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Some of the problems which arise in putting fermions on a lattice are discussed.
PACS numbers: 11.15.Ha

In trying to put fermions on a lattice we encounter, as most of you will know, some
serious problems which seem to be of a fundamental kind: while it seems to be the natural
thing to assign scalars to the sites of the lattice, vectors to the links and tensors to the
plaquettes there seems to be no place for the fermions. For want of a better proposal
one assigns fermions to the sites all the same. 1t is then perhaps no surprise that most
methods for dealing with fermions have to introduce some kind of “fuzziness” or smearing
out, like e.g. the Susskind method where the fermions are smeared out over a hypercube
or in the SLAC method where the first-order derivative is of long range leading to non-
-locality in the interaction. To be a bit more explicit: intimately connected to the notion
of (massless) fermions is the appearance of a first order derivative in the Lagrangian and
a chiral U(l) invariance:

&L = ip(x)y*d"p(x), (€))
which is invariant for the global transformation

F(x), p(x) = P(x)e", €7 p(x).

Naive reasoning would then imply that the associated axial current would be conserved.
Actually this is not the case in the continuum theory. It suffers from the well known Adler-
-Bell-Jackiw anomaly [1]. On the other hand, although not conserved in the continuum
theory, the axial current will always be conserved on the lattice. So, how is the lattice
regularization going to produce the continuum anomaly ? There are three ways of doing
this:
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1. By oaly restoring the U(1) g1 Symmetry in the continuum limit; so the lattice formula-
tion does not have the symmetry, like in the Wilson formulation [2, 3] or for the so-called
“staggered” fermions of Susskind and Kogut [4, 5].

2. By doubling the number of fermion species so tHat the anomaly is cancelled, as in the
naive fermion formulation [3].

3. The conserved axial current on the lattice diverges in the continuum limit (if one uses
a non-local derivative, keeping U(1) ;. invariance) [6].

That one cannot have everything is actually shown by the Nielsen-Ninomiya theorem [7]

which states that you cannot avoid species doubling unless you give up on either U(1) ;a5

locality, hermiticity or translational invariance (over any finite set of lattice sites).
Let us demonstrate the theorem with a fairly general example by writing down
the massless Dirac action on an Euclidean d-dimensional (d = even) lattice, where we
have assigned independent Grassmann variables y?, ¢ with each 2%% components to each
site.
S=1i ¥ o (x x)pk), @

X,X' 51

where the y* are hermitian and unitary (Euclidean metric!) obein
Y g

("7} = 28" ys= ~(0)Pyy2 =% A3)
So we clearly have
{,yu’ 75} =0 C))
and thus S is invariant under the “chiral” U(1) transformation
P00, 9(x) > pi(x)e, 7 Pp(x). )

This chiral U(l) symmetry appears because we have y’s which have more than one com-
ponent. In the continuum theory it is necessary to have 2%? components in order to have
Lorentz-invariance: a four dimensional rotation mixes the components of y and so does
the parity operation:

x, > =%, P=1i%s; ®
which clearly anticommutes with 3
{P,ys}+ = 0. Y
The point now is that on a lattice we do not need these 22 component y’s: we can define
parity and rotations <over g of course) in such a way that we only need one-component
objects, at least if we define the derivative on a lattice in the most naive way:

d f(x+a)—f(x—
2 pp STEOIOZ ®
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or
2o glrmtur) ©)
which in p space reads
p-)sinaap, pe(_g,_*_g]. (10)

s
Notice that we have suddenly 2 zeros on the lattice p = 0,—. So *(x, x') = o*(x—x")
a

only connects sites where x, and x, have an odd difference (in fact +1) and all other
x, = Xx,.

, 1
5ﬂ(x_x ) = (5x’,,,x“+a_5x,.,x'p+a) 5xy,x’v' (11)
2a l l
v¥Eu

Now define new fields ¥f, x instead of ¥, y (we take units such that a = 1)

1) = i3 i), 1) = Py (12)
Inserting this into S we observe that as ¢*(x—x’) only connects x, and x, with an odd
difference we get an extra y* into S, cancelling the y" already present in S, leading to:

S =Y 2o ) x—x)x"), (13)

X,X
where the #*(x) are now only phase factors:

n-t
Z xv

#(x) = (=)' xI, (we have taken a = 1) 14)

where I is the unit matrix in “spinor” space! So if we write out the *‘spinor” product
xTy in S we simply get 2% identical expressions. We have the same theory written down
292 times, and so it is no surprise that we can define rotations and parity on one component
only, e.g.

Xy = —X, Pnew = (_)x\,. (15)

Replacing XM(x,, x,, ..., Xy, ..., X)) by (=Y"XP(x(, x5, ..., —x,, ..., Xg) leaves S in-
variant. We observe that as a consequence this new parity operator of course commutes
with ys

[Pnewa ')’5]—- =0 (16)
and thus ys cannot be identified with chiral symmetry. In fact, the original reason why we

had to have u’s with 2%2 components (i.c. Lorentz invariance) is non-existent on the
lattice and we can just as well take the ’s to be one-component objects, so-called “‘stag-
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gered” fermions, which we will do from now on. Still we have to face a problem: where are
the spinor degrees of freedom which should reappear in the continuum limit? The answer
is simple: the ¢’s which we were working with actually represented not one fermion but
2¢ fermions all the time, corresponding to the fact that the Fourier transform of our

n . . .

derivative had two zeros (p =0, —) and not just one (p = 0) as in the continuum theory.
a

The consequence is that the inverse free propagator on a lattice which now reads

sin ap”
E pomart pue(—-’f, +f] )
a a a

"

12 . . .
has 2¢ zeros [ each p* can be 0 or —), corresponding to 24 fermions with 22 components
a

making a total of 23¥2 degrees of freedom. So taking the y’s to be one component object
leaves us still with 2% degrees of freedom which in the continuum limit gives us 2%2 species
of fermions with 2%? spinor degrees of freedom. So, not only have we lost chiral U(1)
symmetry, but we have also obtained a 2¥? doubling of fermion species. Worse: we can
only separate the spinor degrees of freedom from the flavour degrees of freedom in the
continuum limit, where we will have the symmetry

U (Dphase @ U Denirar ® SU (27%), ® SU (27%)g. (18)

On the lattice, on the other hand we only have U(1) 4, and the U(l) symmetry:
> by

v

25, 2(x) = xl(x)e ) =, &7 Fy(x) 19)

for one component x’s.

