Vol. B16 (1985) ACTA PHYSICA POLONICA No 7

PRACTICAL INTRODUCTION TO MONTE CARLO
OF LATTICE QCD AND ITS APPLICATION
TO QUARK GLUON PLASMA*

By A. NAKAMURA

Institute for Nuclear Study, University of Tokyo, Midori, Tanashi, Tokyo 188, Japan
( Received November 9, 1984)

The paper presents an introduction to Monte Carlo study of lattice gauge theories.
Numerical results of Monte Carlo simulation with quark loops are presented.

PACS numbers: 11.15.—q

CONTENTS

0. Purpose of this lecture
Part 1. Monte Carlo calculation of lattice QCD; primer
. Integral over many-dimensional space
. 1-dimensional quantum mechanics
. Lattice QCD Lagrangian
. Lattice gauge theories without fermion
. Lattice gauge theories with fermion
. Behavior of quarks and gluons at high temperature and density
. The world at high temperature and high density
. Thermodynamical quantities on a lattice
. Results of Monte Carlo simulation with quark loops

Part

oo\loxﬂu..hwwt-

0. Purpose of this lecture

This lecture is aimed at mainly those who will never try Monte Carlo (MC) study
of lattice gauge theories. Lattice MC calculations are numerical experiments. Needless
to say, any theorists can use experimental data in his or her research. Why not the data
from numerical experiments?

In order to make good use of experimental data, however, it is important to know
how experimentalists get and treat with data and to understand what are the difficulties.

* Presented at the XXIV Cracow School of Theoretical Physics, Zakopane, Poland, June 6-19,
1984,
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Moreover we know our colleague who never uses a computer can help us in this field
where many field theoretical and statistical problems should be clarified [1].

There is nothing original in this lecture except Sections 5 and 8. I will present how
to get MC data as plainly as possible. Though this lecture can give you only brief outline
of the field and for further and deeper understanding I should recommend you the other
reviews [2], this note can be easily read by non-specialists even in an armchair without
the other references.

PART I
1. Integral over many-dimensional space [3]
Let us consider a numerical integration over n dimensions,

I = { f(x)dx,dx, ... dx,. Ly

f()t)4
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Fig. 1. Function f in n-dimensional space and points where the value of the function is estimated in numeri-
cal integration; a) 1-dimension, b) 2-dimensions
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Suppose we are so busy that we have only time to evaluate 16 points. For n = 1, prob-
ably, we can get reasonable approximation (Fig. la). For n = 2 there are four points
in each dimension (Fig. 1b). Perhaps the result is not so reliable. ... For n = 10, there
are 1.32 points in each dimension. No one believes outcomes of the calculation. If we use
the rectangle rule to evaluate Eq. (1), the order of the error is

Error ~ 1/N/", (1.2)

where N is the number of the total points. (In the above example, N = 16.) For very large
n, even Simpson rule or Gauss quadrature fails completely to get a reasonable result.
In my experiences, it is very hard to calculate Eq. (1.1) if n > 5. In case of Lattice QCD
n is typically hundred thousands or more.
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Fig. 2. Numerical integration points distributed uniformly (a) and randomly (b)

In usual quadratures, the points x are chosen regularly in n-dimensional space. On
the other hand if we scatter the points randomly in the n-dimensional space (Fig. 2),
thanks to the general theorem of statistics, we get

Error ~ 1//N. (1.3)

Note that the dimension of the integration space, n, does not appear in Eq. (1.3), i.e.,
even for very large n we have a good chance to get accurate results if N is large. This is the
essential idea of Monte Carlo method.

The reader may have noticed the accuracy must depend also upon the shape of the
function f. If fis nearly flat its integration can be easily done (Fig. 3b), while it is no easy
task to integrate a rapidly changing function (Fig. 3a).

Here is a great trick called “Importance Sampling”. Let us find a new variable, ¢,
such that

dx

- ~ (14

Then
I= J J(x(®) Z—): dt. (1.5)
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Fig. 3. Rapidly changing function is difficult to integrate numerically (a), while flat function is easy (b).
It is nice if we can reform a rapidly changing function to a flat one
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Fig. 4. Shape of a function f(a) and Jacobian 4x/4¢ in Important Sampling (b). If A¢ is constant, Ax is large
(small) for small (large) Jacobian (c)
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Due to condition (1.4), the integrand in Eq. (1.5) is nearly flat. In many cases this simple
trick works drastically.

The reader may claim that the idea of importance sampling is clear but it is difficult
in general to find such a variable ¢. Let me go on to investigate this point further. The
Jacobian dx/dt is chosen to compensate f; i.e., if f is large, dx/dt is small and vice versa
(Figs. 4a and b). If we employ numerical integration method with equi-distance points,
i.e., At = const., then Ax is small for large f and vice versa (Figs. 4b and c). Therefore the
importance sampling method simply means that in x space we should take many points
at the regions where f(x) is large (Fig. 4c¢).

