion fields where the broken generators X“ are realized
non-linearly,

1
‘;T [TAs “B] = eucﬂc,

1
= [X4, 7% = 2f,68+ ..., (6)

and f, ~ Agcp is the pion decay constant:
<017O0)y,7s 3 *a@I*(p)) = ip, 6%, a

The effective Lagrangian describing the nn-interaction is now obtained by demanding
that its variation with respect to T4 and X is a total derivative. This yields the result [5]

Lo = 5 *n19,n f12 nno*n®8,m" + O(n°), . ®)
which incorporates the low energy theorems of current algebra.

1t is expected that in general also in supersymmetric (SUSY) confining gauge theories
dynamical symmetry breaking will take place. SUSY gauge theories are built from chiral
superfields ¢; = (i, 110> contammg complex scalars y; and left-handed Weyl fermions
H, and vector superfields V' = (41, V:), containing Weyl fermions 4j and vector bosons
V.. Vacuum expectation values of scalar fields

<0|X_inIO> ~ Af{c, ®

which are of the order of the hypercolour scale Ay, can break the symmetry G of the
Lagrangian to a subgroup H. Due to supersymmetry, the resulting Goldstone bosons
have to be part of chiral superfields ¢, = (¢;, y.;). Applying Weinberg’s method to the
supersymmetric case an effective low energy Lagrangian for the Goldstone superfields
can be constructed [6] which has the generic form

1 __
Lo = '—j_z P ib:Pilooss+ ---

1
- = 07 $:0"$70,¢;—

f A2 wm’)’ WLxWLJquLJ cees f~ AHC' (10)
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The almost unavoidable appearance of massless composite fermions in supersymmetric
theories leads naturally to the conjecture [7, 6}, that quarks and leptons may be identified
as “quasi-Goldstone fermions”, i.e., as superpartners of Goldstone bosons. In such a sce-
nario (cf. Fig. 1), light composite Goldstone supermultiplets arise from a spontaneous
symmetry breaking at a large mass scale (e.g. 1-100 TeV). Mass splittings within the
Goldstone multiplets which render the quasi-Goldstone fermions lighter than their scalar
superpartners can occur as a consequence of soft SUSY breaking, explicit breaking of the
original global symmetry — for instance through gauge interactions — and unbroken
chiral symmetries [8]. Some interesting explicit examples have been discussed by Lerche
and Liust [9).

4
1-100Tev] Heavy spectrum (Ayc)
10-100GeV- Scalar quarks, scalar leptons
{ Asusy < Auc)
0 L ——_ Quarks, leptons

Fig. 1. Possible mass spectrum of scalar and fermionic components of Goldstone supermultiplets in super-
symmetric preon models

An important feature of the effective Lagrangian Eq. (10) is the current-current self-
-interaction of the fermions. This suggests that the weak interactions of quarks and leptons
may be residual interactions which are mediated by the exchange of composite W-bosons,
a possibility which we will pursue in the following sections. The current-current form
of the residual fermion interactions in Eq. (10) is a special property of quasi-Goldstone
fermions. If quarks and leptons are (pseudo) Goldstone fermions arising from the sponta-
neous breakdown of an extended supersymmetry, as suggested by Bardeen and Vi¥nji¢
[10], their residual interactions will involve derivatives, in accord with the low energy
theorems for Goldstone particles,

|
L& = - ;b;zwiv“@ PP 0.yt - @11
and can therefore not be identified as weak interactions.

