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In the paper we consider the simple spatially homogeneous and isotropic cosmological
models with torsion in the framework of the gauge gravitational theory with quadratic

Fiad e
Lagrangian Ly = Tec hAnFk +6' A » @;)+ —_— Q‘kA » 2%, These models were obtained

a
by using of the ansatz — +h = (i)—‘
ac a

PACS numbers: 04.20.Me

1. Introduction

The gauge gravitational theory with quadratic Lagrangian
L, = (QiAn +0'A » ©)+p2iA » O, ¢y

ahG he

c? 16n

. c*
where i, j, bk, ,mn,p,r,s,t=0,1,2,3, and a = ——, f=af =
' 16nG

was presented in the papers [1].

In the Lagrangian (1) % is the Planck’s constant, ¢ is the value of the velocity of light
in vacuum and G denotes the Newtonian gravitational constant. £, is the curvature
two-form, @' is the torsion two-form and 5, means the pseudotensorial two-form intro-
duced by Trautman [2]. * denotes the Hodge-star-operator [3].

* This work was carried out as a part of the Research Project MR.L7.
** Address: Zaklad Fizyki, Wyzsza Szkota Pedagogiczna, Wielkopolska 15, 70-451 Szczecin, Poland.
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In tensor notation the equations of the theory take the following form

B(VnRP™+ RO+ 5 ROP,)

o
+ E(th — Q5+ 0587 — Q5T +0%) = (=) S%, 2
8 .
(Vkap + pr Quti lekalk— Gp+ — bp “Qy—Q eriy)
i g iz
+8 (R jbtRijp‘ bp RY"R, n) =(-)% tobs 3)
where

Gpp: = pr—'zl‘ gmR 4

are the components of the Einstein tensor.

In the above formulae RY,, = (—)R%. are the curvature components and
Q' = (=)Q'y mean the torsion components; S% = (—)S% denote the components
of the canonical spintensor of matter and 7, are the canonical energy-momentum tensor
of matter components. V means the covariant derivative with respect to the Riemann-
-Cartan connection .

In the paper we restrict ourselves to the so-called “classical spin” [4] with properties

S% = uPSy,  Si = (—)S utsm = 0. o)

u* are here the four-velocity components (uu, = 1).

The gravitational theory based on the Lagrangian (1) is satisfactory from the different
points of view [5]. It gives a classical, microscopic gravitational theory (MicGT) satisfying
the Birkhoff theorem [1].

The limiting process fi — 0 performed in the Lagrangian (1) and in the field equations
(2)—(3) of the theory leads to the new macroscopic gravitational theory (MGT) which
is based on the following equations

S?
Q% — QP+ Q47— Q%P + 0% = (-) ~2~—“' : (6)

Vkapk + pr'.‘qu +% Qb"‘qu( —Gp

+ 2200, - 040, = (- ) )

The MGT corresponds as well to the Newtonian gravitational theory (NGT) as General
Relativity (GRT) does [1]. It is the theory which is identical with the GRT in vacuum

and inside of spinless matter and gives the same results inside of the Solar System as GRT
gives.
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The solutions with torsion are submitted, in both theories, MGT and MicGT,
to the same constraints. We obtain these constraints by comparison of the antisymmetric
part Ry, of the Ricci tensor Ry, calculated from the field equations of the theory with
the antisymmetric part of the tensor obtained from the torsion Bianchi identities {l1].
We get

1
VkQ[bp]k + Q[bp]ka + 2u frpe] = 3 VkQ,.‘bp +ViQp+ I 0.0, ®

where
Qn L= Q'.‘nk‘

The constraints (8) essentially restrict the set of the solutions with torsion in the theory,
in comparison with a theory of gravitation having quadratic Lagrangian without Einstein-
ian term. Namely, in a given problem in vacuum or inside of matter with a symmetric
energy-momentum tensor, the solutions with torsion exist if the following Criterion
“C” is satisfied®.

Criterion “C”. In vacuum or inside of matter with a symmetric energy-momentum
tensor, the solutions with torsion exist when:
1. The constraints (8) are compatible with the field equations and the compatibility
conditions ncither lead to an overdetermined resulting system of equations which we
must solve nor imply vanishing torsion or
2. The constraint, (8) are identically satisfied in the conditions which neither lead to an
overdetermined resulting system of equations which we must solve nor imply vanishing
torsion or
3. The constraints (8) immediately follow from the field equations (the trivial consistency
of the constraints with the field equations) and the system of the field equations is not
overdetermined.

