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A theorem known for one-dimensional g-equivalent Hamiltonians is extended to the
multidimensional case. The construction of new integrals of motion is put forward illustrated
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1. Introduction
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It is a well-known fact that the Lagrangians: L = 1 mg? and L = —mc \/ 1- %
give straight line trajectorics. An identical remark may refer to the Hemiltonians. Although
the Lagrangians describe free particles motion, the physics of the particles is completely
different. It is interesting to study the class of the Lagrangians and Hamiltonians respec-
tively, which result in the same trajectories in the corresponding configuration spaces.
We do not take into consideration the Lagrangians which differ from a total time deriva-
tive and canonical transformation on a phase space.

The relation between these Lagrangians and Hamiltonians respectively in the one-
-dimensional case was studied by Currie and Saletan [1]. They showed that, if we have two
Lagrangians, L and L, such that the solutions of their Euler-Lagrange equations are the
same, the following equality can be written down:
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where f(g, ¢, t) is a constant of motion. The Lagrangians subjected to this condition are
called the s-equivalent Lagrangians.
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For two Hamiltonians, H and H, such that
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the dependence was obtained
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where f = dp/dp is a constant of motion. The transformation from (g, p) variables to
(g, p) variables is called a “fouling transformation” [2] and the corresponding Hamilto-
nians are called g-equivalent Hamiltonians.

For the s-equivalent Lagrangians in the multidimensional case, we proposed in our
paper [3] that
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Hojman and Harleston [4] showed that the trace of matrix A,, and its any positive integer
power are constants of motion.

The above theorem was also proved by Henneaux [5] basing on geometrical argu-
ments. Gonzalez-Gascon [6] has shown it directly from Euler’s equations; whereas
Farias and Negri [7] by using the Helmholtz conditions.

Below, we study the g-equivalent Hamiltonians in the multidimensional case which
provides us with the following theorem:

If H(g, p) and H(g;, ) are q-equivalent i.e. if the trajectories gemerated by these
Hamiltonians are, in the configuration space, the same, then the following equalities
take place
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2. Demonstration of the theorem

Let us consider the g-¢quivalent Hamiltonians H(g,, p;) and H(g;, p) connected by the
“fouling transformation” which result in the equations of motion:
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Making use of p; = Pfg;, ;) equations (12) can be rewritten in the form
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Let us take the derivative of (13) with respect to p; and sum over k. Then, the right-hand
side becomes equal to
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In order to differentiate the left-hand side of (13), first we change the variables from (g;, p)
into (g;, py) and next, after the differentiation, we come back to the old variables (g;, py).
The following identities are helpful in the calculation:
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The formulae (15) and (16) are obtained by differentiating (10) with respect to g, and p,,
respectively. Moreover:
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From (14) and (17), summing up over the index / and comparing we get
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thus {H, o/} = 0 which proves the theorem in question.
We wish to thank Dr Z. Chylinski for interesting and helpful discussions.
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