3. The coset space U(6)/SU(2)x U(4)

In models with composite W-bosons weak isospin has to be introduced as a global
symmetry. Furthermore one has to ensure that quarks and leptons couple universally
to the composite W-bosons. This can be achieved by imposing a global Pati-Salam SU(4)
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invariance [11] with lepton number as fourth colour. In the case of residual weak interac-
tions parity violation must be due to a different bound state structure of left- and right-
-handed fermions. It is therefore natural to consider in first approximation only the left-
-handed fields as composite and to treat, as in the Abbott-Farhi model [12], right-handed
fields as elementary spectators.
The left-handed fermions f, df, v, and ef of one family transform with respect to
SU(2) x SU@) as
uiv ta
( g E) = (v ~ 2. (12)
LeL
It is easy to see that one can obtain the 9}° as quasi-Goldstone fermions from the sponta-
neous symmetry breaking U(6) — U(2) x U(4) [8, 13-16]:
UQ) (2, 4*
uo:(S41%4)

(2%, HUA) (13)

The 16 Goldstone bosons transform as (2, 4*)+(2*, 4) and can be embedded into 8 chiral
multiplets ¢f = (¢f, vi1). The assignment of Goldstone bosons to chiral superfields is not
unique. The only restriction is that the coset space G/H is embedded in a Kéhler mani-
fold [17]. The above choice of 8 chiral multiplets is clearly the minimal one and it is possible
because U(6)/U(2) x U(4) is a Grassmann manifold, i.e., a special Kihler manifold. One
can also associate, however, the 16 Goldstone bosons with 16 chiral superfields [13].
It is a dynamical question which case is realized. Another important point concerns the
two U(1) factors in H = U(2) x U(4). One or both of them may also be spontaneously
broken. This leads to one or two additional neutral chiral multiplets and as we will see,
changes the low energy effective Lagrangian of the Goldstone multiplets ¢7.

It turns out that the relevant coset space is U(6)/SU(2) x U(4). The broken U(1)
factor yields one neutral Goldstone superfield ¢, the “novino”. The effective Lagrangian
for the superfields ¢f and ¢ can be constructed in a straightforward manner following
Weinberg’s method [5]. The first step is the construction of a non-linear realization of the
U(6) algebra. The gencrators T3 (&, f = 1, ..., 6) which satisfy the commutation relation

[T5, T]] = 65T/ —6;T5 (14)
are split into the unbroken generators (x = (4, a); i=1,2; a=3,...,6)
L= T}-3 6T, Ly=T, (15)
which belong to the unbroken subgroup SU(2) x U(4), and the broken generators
. . 1
X? = Tia’ X:; = Tz’ X =— Tii- (16)

V2
The Goldstone superfields ¢¢ and ¢ transform linearly with respect to H = SU(2) x U(4):
(L), ¢i] = 8id5—% 0500
(L, ¢7] = —didh. 17)
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For the broken generators in G/H a non-linear realization has to be constructed

00

where F,y(¢) satisfies the “Jacobi identities” [5] (P Q= C)’ (Z))

[X4195] = F45(9), (18)

[XA’ [XB9 ¢C]]— [XB’ [XA’ ¢C]] = [[XA’ XB]’ ¢C];
[XA’ [LP’ ¢B]} —[LP: [XA’ ¢B}] = [[XA’ LP}’ (»bB]?
[Lp, [Lg, $411-[Lo, [Le, 6411 = [[Lp, Lol, é4]- (19)

Eqs. (19) ensure that the functions F,4(¢) define a representation of the U(6) Lie algebra.
One can check by explicit calculation that an exact solution of Eqgs. (19), which is unique
up to redefinition of the Goldstone superfields, is given by [16]

X2, ¢%] = ¢“¢ = [X5 801 = L350
X1 = X =0,
[¢]J =[x 6]

S04 = - éh X 4l=f 0)

J2
Zumino has shown [17] that in general the Lagrangian of a supersymmetric ¢-model
takes the form

& = K(&A: ¢A)}06'9_0’ (21)

where K is the Kahler potential of the associated Kihler manifold. Therefore the effective
Lagrangian for Goldstone superfields ¢ and ¢ can be constructed by making an SU(2)
x U(4) invariant Ansatz for K and by demanding that a variation of K yields a sum of
chiral and antichiral superfields:

[X . K(&,, &5 65 )] = b +hSds+hEedsdc+ ..
(1)“53'*‘ BC{ﬁB‘—ﬁC"{‘ e (22)

Eqgs. (21) and (22) imply that the variation of the Lagrangian is a total derivative and that
the action is consequently invariant under U(6) transformations. Using the described
procedure one finds [16]:

K = $¢g+$¢— 2&5‘ b5t + L Plbids+FR.Pdi0+GPPdd+ .. (23)

f
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where F and G are unconstrained parameters. This arbitrariness of the Kihler potential
is related to the presence of one “quasi-Goldstone boson” in ¢ and reflects the different
ways in which the odd-dimensional coset space U(6)/SU(2) x U(4) can be embedded
in a Kéahler manifold.

Of particular interest are the quark-lepton residual interactions which are contained
in Eq. (23). Using the identity

T = 251843 i} 24)
one obtains [16]:
2=f2 0
LH = - Z[‘Pu’)’n(z Divt 1~ 22f2 S B RLaytl (25)

Eq. (25) contains the phenomenologically wanted isovector exchange term as well as an
isoscalar exchange term whose presence is a familiar problem of models with composite
W-bosons [1, 2]. Indeed, in the limit v, — 0, i.e., in the absence of the novino, the result
is unacceptable because isovector and isoscalar contributions are of equal magnitude. In
the case v; =& v,, however, which one may expect in a preon theory with a single scale,
the isoscalar exchange term is suppressed. We are thus led to the unexpected result that
in supersymmetric preon models with composite W-bosons there is a direct relation
between the weak interactions of quarks and leptons and the existence of a new neutral
Goldstone superfield, the novino.

In this section we have shown how one can construct the effective Lagrangian for
Goldstone superfields in a direct pedestrian way. More elegant methods which are crucial
if one wants to construct the o-models beyond the quartic terms can be found in the litera-
ture [18]. The very interesting subject of gauged supersymmetric a-models [19] is beyond
the scope of these lectures.

4. A U(6) model

The simplest supersymmetric “preon model” with global U(6) invariance is a SU(2)

gauge theory with 6 doublets of chiral superfields y% = (2, n{,), where « = 1,..., 6 denotes
the U(6) flavour index and p = 1,2 1s the SU(2) hypercolour index. The 1nteractlon
Lagranglan for the chiral multiplets y? and the gauge vector multiplets V = 1<V,

= (AL, V,‘), is given by [20]
& = [ a0 ) (26)
The simplest gauge invariant composite operators are the bilinear chiral superfields

¢aﬁ = b‘qugX;qa (27)

and the vector superfields

Jg = T3 Vo (28)
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which, except for the anomalous U(1) factor J;, represent the conseved currents of the
theory:

D*J5 = D*J5 = 0. (29)
This U(6) “preon model” corresponds to SUSY QCD with two colours and three
flavours. As the fundamental representation of SU(2) is pseudoreal, the global symmetry
is U(6) rather than U(3)x U(3). Vacuum expectation values of the operators &,; and
Ji can break the U(6) symmetry down to (SUQ))® (i=1,2; a; =3,4; a, = 5, 6):
<¢U> = vfsij’ <¢a1b1> = Ugsaﬂn’
<¢azbz> = vgsasz <J;> = ’{Jié_ip
Ty =36, IR = 03 (30)
Constraints [21] on the possible values of v2, ..., #3 can be obtained by breaking the U(6)
invariance explicitly to (SU(2))® through the superpotential

__ _1 ij _1 agby _1 azbz
gm = —g M 7P —5 mye™ D,y —5 MaE” D, (31

and considering the chiral limit m; — 0. The effective Lagrangian approach [22], analyti-
city arguments [23] and instanton calculations [24] lead to the following mass dependence
of the chiral condensates:

1
v} ~ —(mymym;)t/2, 32)
m:

13

If one demands that in the chiral limit all vacuum expectation values are finite, only two
cases are possible: either the full U(6) symmetry remains unbroken (03 = vi= 02 = 0)
or the unbroken subgroup is SU(2)x U@4) (v? # 0, v3 = v3 = 0). Constraints on the
vector condensates follow from the SUSY Dashen flormulae [25, 26]

JaM?)45f5 = 5 <01 [X 4, [ X5, Z¥]]10),

faM yofy = O [X 4, [ X5, Z5]] 10>, (33)

where X, are the broken charges, f, the related decay constants and M, the pseudo-
-Goldstone boson mass matrix. Zx and ¥ are the fermionic and scalar terms in the
symmetry breaking part of the Lagrangian:

d*g
Ly =3 —— nbni+ec,
F 2 axgaxgﬂ Ng
8
s =7 = P (34)
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Demanding that the decay constants f; and f; of the Goldstone superfields ¢ and ¢¢ remain
finite in the chiral limit, one finds [21] that the vector condensates follow the pattern of the
chiral condensates: either the U(6) symmetry remains unbroken (32 = #2 = 72 = 0)
or the unbroken subgroup is SU(2) x U(4) (#? # 0, 3 = #3 = 0). The size of the conden-
sates is expected to be large, i.e., a(v}) ~ a(@}) ~ 1 (a = (g%/4n)).

The analysis of the bilinear condensates suggests that the model may have a phase
in which the full U(6) symmetry is unbroken. It is a remarkable feature of the model
that this possibility is indeed compatible [27] with *t Hooft’s anomaly conditions [3]. The
symmetry of the classical Lagrangian is G = U(6) x U(1); where the R symmetry acts
differently on the scalar and the fermionic components of the superfield y2:

n-oi mE- e_i?ﬂLg- (35)
Instanton effects reduce the classical invariance G, to G,, = SU(6) x U(1)x with [16]
X = T;/+3R. (36)

The preons 7., the gauginos A.¢ and the composite fermions yy,s, Which are contained
in the chiral superfields ®,5, transform with respect to SU(6) x U(1)x as follows:

(18) ~ 2(6)-2, L) ~ 35 (Prap) ~ (15)-;- €2)
At the preon level one obtains for the triangle anomalies (in units of (6),):
[SU®)T : -2,
X[SU6) :2-(=2) = —4,
X312 (=2*+3-3* = —15. (38)

In terms of the composite fermions, the anomalies read:

[SU®)] : K(=) = —(6—4) = =2,

X[SU®)]* : (=DC(D = (-1 (6-2) = —4,
X3 15(=1)% = —15, (39)
where the quantities K and C in Eq. (39) are defined [3] through
tr [Z(R)F(R)] = C(R) tr [2(HA(D)];
tr [{2*(R), F(R)}A(R)] = K(R) tr [{2*(0]), (@} (D)]- (40)

The matching of the anomalies for all SU(6) x U(1)x currents does not necessarily
imply that a phase with unbroken SU(6) symmetry exists. In the “Higgs phase”, where
the SU(2) gauge invariance is spontancously broken through large vacuum expectation
values of the fundamental scalar ficlds 7%, i.e., a({¥>?) < 1, the unbroken global symmetry
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is SUQ2)x U4) [16]. Up to U(6) transformations, the only solution to the D-term cone
straint

GHEKIE =0, I=1,..3, (41)
reads [28]:
FP> = vdf, <ig> =0. (42)

This corresponds to the result obtained in the “confining phase” (cf. Eq. (30)) with
v? = §} = v According to the idea of complementarity [29], there is no phase transition
between the ““Higgs phase” and the “confining phase”. This suggests that also in the strong
coupling regime the unbroken global symmetry is SU(2) x U(4) rather than U(6).