If the Criterion “C” is not fulfilled, then there exist torsionless solutions only.

2. Equations of the theory in spatially homogeneous and isotropic cosmology

We take the Robertson-Walker linear element in the form [6]
ds? = c*dt* - a*(t) [dy* + R*(x) (dO* +sin? ©d¢?)], )

where a = a(t) is here the so-called “scale parameter” and

siny if k=1,
R = R(y) = 1 if k=0, (10)
shy if k = (~)L

The parameter ¢ means here and in the following the cosmic time.

! Inside of matter having asymmetric energy-momentum tensor may exist only the solutions with
torsion.
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In the case of the SO(3) isotropy group the linear element (9) is consistent with the
following form of torsion in the orthonormal tetrad (OT) determined by (9) [7, 8]

Q' = ()00 = 202 = (—)0%0 = Q%3 = (—)Q% = :h(1),
Q?zs = (")Qfsz = Q?31 = (‘)Q?n

or, equivalently

Q:.i12 = (")Q?m = :f(1) (11)

QT01 = Q?oz = Q?oa = :h(1),

0, = Q4 = :Q(1), a12)
where
Q.(): = (=) 502
Q:(0): = Q% 5+5Q'as, (13)
and
Q?IS = ("‘)Q?IZ' (14)

The remaining torsion components vanish. In the following we shall use (12) as the form
of the admissible torsion.

In the case of the O(3) isotropy group (rotational and space reflections symmetry
at every point) there remain only the components

Q' = ()00 = Q%02 = (—)0%0 = Q%5 = (—)@%50 = :h(D) (15)
of torsion [7, 8.

Using the above cited information we may write out the field equations (2)~(3) in
the orthonormal tetrad determined by the Robertson-Walker linear element (9). We get
the following systems of the four equations on the four unknown functions: a(t), A(t),
Q(t) and &(t) or p(t):

@) k=1

d T2
— +ah
()ghd 15 2 3@ 3 , 3B (c )
ac 2 a a 24

@WOT | 402 U [ IR WL 'CY f G
e e wa e om
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R4
20’

. 2 32 . 2 2
oot ]
ac ac ac a

K R . R . 2
—15[(“@] —20%+ 2—? +2(i +k)(“Q) -20 (i +h)
a a ac ac

4 ac

2h L@ —0
+;(“Q) ?);Q—- , (16)

d > 2h fa © 2/(a o
‘2(;;”')*zz(?“")‘;‘f(a*")*z‘ﬁ”=°~
a 12
(fc_ +“h)} . [(aQ)T

o s 3 3_5{[
(=)9k ac z h a%c? 3¢+ ac ac
. 2 . 2 2
o (][ ) e}z
ac ac 20
(i +ah)]2
¢

3}" 6h- 22 .

(~)——~—“—%h’-Q’—-—‘§—s—2f—z~£{{ —~
) i 2— (aQ). 2_ i 2— 2‘]2 3 p

v (Gon) =[] [Ge ) -1 - 5

I . . 2
2 [(“Q)] _200+ 2 (i +h) (aQ) —20 (f'— +h)
[+4 a ac\ac ac

+ 2oy - 20 =0, an
ac B

. (.d_ +ah). ' . 2 /a . .
- ¢ —2Q2(f- +h)+——(f— ‘+h)<i +ah)
4 a ac ac \ac [4

i  2h(fa ’
—2(Z +h) + (= +ah) + —h=0.
ac ac \ c 28

(k=0
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(i) = k = (-)1

()]

.2 — +a

2 . 2 2

(el 5 e
ac ac a 2a
a 12
, .2 . (——+ah)
R i R R | R

o 2 2 . 2 2
(][22 -eT} 2
ac ac ac a 20
2
%[(“Q)] 20~ 4 ( +h)<aQ) 29( )
c a ac

2h o
+ = (aQy- =0 =0,
ac B

. (i +ah) ' . .y .
c a a
e T o (-“_ +h) ¥ _(—- +h>(~— +ah)
¢ a ac ac\ac ¢
i * 2h(fa 2
-2(1 +h) +—-—( +ah> ( +h> +Zh=0 (18)
ac ac \ ¢ a*\ac 28

We have denoted by dot the differentiation with respect to the cosmic time ?.