Machinery of choosing points according to the importance sampling is “Metropolis
algorithm”. Suppose we want to integrate

] e S¥x, (1.6)
All that we must do is to choose the points x following a flow chart in Table I. Repeating

the procedure, we get many ensembles of the points. We will find the density of the points

TABLE 1
Metropolis algorithm

Give Initial value of x

Choose xy,,, randomly

Generate random number r
(Decr <1)

Yes
e—[S(xNeW)—S(x0|d ) > r?

No
i

Reject Xyow Accept Xpow

A
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is proportional to exp (—.S). I recommend the reader to do Gedankenexperiment for the
simple case to see what happens. In Fig. 5 I show a distribution of the points obtained
for S = x2.

AN of points

—=1>
x

Fig. 5. Distribution of 1000 points obtained by Metropolis algorithm. § = x2. The solid line is the expected
behavior (exp (—x2))

2. 1-dimensional quantum mechanics

As the simplest example of MC calculations of quantum theory, we will study here
one dimensional quantum mechanics [5]. Our system is described by the Feynman path
integral,

'i‘dL
Fle

Z = | Dxe s

L=im(® 2—V(x)
T2\ dt ’

Dx = jl_’rg dx,dx, ... dx,. @1

Now we go to the Euclidean space,

t— —it,

dx\?
L- ——‘fm(-—) —V(x) = —H, 2.2)
dr

Z - | Dxe” 5%,

where
S = jd'cH. .3)
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We cannot go into the real continuum limit in the numerical calculation;

Z-’-‘-fdx, dx,  dx,_, &/F
xj=x(Tj). (2.4)
a
0 &> 7
i i 1 i i 1 > ‘r
TO T1 ----- Tn

se50[3 (L) winy]

Flow-chart of one dimensional lattice quantum mechanics

Give Initial value of {x;}

X; : i=1~N

Find Neighbor Sites x;_y,X; 4

Mefropolis Algorithm
(New)
i

Calculate SN”'- '5Old

Choose x

Judge whether we replace
or not

Measure

TABLE II
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Fig. 7. Typical configuration of {x;} for £ = 0.1 (a), 1 (b) and 5 (¢). V = x?*
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Using the MC technique which we learned in the previous Section, we are now able
to evaluate Eq. (2.4). In Table Il a flow chart of the program is presented. Note that when
we estimate the difference of the action '

57— 8% = S(.. x{"V..)—S(C.. XD L),

we need not calculate the full part of S because most parts of the action are the same
between S®™ and S°'9. One procedure to update all x; is called a sweep. In Fig. 6, I show
how quickly the configuration {x;} is going to the equilibrium even when it starts far from
equilibrium. Figs. 7a, b and c show the typical configurations for three different values
of the Plank constant, & = 0.1, 1 and 5. Fig. 8 is the typical configuration for double
minimum (wine bottle) potential.

3. Lattice QCD Lagrangian

In the lattice QCD, the Eulidean space-time is approximated by a four-dimensional
lattice, whose element is usually a hyper-cube, and the quarks and gluons live on its sites
and linkes, respectively. See Fig. 9. Integration measure of the path integral is replaced
by the integration over such variables:

QUDFDy - 1 dU, 1 di,dy,. (3.1)
/-T_\K 7N
(Wiywjy Ui ( ‘I_’j,ij
N g
Nsifei \ifcj

Fig. 9. Gluonic variables live at links and quark variables at sites on a lattice

Wilson has given the lattice action as [6]

S=55+Sr,
b S 0-L7(u; Uil Ui ) (3.2)
vj Ss=f3pmq{7 N r(Uij UjkUpe Uii ]’:
it p=2N/g% U;j € SUIN),
Sp=I Vi dlijlV;,
i
where 4 o
o Qi) =1-x 2 {(1-3,)Uij Bio,i
~L .

i s (1eg,)U;j ;4 }
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Here I suppress the color indices of U (do not confuse i and j with color matrix indices)
and the color, flavor and Dirac indices of y. The gluon link variables, U, and the quark
site variables, v, are related to their corresponding continuum field variables as

a3’

V= |5 v, (3.3)

"= eigaA,.(na)’

Un,n+p,

Using these relations one can ecasily find that classical continuum limits of Sg and Sg are
familiar QCD actions:

lim Sg = & | d*x Tr {F2},

a0

lim Sg = — | 44x{mt/7(x)w(x)+¢(x)vu(3u+igA,,)W(Z)}, (3.4)

a—0

if we set a hopping parameter, x, as

1
"7 8v2ma’ (3-3)
Gauge transformation on a lattice is rather simple:
Yo = O P By = Pp0
Upm = 0,U, 0L, U, o,e SUN). (3.6)

Under this transformation the following expressions are invariant, U, Ui - Upps
P:U;;U ... Uty Therefore the action (3.1) is gauge-invariant. In the continuum limit
we can easily get

P(x) > o(X)Y(x),  P(x) - Px)(x),
A (x) = o(x)A,(x)0(x)+ —;(anw(x))w(x)*.