An important question concerns the existence of heavy vector bosons in the theory.
In analogy with QCD one expects naively that the currents Jg create 36 massive vector
supermultiplets from the vacuum. The suppression of the isoscalar exchange term in the
effective Lagrangian Eq. (25) suggests [16] that among these 36 vector bosons the isotriplet
of W-bosons plays a special role. The additional 33 vector bosons should be either heavier
or weaker coupled than the W-bosons. Such a qualitative difference can only be caused
by the scalar condensates. A means to study the effect of scalar condensates on the physical
spectrum of a theory are the SVZ-sum rules [30]. In the standard manner, the 2-point
function of the currents Jg in the Euclidean region can be evaluated using dispersion rela-
tions and an Ansatz for the physical spectrum on one side, and in perturbation theory
(including power corrections) on the other side. A straightforward supergraph calculation
(cf. Fig. 2) yields the result [21]:

i | d*xe'*(T(J5(x, 0, B)JY0, 0, 0))>
= 3 Py6*(0)a’n53(a*) — 5 (P1 — P2)6*(0)8365(K T > — ¥ 1p7)
—3 8%(0)8383(<H 1 + < 1pD)s (432)

with
aye .2 asy 1 q2 1 =0 B
mps(q”) = 6564 | — = In =t —2(<x Y + <X 260)

(2n0)*
(a*?

e
o = ot iy = Ao (43b)
L : :

&

T e A 2 A
2 —— LT 1) AT 1DD +2 5 @) @) TOD+ -

2
@)

The polarization tensor I1g3(g*) has 5 irreducible components with respect to the unbroken
SUQ2) x U(4) symmetry: (3, 1), (1, 1), (2,4), (1, 15) and (1, 1). In the channels (1, 1)
and (2, 4), the Goldstone superfields ¢ and ¢;, contribute in addition to the vector super-
fields. Using the results for the bilinear condensates (30) and factorization for higher
condensates, one finds large power corrections in the (3, 1), (1, 1) and (2, 4) channels
which are directly related to the mass of the composite W-bosons and the decay constants
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fi and f; [21]:
My = 2moaw T (44a)

fi=rf
17
The sum rule in the (3, 1) channel, which yields the standard model mass formula (44a),

is identical with a sum rule [31] which has previously been derived in the context of the
Abbott-Farhi model.

i~ G, <1 (44b)

O [
-
-5 -

& .-

Fig. 2. Supergraphs contributing to the two-point function of the U(6)-currents J,? (cf. Eq. 43)). Full
lines denote chiral superfield propagators, wavy lines vector superfield propagators. Crosses indicate scalar
condensates

The result Eq. (44) shows clearly the importance of scalar condensates for the vector
boson mass spectrum. The W-mass is directly related to the size of the condensate and,
as a consequence of Eqgs. (25) and (44b), the additional 33 vector bosons must be sub-
stantially heavier than the W-bosons, if they exist at all. Given a spectrum of resonances
and the condensates of the underlying theory sum rules constrain the resonance parameters.
In general, it is not possible to prove the existence or absence of certain states by means
of sum rules. The qualitative features of the sum rules {21] obtained from Eq. (43) indicate,
however, that the physical states in the strong coupling regime may be completely identical
with the ones in the Higgs phase and that an additional strongly interacting spectrum
of heavy states may not exist. This would mean that the intuition derived from ordinary
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QCD is totally misleading and that the spectrum of physical states can essentially be read
off from the classical Lagrangian, a question which clearly deserves further studies. Even
if such radical conclusions are unjustified, there remains at least a striking similarity in the
vacuum structure between the Higgs phase and the confining phase.