This U(1) symmetry is not our original chiral U(l) symmetry. On the spinor degrees
of freedom its generator acts indeed like ys but in different ways for different flavours
(+ys for one species, —ys for another) and this generator is therefore a member of the
SUQRY?), ® SU(2"?)g and well of the subgroup SU(2¥?), _g, i.e. an axial generator of
flavour non-singlet type.

This is of greal interest as in ¢ontinuum QCD we have the global symmetry

U (Dehirat @ SU (2)L ® SU (2

if the u and d quark are massless. The w-meson is then supposed to be the result of the
spontaneous breakdown of the SU, ® SUg to SU, . giving us three Goldstone pions
corresponding to the three broken generators of SU; _g. On the lattice as we have seen
we only have the symmetry corresponding to one of the generators of SU; _g, but still
we can try to find out if this symmetry breaks down spontancously or not. If it does, it will
of course only give us one Goldstone pion; the other two should only appear in the
continuum limit. All the same it is a good test of the basic phenomenon of chiral symmetry
breaking. In the strong coupling limit one can indecd prove this breakdown explicitly [8]
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while the computer calculations for finite coupling also indicate that the breakdown
takes place.

So as far as the pion problem is concerned this is very useful, although we get only
one pion and not three. It seems a shame that we loose so much of the continuum symmetry
by defining our lattice theory in this way. All the trouble of course came from defining
our derivative on the lattice as (take a =1 and d = 1):

P(x+1)—p(x—1)
5 .

(20)

It gave us the proliferation of fermions (1 — 2%) which automatically reduced themselves
(the one component X’s) to 2%? fermions, killing U(1).p;ra Symmetry.
So why not try another derivative, like e.g.

Y(x+o)—p(x—a)
20

for some « # 1, x = integer. (21)

The y(x) are only defined for integer x so we have to define p(x+«) in terms of the p(x)
before we can give a meaning to this derivative. This can easily be done by Fourier trans-
forming the y(x) with x integer

+N
1 .
- k 2nikx/(2ZN+ l)’ 22
Vo) = iy ) e 22)

k=-N

where we have taken a finite one-dimensional lattice with 2N + 1 sites. So instead of 2N 41
variables w(x) we now have 2N+ 1 variables a(k), defined by
+N

a(k) = Z w(x)e_ 2nikx/(2N + 1). (23)

x=—N

These we can now use to define g for non-integer argument by

+N
1 .
P(x+o) = \72—1\}_-;—1 Z a(k)eka(x+a)/(2N+ D _ insert (23)
k=—N
+N

= Y Axxta—x)y(x) (28

with

+N
1 . i
AN(B) = —— o 2MHBICN+1) _ .sm np , 25)
2N+1 (2N + 1) sin (zB/(2N +1))

k=-N
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which for an infinite lattice (N — oo0) becomes

sin nﬁ

B

Inserting this into our expression for y(x+«) we obtain for our derivative (on an infinite
lattice):

4, = (26)

+o)—p(x— i Y -
P(x oc)2aw(x o) _ 512506 z (—y nZiaz (p(x + 1) — p(x —n)). @7
=1

Observe that for « = m # 0 (m = integer) only the term n = m contributes in the summa-
tion as

n_q SN 7O
Lim (~)
a—m 7r(n oz)

n,m*

Taking « = 2, 3,4, ... would only aggravate our doubling problem, while & = 1 was
our old derivative; so & = 0 or non-integer is the only alternative. But for these values
of « the summation in (27) never breaks off and worse: for large n the terms go like

n 1 . L o
——— ~ —» which means that the derivative becomes of infinite range. The SLAC
n—ao n

derivative [6] e.g. is just the above one (27) with « = 0. That it is indeed impossible to
avoid a long range derivative if one wants to avoid the doubling problem you can judge
from the following. Imagine you superimpose derivatives with different « in (27) with
the aim of improving the large n behaviour in (27) i.e. multiply (27) with a weight-function
(o) = 0 and

OIO o()da = 1. (28)

In order to create a short-range derivative (i.e: terms in (27) going faster to zero than
n! for large n) we clearly need:

o

J’ o(2) sinanoc o = 0. 29

0

1t is easy to find such a g(x) but it does not help us as the inverse propagator associated

sin o
with (27) was 4 and thus, after our weighted average, will be
o

o]

f o(2) S—h;—“’f do (30)

0
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but this again, by (29), has a superfluous 0 at p = n, which was the thing we wanted to
avoid, as it gave us the doubling problem.

So unless we are willing to accept a derivative of infinite range we are sunk, which
is just what the Nielsen-Ninomiya theorem was trying to tell us all the time*. Although
there seems to be nothing wrong with such a derivative in principle [6], to do practical
calculations in such a scheme (certainly on a computer) is a very cumbersome task; many
computational advantages of the lattice regularization are lost in this way. We clearly
have to wait for some brilliant idea about how to put fermions on a lattice.

I am grateful to the organizers of the Zakopane school. I am also indebted to B. Pe-
tersson for many stimulating discussions.
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