Young students should check the relations (3.4) all by themselves. The answer may
be found, for example, in the appendix of Ref. [6b]. Through this exercise, they may
find more general form for the fermionic part:

A=cl-x} {(r_y”)Uij5i+ﬁ,j+(r+Yn)Uijai—;:,j}a 3.7
"

4

"= Br+2ma

The r is called Wilson term.
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They may notice also that the lattice distance in spacial directions, a,, is not necessarily
equal to that in temporal direction, g,. For such an asymmetric lattice,

aip Tr (F3) for a spacial plaquette
ala?p Tr (F2) for a temporal plaquette

\/ . )
n - a b
L 2, y(n

1
K, = ,
' 2ma+ (2+6a/a)r

1
B 2ma,+Q2ay/a,+6)r

1
1~ o Tr (UUUD) - { (3.8)

and

3.9

Ky

The reader may wonder why we need the Wilson term, r, which disappears when
we take the continuum limit. This is probably the most challenging, difficult and annoying
problem in lattice gauge theories with fermions [7]. Analysis of this problem requires
another lecture note (and another lecturer). Here I will not discuss this problem. I only
recall that Sg can be diagonalized if r = 0 [8].

If we put r to be zero, the fermion action has the form;

Sp = 2map,y,+ ; {PwruUnns s¥nsn = PrsiVuUnsin¥als (3.10)
where we put ¢ to be 2ma. We introduce the following (local) unitary transformation,
Yo = Ttws B0 = LT

T, = )" @2)"(3)"(a)", 1 = (ng, ny, 03, ny). (3.11)
It is easy to check
PP 1V¥n+t = Zn(?:t)“()’s)ns(?z)nz(')’1)"171(?1)"‘+1(')’2)"2(73)"3(74)"4Xn+'1‘ = ndn+1>
PayaPa+s = (D" Tnkn+ 3
Pars¥ass = (= D" hkns3s

nytnytni=

1T,n)’4y,n+a = (—1) Xnin-l-a'
Then
Sg = 2maj,),+ 2 ﬂu(") {ZnUn,n+f¢Xn+'p\4+in+?¢Un+ﬁ,an}’ (3.12)
I

where

_flw=1, (-D@=2),
ﬂu(") - {(__1)n1+nz(u = 3)’ (_1)n1+nz+n3(u — 4)
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There is no y matrix! y is essentially one component in Dirac index space. We call this
Susskind action. This action is convenient when we want to say something about the chiral
symmetry, while a hadron wave function is complicate: it is not local but constructed
from quarks on 16 vertices of a hyper-cube. Detailed analyses can be found in Ref. [9].

4. Lattice gauge theories without fermion

There are too many works about this topic in the literatures. I will discuss here only
some of them which will be helpful in Part IL
Anyhow we want to measure something;

foute™®

@ = fueT

4.1)

In a MC calculation, the configuration {U} is generated according to the probability
exp (—S8). Therefore the expectation value of 0 is obtained simply as a mean:

0 = %0""@ 4.2)

where 0% is the value of the operator @ in the k-th configuration.

A. Wilson loop and Polyakov line

Observable quantities should be gauge invariants. Without quarks the simplest ones
are the Wilson loop, W, and the Polyakov line, L. For SU(N) they are defined as

1
W = '&‘Tr (UIJUJ’C “ee U“'), (4.3)

1 .
= ETr(szUza wor Un—1n)-

Sometimes they are defined without a factor N. See Fig. 10. If all link variables are the
same on a lattice (frozen), L = 1; if completely random, (L) = 0.

P

A Y
-i,.
1

A
1

/7

-~
~

|

<
-y o

’
4

i
fa) {b)

Fig. 10. Wilson loop (a) and Polyakov line (b)
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Let us consider the physical meaning of the Wilson line and Polyakov line briefly.
Suppose an external source, j, = g6°(x,— x,(t)), is added to the system. The total energy
of the system is increased by

ifd*xj,A, =igfdx,A,
and the action is modified,
igfdxudu—Sc _ eiaaAneiﬂﬂAu—l . eiﬂﬂAle’sG. (44)

eS¢ 5 ¢

Therefore if we calculate the expectation value of L x T Wilson loop, we can estimate
the potential between external sources, i.c., infinitely heavy quarks,

&
<

<y 1)>- 2 w:th

5
>

- (4.5)
ce TVIL)

Stack has obtained an impressive shape of the heavy quark potential from Wilson loop

data [10]. See Fig. 11.
The expectation value of a Polyakov line should be zero in a confined phase.