5. Towards a realistic preon model

In the previous sections we have discussed the idea of quasi-Goldstone fermions
and we have illustrated some techniques, which are used in the context of supersymmetric
composite models, by means of a U(6) toy model. This “preon model” yields the left-
-handed sector of one family and the W-bosons as bound states. The right-handed part
of one family can be incorporated by extending the group U(6) to U(6) x U(6) [8, 13, 15,
32}]. The preons now consist of two sextets of chiral superfields which are usually chosen
to transform as N+ N* with respect to the hypercolour group SU(N). A multiplicity of
families, which are labelled by means of a discrete or a broken U(1) symmetry, could
emerge in such models as a consequence of the dimension of the hypercolour group [33],
but no fully satisfactory example has been found so far. In U(6) x U(6) models with
composite W-bosons one has to understand the origin of parity violation. It is conceivable
that, like in ordinary left-right symmetric models, parity is broken spontaneously, yet
a detailed mechanism has not yet been proposed. It is also possible, although not partic-
ularly attractive, to break parity explicitly by choosing SU(2) x SU(2)’ as hypercolour
group with different coupling constants for the two SU(2) subgroups [32].

In general, one expects in models with composite W-bosons and global SU(2) x SU(4)
invariance additional composite vector bosons which transform as (1, 15) [34, 35]. The
effect of these V-bosons on low energy weak interactions within one family can be estimated
and one finds a lower mass bound of ~ 500 GeV [34]. Much more stringent bounds are
obtained if families are included, especially from the process K{ — p*e¥ [11, 36]. The
exchange of the leptoquark {11} among the V-bosons yields the effective four fermion
Lagrangian (cf. Fig. 3)

2

Ly = 8v

3 - 2M2 (EL‘y"s{aLa'yueL + C.C.), (45)
V3

where the coupling constant gy satisfies the bound [34] g&/4n > a,M3Z ~ 0.1. From the
experimental bound [37]

(KD - p¥e¥)

- .~ <2:107°
I'K™ - pv)
Sy > > l-ll._
KO V3
EL < <+ et

Fig. 3. Contribution of the leptoquark V, to the decay K° — p-e*
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one obtains

M 2 F K+ - +v 1/4
v | % TE - W17 S o8- 102, (46)
My, oy sin~ 20, I'(K{ — p*e¥)

In models with a single scale one is thus faced with the problem of explaining dynamically
vector boson masses which differ by a factor of about 100! The bound Eq. (46) is based
on the assumption that the V-bosons couple universally to different families. This is indeed
very likely to be a consequence of the same mechanism which enforces a universal coupling
of the W-bosons. On the other side, without a “standard composite model” providing
a convincing explanation for families, one can always hope for some mechanism which
circumvents the bound Eq. (46). In supersymmetric theories, for instance, the V-bosons
may simply not exist, as we saw in the previous section.

Within SUSY composite models, the weak interactions may also be treated as
fundamental gauge interactions. Such models [8, 13, 32] are based on the coset space
U(6) x U(6)/U#) x U4) x SU(2)p, and the W-bosons acquire mass from the spontaneous
symmetry breaking SU(2) x SU(2) » SU(2)p. Thus the confining hypercolour group acts
like technicolour [39] and quarks and leptons are superpartners of the pseudo-Goldstone
bosons familiar from extended technicolour theories. As in models with composite W-
-bosons, the substructure scale is related to the Fermi scale. A potential problem for these
technicolour type models are the residual interactions [32] due to compositeness which
now compete with the weak gauge interactions. An interesting possibility is that the two
scales are separated as a result of soft SUSY breaking terms in the preon Lagrangian [38].

Such soft SUSY breaking terms are needed in any case in order to obtain a realistic
boson and fermion mass spectrum [9, 13, 38]. In addition explicit breaking of the original
global symmetry is required in order to generate a mass for the Goldstone bosons. Part
of this explicit breaking is provided by the colour and electromagnetic gauge interactions,
but presumably this will not be sufficient. In general, some neutral fermions and bosons,
such as the novino, are likely to remain massless.

Supersymmetric gauge theories are interesting candidates for a theory of quark-
-lepton substructure because they provide naturally light composite fermions. During
the last two years, we have become more familiar with various technical aspects of such
theories, but the main challenge of composite models, with or without supersymmetry,
remains to find the solution of the family problem.

It is a pleasure to thank R. D. Peccei, M. G. Schmidt and T. Yanagida for collabora-
tion on the novino model.
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