The classical spin is eliminated from the above equations. Therefore, there is admissible
only symmetric energy-momentum tensor of matter. We have taken this tensor in the
form of the energy-momentum tensor of perfect fluid.

The constraints (8) are identically fulfilled in the case with h # 0 and Q # 0 and
the Criterion “C” is satisfied. Therefore, the systems (16)-(18) have the solutions with
torsion.

3. Spatially homogeneous and isotropic cosmology in the framework of MGT

We give here information about spatially homogeneous and isotropic cosmology
in the framework of MGT. This cosmology is the macroscopic limit given by & — 0
of the cosmology based on the equations (16)—(18).
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In the case of the O(3) isotropy group the field equations and imposed symmetry
exclude the classical, macroscopic spin®. Thus, in the case, the cosmological equations
of the theory reduce to the Friedmann equations and we have the same spatially homo-
geneous and isotropic cosmology as in GRT.

In the case of the SO(3) isotropy group the field equations and imposed symmetry
admit the only one intrinsic, nonzero component S%; = u°S,; = S,5 of the classical
macroscopic spin. In consequence, only the two intrinsic torsion components
0%; = (—)0%, = :0,(t) may be different from zero. But this kind of torsion is not
consistent with the postulate of spatial homogeneity and isotropy [7, 8].

The field equations take the following form in the orthonormal tetrad determined
by the Robertson-Walker linear element (9)

(=) 342 N 2R" 1 + R'? Q2 (=) £
a*c®  a*R  a®R®  a*R* 'Y Y24’
1 a? R'? a p
Vg m gt oy —2— +0E = —,
( )a2R2 a’c?  a%R? c? &% 2u
a? R"” d p
2
-t e 2 = —,
o a’c®>  a’R ac®  2a
. a 1
0,40, - =0, @, =(~)—— S8, 19
a 4

a(t) is here the scale parameter and R = R(y) is given by (10). The dot, as usual, means
. dR
the differentiation with respect to the cosmic time ¢; R': = — etc.

The constraints on torsion reduce to the following, single equation
. 3a
0, + = g, =0. (20)

This equation can also be obtained from the differential conservation laws existing in the
theory [1].
Comparing the constraints equation (20) and the field equations (19) one can see

that the constraints are compatible with the field equations if and only if 2 0,=0,
‘ a

i.e., if either Q; = 0 or d = 0 which implies Q, = 0. In both cases the constraints
equation (20) is identically fulfilled and the resulting system of the equations i3 not overde-
termined, i.e., the Criterion *“C” is satisfied.

In the first case @; = 0 which implies §,; = 0, we get the same equations (Friedmann
equations) and the same torsionless, spatially homogeneous and isotropic cosmology
as in the GRT.

2 By macroscopic spins we mean the spins of planets, stars and galaxies (see {1]).
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In the second case d = 0, we have the static cosmological solutions with torsion of
the form:

HDk=1
8a e+3
a?=—, =P 5, =4a0, @1
E—p 8
€ = const; p = const; {,; = const,
(i k=0
2 _ & 14
Qi ===, S8;33=4a0Q,, (22)
200 2o

Q. = const, &= p = const.

The scale parameter a is not determined in the case by the field equations alone.
Gi) k= -1
8a , 3p—e

a® = » 0= s Sa3 = 4aQ,, (23)
p—¢& 8a

€ = const, p = const, Q= const.

The non-Einsteinian solutions (21)-(23) are not consistent with the postulate of the
spatial homogeneity and isotropy. Therefore, we must reject these static models. Finally,
we can say that the spatially homogeneous and isotropic cosmology is here spinless and
torsionless and the same as in GRT. This is the cosmology given by the first case 0, =

4. Simple spatially homogeneous and isotropic cosmological models with O(3) isotropy group

In the paper we consider, for simplicity, only cosmological models having O(3)
isotropy group. The more general cosmological models described by the equations (16)—(18)
will be studied in the forthcoming paper.