v2a
¢ su(2)

11 —
r*f"/ﬂ

Linear «Coulomb fit
SRS WS DU N N T 1
2.0 x

Fig. 11. Heavy quark potential obtained by Stack

B. Lattice distance, a, is a function of f§

In Fig. 12 we show the famous MC measurement of the string tension, g, by Creutz
as a function of f(= 2N/g?) [11]. We observe rapid decreasing of a?s, i.e., the lattice dis-
tance, a, changes very quickly as § increases. We may see this trend both from the pertur-
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Fig. 12. String tension obtained by Creutz as a function of 8 = 4/g?

bation and the strong coupling expansion. From dimensional analysis, we can write
1
m = —F(g), (46)
where m is some physical quantity which has mass dimension. Any physical quantity

must be independent of the cut off which is n/a in lattice theories,

d
—m=0. 4.7
da " .7

We substitute Eq. (4.6) into Eq. (4.7) and get

dF dg dF
F = =g —_— 4.8
a— dad ﬁ() 4.8)

where f(g) is the f function (which has nothing to do with the coupling f = 2N/g?),

B= —Pog—B8%+ ... 4.9)

If we neglect the higher terms in the § function, we find

F=df® or m==—f(g (4.10)
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where ¢ is a constant and
B

1 1 \25.2
@ = -— =) . 4.11
/@) exP( 25032) (ﬂogz) .11
Therefore

1
a=—=f(g) = —f(g)- (4.12)
m A

The student should derive Eq. (4.11) from Egs. (4.6)-(4.9).
We give here the perturbative results of the g function coefficients [12];

1
Bo = a2 L N.—% Ny,

NZ-1
B = o (3 NI NV T ). @1

¢

" (@)

In Fig. 13, 1 show the behavior of f(g).

H T T

0}

flg)

0

i

]
0 20 30
Al=4/g%)

Fig. 13. Behavior of a function f(g) for pure gauge case (Ny = 0) and for 2 flavour case. For the definition
of f, see the text
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Next we study the behavior of @ from the strong coupling expansion. Formula which
we need is only

fdu =1,
IdU(U)aﬂ = .[dU(Uf)aﬁ =0,
IdU(U)aﬁ(UT)yé = '%' aaé‘sﬁr (4'14)

Using these group integrals, we can find

sou( R~ (R -0

f dU, dU, ( Ub) x ( ) (4.15)

L
2

We rewrite
eS¢ = CIeM T VU0V — c(1+BTr UUUU+ ..) (4.16)

Jou( F )

(B} 6B {o68)
=(£.)9 (4.17)

We can easily guess a form of the expectation value of N,x N; Wilson loop:

Then

ﬁ N1 --‘Elogi
(W) = (-;) T o= @ F, 4.18)
From Eq. (4.18) we get
1 4
V(L) =06L, o= ?log—l—g—. 4.19)
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The string tension, o, should be independent of B. The lattice distance, therefore, behaves as
a~ log 4/p. (4.20)
Now we know that when f§ is large g is small, i.e., we are near to the continuum.

Why do we not perform MC calculation at very large §? Unfortunately the lattice size
is finite. Therefore if a is very small the lattice length is also small. See Fig. 14. The lattice

/ hadron \
N
O
<>
a «—>
—> a
L=Na .

L=Na
{a)

(b)

Fig. 14. a) If the lattice distance a is very small, the lattice itself is smaller than typical hadronic size. b) If the
lattice distance a is very large, it is larger than typical hadronic size. Both cases are disaster

2.9 2.4

Fig. 15. Window in £ for SU(2)

distance should be small enough to describe hadron physics well but should be so large
that the lattice is larger than hadron size. It was believed that there is a window in f where
these two conditions are satisfied; 8 = 2.1 ~ 2.2 for SU(2) (Fig. 15). However recent
measurement of the string tension casts some doubt upon this folklore. See Table III.
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TABLE HI
String tension in SU (2) obtained on lattices of different size and by different groups
Authors 4/0l4 Lattice Ref.
1 M. Creutz 200+ 50 44, 6% Phys. Rev. Lett. 45, 313 (1980)
2 F. Gutbrod et al. <145+10 16* Phys. Lett. 128B, 415 (1983)
3 G. Parisi et al. 85+5 103 %20 Phys. Lett. 128B, 418 (1983)

5. Lattice gauge theories with fermion

In the path integral, the fermion fields appear as a Grassman variable, i.e., anti-
-commuting c-number [13]:

P+ 9Py = Ous

PP+ = 0,

Yivet+ v = 0. (-1
The rules of integration devised by Berezin are

fdp,=fdp. =0,

§ Pdips = § pdyp = 1. (52)
It is easy to show

2

fexp (i Zz Pudijp)dP dy,dP,dy, = A1 Az — A4y, = det A.

sJ =

General form is known as Matthews-Salam formula;
[ 2D pe*4? = det 4,
§ DPDY(Pw)e™* = (471 det 4,
§ DBDYBiwBew)e™ = (A7) (4™ Y~ (A7 )(4” )} det 4. (5-3)
We can, therefore, integrate over fermion degrees of freedom,
Z = [ DUDPpDye 5 ~%% = [ QU det Ae ™%, 5.4)
Py = [ QU™ det Ae™5, ..