In the case of the O(3) isotropy group the equations (16)—~(18) take the following,
simpler form:

k=1
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a ac
+4h<d+h)h+“h 0 24
e — 4a —pn = 0.
ac \ ¢ 28 0
(i) k=0
d 32
— +ah
3d* 38 [(C )] y €
B R L S ™)) =%
(-) 2 | & a?c? (ac+) ( )2“
o -2
da
— h
h  6ha o p2 a* a b [(C e )] d+h4 ~_F
c a ° a*c* “ac? o« a’c? ac 2
— h
1(c+a) 28 3+4hd+h C yan)+—h=0
c? a ac ac \ ¢ e 2 ¢ B -
(25)
Giif) k = —1
@)
— +a
a 3¢> 3 3B3L\¢
“Wh— =R — b S+ |
) ac a202+a2+ o a*c

d S o €
—'[(:z_c—i-h‘)—;{l =(_)i;’v
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(26)

The systems (24)—(26) are very well determined if the state equation p = p(e) is given.
As in the case of the SO(3) isotropy group the Criterion “C” is satisfied in the case and,
therefore, the systems (24)~(26) have the solutions with torsion. We will obtain the solu-

tions of that kind with the help of a suitable ansatz.

(a) The solutions to the system (24).

Using ansatz
az0 d
- @7

~(-1—+h=0=_= +ah =0
ac c

we get the static and torsionless solution representing planckeon [1]. On the other hand,

using of the ansatz

a 1 az0 g
—+h=— = —+ah =1 (28)
ac a ¢
leads to the following dynamical solutions with torsion:
e hG
(i) a> \/8d, where o = —-
c
8 124 . 654 N 16012
] = —— = —— —— R ad
a3 ’ € (12 a2 (14 ’
do (64 144972
p= 22 2 P
8 [(a+V8sf
a— v In (a __) = ct+const. 29)
2 a8t
It is conveniently to put the constant equal to zero because, then we have for a> ./ 8of
a=ct (30)
(i) a < /8o
L8 120 . 6/ N 16&12)
=TTy &= — 5 a2 J»
a® a? a? at



709

a a a

4z 144572
P== _2”_1'"_"_1“ ,

V8 fa++/8s
a— n{ —=— = ct+const. 31
2 V8 —a

Here, it is also convenient to put the constant equal to zero.

The cosmological model given by (29) expands from the initial value a = \/ﬁ_.s?
at the moment ¢ = (—)oo to the final value @ = oo at the moment ¢ = oo. The velocity
of this expansion is monotonically increasing from zero value at a = \/ 8/ to the value
of the light velocity as a(?) goes to infinity.

The model given by (31) contracts from the initial value a = \/W at the moment
t = (—)o0 to the final value a = 0 at the moment ¢ = 0 with the velocity increasing from
zero at ¢t = (—)oo to infinity at r = 0. In our opinion it is unphysical cosmological model.

The ansatz

4 +,,_(_)J:.°f.+ ah = (=)L (32)
ac ¢

leads to the following models being the time reflection of the models given by (29) and (31):
() a> /8«

8o 12« 64 1647
h = ('—)'—a—i‘ N &€ = ‘;i' 1 s

— + —
02 04
4o (64 144977
P\ T )

a—

Vet | (a +‘/§.°f) = const—ct. (33)
2 a—/8s4

This cosmological model contracts from a = o0 at ¢ = (—)oo (const = 0) to a = ,/ 8

as t goes to infinity. The velocity of the contraction is monotonically decreasing from

the velocity of light at £ = (—)oo to zero at ¢ = co. The model is the time reflection of the

expanding model given by (29).

(i) a < /8
- ) 120 . 8 N 1652
’ & = —5 - s
a? a“ at
4o (6o ) 14472
p = a2 a2 - a* ’

(—)a+ Vel (\/&H
2 V8o —a

For convenience we will put the constant equal to zero.

) = ct+const. (34)
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The model given by (34) expands from the initial value @ = 0 at # = 0 to the final
value @ = /84 when 1t goes to infinity. The velocity of this expansion is decreasing from
infinity at ¢ = 0 to zero at t = oo. This is also unphysical model being the time reflection
of the cosmological model given by (31).