How can we take into account det A. Surely the simplest way is so-called quenched
approximation where this determinant is discarded:

detA = 1. (5.5)

As we will see later, the physical meaning of Eq. (5.5) is neglecting quark loops. An excuse
for this approximation is that OZI violation is small and the valence quark picture is not
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so bad. Hadron masses and magnetic moments have been measured under this con-
dition and acceptable results have been obtained [14].

But is this really good assumption? In other words, does det A depend upon gauge
configurations so weakly ? Joos and Montovey performed an interesting experiment about
this problem. They calculated Sg . on 20 samples of gauge configuration where Sg g, is an
effective fermion action,

det A = ¢”5EF, (5.6)

The result is shown in Fig. 16 as a function of the hopping parameter, x. The observed
large deviation of Sg y, implies that, if gauge configurations are generated according to the

Y070

Fig. 16. Behaviour of Sg.r. as a function of a hopping parameter. (H. Joos, I. Montvay, Nucl. Phys.
B225 (FS9), 565 (1983))

probability exp (—Sg), det A exp (—SG) is very small for many of the configurations.
Recalling the idea of the importance sampling to our mind, we should generate gauge
configurations according to the probability

det Ae™5¢ = ¢~ Se~Ser. 3.7
Several ways have been proposed to take into account the quark loops;
A. Hopping parameter expansion (HOPE) [15]
Notice that A can be written as

A = I-xM. (5.8)
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Formally we can expand Sgy and A-! in a series of «:

]
Spp. = —logdetA = —Trlog{I—xkM) = Z KTTr M, (5.9)

1

ATt =Y M.
7

Recall that M includes the Kronecker delta which connects neighboring sites. We can
check Tr (M*) # 0 only if M* draws a closed loop whose length is k (Fig. 17).

Fig. 17. A typical quark loop

B. Pseudo-fermion method [16]

This method is based on the following observation. If we introduce an average over
new bosonic fields, ¢, which have the same degrees of freedom as g (Dirac, color, flavor
and sites indices),

_ [ 9¢*Dp0eSs

" Toaee
Sy = x> (5.10)
x> = Al¢>,
then the A-! is given by
At = ¢ (xl. (5.11)

The ¢ are called pseudo fermion fields. The integral (5.10) is estimated by MC method.
In this calculation all the elements of A-! are obtained at the same time.
In the Metropolis algorithm to update the gauge fields we need

08 = 65,408k k. (5.12)
For small change of the gauge configuration,

8Spr, = —Tr (A™16A). (5.13)



656

C. Microcanonical method [17]

In addition to the gauge variable, U, let us introduce classical fields, ¢ and new time
t which has nothing to do with the real time. Imagine a classical system governed by

a Lagrangian,
2
L= —So+d (‘-g) + (%‘fT)A (%‘;”) — 0P, (5.14)
The corresponding Hamiltonian is
H = 1 p*+ PAT'P*+ S5+ 0% ¢*¢, (5.15)
where p and P are the conjugate momenta of Uand ¢. The partition function of the classical
system is
Z = [ QUDpD$D*PPDP*e” ® = ¢ [ QU det Ae 512, (5.16)

This is just the form that we want to evaluate. If we accept the Ergodic Hypothesis, we may
replace ensemble average with time average. Equations of motion of the system are

du do*
p=—, P=<i>A’

dt dt
d*U dSg do¢* dA d¢
" T v 17y
*
i &A = _wld,*_
dt\ dt

If we follow the trajectory obtained by Egs. (5.17) and calculate time average of some
quantity on the trajectory, the effect of det A is automatically included.

04+ % -

p=2.2

03 1 1

0 0.1 k 0.2

Fig. 18. Expectation value of the plaquette energy as a function of the hopping parameter (x = ¢ cor-
responds to the pure gauge case)
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TABLE 1V

Compilation of MC experiments with quark loops

Authors Co‘f"r Metl'wd Observed quantities
Lattice Action
V. Azcoiti, A. Nakamura SUQ2) Pseudo-Ferm. E,, <L, <E,’,>—<Ep>2
and A. Cruz' 44, (43 % 8) Wilson Act. Meson Masses
H. Hamber, E. Marinari, SU@Q3) Pseudo-Ferm. E,
G. Parisi and C. Rebbi? 6* Susskind Act.
S. Otto® SU@B3) Pseudo-Ferm E,
24
I. Montvay* SUQ2) 32-HOPE Meson Masses
104 Wilson Act.
1. Montvay® SU®B3) 16-HOPE Wilson Loops
6* Wilson Act.
1 Phys. Rev. D27, 255 (1983); Frascati preprint LNF-84/25.
2 Phys, Lert. 124B, 99 (1983).
3 Phys. Lett. 135B, 129 (1983).
4 Phys. Lert. 132B, 393 (1983).
5 Phys. Lett. 139B, 70 (1984).

I compile MC experiments with quark loops in Table IV where finite temperature
calculations are not included. (They will be discussed in Part IL.) Present situation is far
from satisfactory. We have not yet perfomed a good experiment with high statistics on
a large lattice. It seems, however, such MC experiment is now within our scope.

I will mention some general features of the present data. I plot the expectation value
of the plaquette energy, E,, as a function of x, in Fig. 18, where the point at ¥ = 0 cor-
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Fig. 19, Fluctuation of the plaquette energy against the number of MC gauge sweeps. The solid line stands.
for the pure gauge case. The values are scaled up by 10°
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responds to the pure gauge case. When we put quark loops into the system, the plaquette
energy decreases; the gauge configuration becomes more ordered state. This tendency
can be seen also in Fig. 19 where the fluctuation of the plaquette energy is shown to be
smaller than that of the pure gauge case. In Fig. 20 we compare the expectation value
of Sg . with that of Si. There is a sizable contribution of det A to the total action at large
K, i.c., light quark mass regions.

5 s T~ ]
15 < 6‘> ~——
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Fig. 20. Expectation value of Sg.r. and Sg as a function of the hopping parameter

PART IT
6. World at high temperature and high density

It has been conjectured that systems of quarks and gluons at high temperature and
density show completely different behavior from those at zero temperature and normal
density. For more detailed arguments and references see Refs [1]. At low temperature
and low chemical potential, quarks and gluons are confined inside hadrons (Fig. 21a).
If hadronic spectrum increases exponentially,

o(m) = Ce™™° (6.1)
a partition function diverges above some temperature T ;
fdmo(m)e™" =0 if T> T (6.2)

This observation leads to famous limiting temperature a la Hagedorn. Cabibbo and
Parisi have shown that this break-down of the partition function does not necessarily
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Fig. 2lc

Fig. 21. Quarks and gluon in many phases

mean the existence of the limiting temperature; rather system may undergo a phasc traunsi-
tion [2]. Kislinger and Morley calculated a gluon self-cnergy diagram shown in Fig. 22
at finite temperature and huve found a gluon gets mass [3a].

"‘w(i!uon * T. (63)

Fig. 22. The lowest order correction to a gluon propagator

Gluons become heavy and the long runge force derived from them may be different from
the confining force (Fig. 21b). Afer ihe detailed analysis of Freedman and McLerran,
perturbative calculations have been steadily perfomed [3] though still there is a contro-
versy over magnetic mass of gluons [3g-i].

Collins and Perry conjectured that at very high density hadrons overlap with each
other and the quarks move frecly inside the overlapped hadrons (Fig. 2ic) [4].

MC studies of SU(2) Yang-Mills theory in the absence of dynamical quarks by
McLerran and Svetitsky and by Kuti, Polonyi and Szlachanyi [S] have given the first
numerical evidence for a second order transition from a confined phase to a deconfined
one. Group at the University of Bielefeld and at the University of Illinois have performed
MC simulations of the gluon matter at finite temperature in detail; for SU(3) Yang-
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-Mills theory, they have cbserved first order phase transition at T = 150-200 MeV
and ideal gas behavior of giuons at high temperature. It was observed that chiral sym-
metry breaking is restored around the transition temperature. See Ref. [2a] and [2h]
of Part T and references therein.

Such studies of QCD in unusual environment are done not only for a theorist” fun
and amusement. We hope that in high energy heavy ion collisions high temperature and
density matter might be produced in a controlled experimental environment. To under-
stand the data which might arise from such cxperiments, we may develop and study
models of the quark-gluon system. MC simulation of lattice QCD probably provides
the most fundamental information for such an analysis. For the study of hadronic matter,
it is important to include quark loops in the calculation since they play a crucial role
in screening; once we allow quark pair creation and annihilation, the long range force
may be changed drastically. Theoretical conjectures were that the phase transition observed
in the pure gauge calculation might be washed out by them [6]. In the presence of dynam-
ical quark fields, the Polyakov line is no more a good order parameter for the confined
and deconfined phases: Mathematically this is because the presence of quark fields breaks
the symmetry under the center of the gauge group or physically because isolated heavy
quarks can survive due to the quark pair creation.

7. Thermodynamical quantities on « lattice

We want to study thermodynamics of QCD. The essential ingredient is a partition
function,

Z = Tr (e PH71YY (7.1)

I apologize to the reader that I use the same notation f. Here 8 is 1/T not the coupling
2N/g?. We can rewrite the partition function as

f
= fdefd3x(L+un)

Z=[{qUapype * (7.2)

with the periodic (anti-periodic) beundary condition for U (¥) in temporal direction. See
Ref. [1b] for the proof of Eq. (7.2).

The parameters of a system are the temperature, 7, and the chemical potential, 4. How
are they introduced on a lattice ? From Eq. (7.2) we see that size of our lattice in a temporal
direction is just,

f = N, (7.3)
MC simulation of a finite temperature system is relatively easy: we can work on a smaller
lattice.

It seems that chemical potential can be introduced by adding the following term to the
action like a continuum case,

4[l¢?41/"'
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Hasenfratz and Karsch have found that chemical potential of this form makes energy
density of frec quarks diverge.
In the continuum the chemical potential appears in a Lagrangian as
Ly = Plom+(Oatw)yat+mly. (7.4)

Therefore a quark propagator is proportional to

1
7.5
PP+ (pa— i)t +m? (7:2)

On a lattice the action of free quarks in momentum space has the form,

Se = [ ZpT,AD)Y,,

4

4
A(p) = (;f;) [1 —K z {1 =y, e+ (1 +y,,)e_”’““}] ) (7.6)

p=1

By replacing p, with p,—iu, we get
3

o\ _
A(p) = <’:R> [1 - 2 {(1 . f)yl)el[’(ﬂ 4([ ) )e*lpm'
' i

— k"1 -y )e P —ke T (E e P (7.7
Therefore we may introduce the chemical potential by changing the hopping parameter
in a temporal direction to xexp (+p#) and K exp (—p).
Energy densities, ¢, and number density, n, is defined as

Z = eV Y = (N’ (7.8)
Then
L g + A g log Z|
= ——f] - - — (o) .
TV T pa) B
1
n= ﬁ—V 5—H log Zly,
where
8 N, da,’ '

When we take the derivative of log Z regarding to any variable, we have two terms
coming from Sg and Sg,

1
(log 2)' = — f@u.@ww(— SL—SHe™S. (7.10)

Y

The first (second) term is considered to be the contribution from gluons (quarks).
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8. Results of MC simulation with quark loops

1 have run the simulation on a 2 » 83 lattice with two flavors using the pscudo-fermion
method. The gauge group SU(2) is replaced by its icosahedral subgroup. The hopping
parameter is fixed to be 0.17 which would correspond to a very small quark mass in the
quenched case. The number of gauge MC iterations is 100 including 20 thermalization
except for 4/g> = 2.0,2.2 and 4 = 0 where it is 84. The number of pseudo-fermion iteration
is 45 including 15 thermalization for each sweep of gauge fields.

]‘0 T i
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i I i { | ]
10 15 20 25
4/g2

Fig. 23. Expectation value of the Polyakov line as a function of 4/g® for zero chemical potential. The
circles are the data obtained in the presence of quark loops. The crosses correspond to the pure gauge
matter

In Fig. 23, I show the expectation value of the Polyakov line as a function of 4/g*
for i = 0. At high temperature (i.e. small g?) the Polyakov line has large expectation
value which implies the existence of isolated heavy quarks with only small supression
due to finite temperature effects, while its value is small at low temperature. The characters
of the system at high and low temperature are therefore different but heavy quarks are
nevertheless deconfined in both phases. Its change is quite smooth, and no indication of
a second order transition can be seen.

On the other hand, the gluon and quark densities, which are plotted in Figs. 24a
and 24b, show rapid variation. Moreover the value of the quark energy density at high
temperature is much larger than that of pure gluon system which agrees quite well with
the “free gas™ behavior at high temperature. Here “free gas” rcfers to the massless free
bose or fermi fields on a lattice of the same size [7]. The cnergy density of gluons is as
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large as 3/2 of the “free gas” (the dashed line in the figurc). This suggests more
degrees of freedom than those of simple ideal quark gluon gas. The system of quarks and
gluons at these temperature regions looks rich in structure.

The rapid change in the energy densities occurs at the smaller value of 4/g? than in
the pure gauge case. This does not mean the transition temperature is lower than that
of pure gauge theory because the lattice distance a at the same value of 4/g? is different
between two theories. As we see in Section 5, once we switch on the quark loops, the gauge
configurations are pushed into more ordered state and the finite size effects become more
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Fig. 24.- Gluon energy density (a) and quark energy density (b) for zero chemical potential as a function
of 4/g%. The dashed line gives the free field limit on the same lattice

serious. This may be interpreted as the shrinkage of the lattice distance drived by the
quark loops.

In order to know the value of temperature in physical unit, we should evaluate the
lattice distance a. Note that we cannot use the values in the literature which obtained
without quark loops. I ran a simulation on a N, * N+ N+ N, = 8 x 8 x 4 « 4 lattice
at 4/g? = 1.6, 1.8 and 2.0 and measured Wilson loops on 7—x plane. The heavy quark
potential is estimated by a Stack method. We fit the results to a Martin phenomenological
potential [8] with the lattice distance and the constant part of the potential as parameters.
The obtained temperatures are shown in Fig. 24a.

We can cxpect the rapid change of the quark gluon energy density between 7 = 200-
~350 MeV, which may be more drastic in case of SU(3).

Next we shall study the effects of the chemical potential. We plot the MC data in
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Fig. 25-27 as a function of the chemical potential for 4/g2 = 1.4. As the chemical potential
increases, the value of the Polyakov line increases very slowly and monotonically, while
the thermodynamical quantities show peculiar behavior. At large chemical potential,
isolated heavy quarks can survive longer than at the zero chemical potential. The gluon
energy density shown in Fig. 26a increased quickly when we increase the chemical potential,
i.e., the gluons are not independent of quark matter density and exhibit behavior far

T T T T
ast 4
. 0 i

o Q
as} ) -
s 9 -

< 4rgi-t14
azi- i
8x2
J 1 A 1
0 0.5 10 15 20
ua

Fig. 25. Expectation value of the Polyakov line as a function of chemical potential for fixed temperature
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Fig. 26. Gluon energy density (a) and quark encrgy density (b) as a function of chemical potential for
fixed temperature. The dashed line gives the free energy limit on the same lattice
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from that of a “free gas”. However it falls suddenly at large chemical potential. The
quark energy density in Fig. 26b increases like a “free gas™ but value is much higher. At
these chemical potential regions, the free quark-gluon picture is not correct. There might
be other degrees of freedom. The number density, n, shown in Fig. 27 also overshoots
the “free gas” values at large chemical potential in a similar manner to quark
energy density. To obtain the system with large chemical potential, higher density is required
than that estimated from ideal gas equation.

In Table V, I compile the present situation of the simulations at finite temperature
with quark loops.

This calculation was done at CERN, Frascati and Zaragoza. I am grateful to the
theory divisions there for their hospitality. I wish to thank G. Parisi who has, with great

TABLE V

Compilation of MC experiments at finite temperature with quark loops. Here “phase transition” does
not always mean phase transition in its mathematically exact sence, rather rapid change in thermodynamical

quantities
|
Group Color Action Meth,()d Parameters | Observed Quz?r?tmes
Lattice “Phase Transition™
‘CERN! SU@3) Wilson 4th HOPE 6/2% = 4.9-5.1 Ly
83 %2 x = 0—-0.05 No
Bielefeld 12 SU@3) | wilson 4th HOPE 6/g? = 5.2-9 4 &G
83«3 k = 0.15, 0.20 | Yes
Cal Tech® SU(3) | Susskind Pseudo-Ferm 6/g* = 5.4-5.775 Ep, (LY, 66
634, 8%5+4 ma = 0.1,0.2 Yes
Bielefeld 1I* SUQ3) Susskind Pseudo-Ferm 6/g% = 4.4-50 : Ly, eG
63 %2 ma = 0.1 | Yes
t
Hlinois® SUG) | Susskind | Micro-cancl 6lg> = 4—7 L e
83«4 ma = 0.08—0.10 | Yes
INSS SU(2) | Wilson Pseudo-Ferm 4/g? = 1.2-23 ; (LY, £, £q
8342 k= 0.17 Yes
pa = 0-2.0 ;

! P. Hasenfratz, F. Karsch, I. O. Stamatescu, Phys. Letr. 133B, 221 (1983).

2 T. Celik, J. Engels, H. Satz, Bielefeld preprint BI-TP83/15.

3 F. Fucito, S. Solomon, C. Rebbi, Caltech preprint CALT-68-1084,

4 R. V. Gavai, M. Lev, B. Petersson, Biclefeld preprint BI-TP84/01.

5 J. Polonyi et al., Phys. Rev. Lett. 53, 644 (1984); OSU preprint DOE/ER/01545-349.
5 A. Nakamura, INS preprint INS-Rep-507 (to be published in Phys. Lett. B).
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patience, introduced me to this field. I am indebted to V. Azcoiti, A. Cruz and E. Mari-
nari for helpful discussions. T am grateful to the participants and organizers of Warsaw
symposium and of Zakopane summer school, 1984 for constructive criticism, es
pecially to A. Bialas and L. D. McLerran for valuable discussions and to M. Migsowicz
for encouragement. I thank T. Minamoto for permitting me to use his characters in
the figures.

Editorial note. This article was proofread by the editors only, not by the author.
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Fig. 27. Quark baryon number density as a function of chemical potential for fixed temperature. The
dashed line gives the free energy limit on the same la:tice
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