(b) The solutions to the system (25) obtained by means of the ansatz method
Ansatz

0

s

d - 1 420 d
—+h=—"= —+4+ah =1 (35)
ac a [

leads to the following solutions:
() a> J4od

4of 6a 5 847
h = —5 e= i+ 5 + ,

a? a*

a’ a*

2a (5o 7204
p= ‘7 ’

4 4o
e (“+‘/__> = ct+const. (36)
2 \e—ag

a

For convenience we put the constant equal to zero. Then we have for a > /4
a = ct. 37

The (36) represents the expanding cosmological model. The model expands from
a = /45 at the momen: 1 = (—)oo to infinity as ¢ goes to infinity with velocity which
monotonically increases from zero value at ¢ = (—)oo to the light velocity ¢ when ¢ goes
to infinity.

(i) a < J4so
4o 6o 5o 8s?
h = F, &€= ;‘2‘ 1 3 a“ s
_ 2u (5o . T2
P= a’\ a* at )’
e RN rwE
a-— v In (\/_+a) = ct+const. (38)
2 A NI

The constant we also take equal to zero.

This model contracts from the initial value a = \/4.7 at t = (=)oo to the final
value a = 0 as ¢ goes to zero. The velocity of this contraction is monotonically increasing
from zero at t = (—)co to infinity when ¢t — 0. Thus, it is an unphysical cosmological
model.
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Ansatz

a -
~ +ah = ()1 (39)

a0

1
th= (=)=

2a

leads to the solutions which are the time reflection of the solutions (36) and (38). Namely,
we have:

) a> /4ot
4o/ 6o 5 8af?
h=(‘—)71—3", 8="—1+—'—+“—-",

a a? a*

2z YT T e

2 (5.31 72d2>
P==t—7 »
a*\a a

Vit fa+Vaot
a— In (a \/‘_) = const—ct. (40)
2 a-J4g

As in the previous cases, we put here the constant equal to zero.

This model contracts from the initial value a = co at the moment ¢ = (—)o0 to the
final value a = \/4.7 at the moment 7 = . The contraction velocity monotonically
decreases from the velocity of light at ¢t = (—)oo to zero at the moment ¢ = o0. We see
that the model is the time reflection of the mod.l (36).

(i) a < J4A

+
a? a*

4of 6 5o 8t
h‘—"(—)‘;i, 8=£(1+—— )

p=— —1 -
2 2 a4

a

2u (SM 72&2)
a y

Vass (\/4.91+a
In —
2 Vad —a

(—)a+ ) = cf+const. 41)
The constant we put, for convenience, equal to zero.

The cosmological model given by (41) expands from the initial value @ = @ at the
moment ¢-= 0 to the final value @ = /4. when ¢ goes to infinity. The expansion velocity
is decreasing from infinity at the moment ¢ = 0 to zero as t goes to infinity. Therefore,
the model is unphysical and it is the time reflection of the model given by (38).

i 1
(c) The solutions to the system (26) obtained by using of the ansatz £ +h=(+)—
ac a

d 1
The ansatz— +h = (%) —leads only to the trivial solutions to the system (26)
ac a

representing Minkowskian space-time. These solutions are given by e = h=p =0,
a= +ct.
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5. Discussion and conclusions

The astronomical observation shows that the two following solutions from the solu-
tions presented in the paper may have physical meaning:

® the solution (29) for k = 1,
(i) the solution (36) for k = 0. (42)

These solutions describe expanding universes without singularity, defined for all
values of the cosmic time ¢. On the other hand, for macroscopic values of a(t) > \/ 8o
> \/47 the evolution of the Universe should be described by cosmological solutions
to the MGT equations, i.e., by the solutions to the equations (19) followed by the torsion
constraints (20). Therefore, in macroscopic domain, our solutions should correspond
to the suitable cosmological solutions to the equations of the MGT.

It is very interesting that for macroscopic values of a:a» /8« > /4o the solu-
tions cited in (42) really, with a very good accuracy, turn into spatially homogeneous
and isotropic cosmological solutions to the macroscopic equations (19). Namely, we have
with a very good accuracy that for macroscopic > /8« > /4:

() The solution (29) takes the form
h=0, e":_ahf’ p=(_)_—'a a = ct (43)

and represents an exact expanding, spatially homogeneous and isotropic cosmological
solution to the macroscopic equations (19) for k = 1.

(if) The solution (36) takes the form
6c =) € . ”
-3 =(~)—, a=c
a2 p 3 (44)
and represents an exact, expanding and spatially homogeneous and isotropic cosmological
solution to the macroscopic equations (19) in the case k = 0. Summing up, one can say
that the above mentioned, desired correspondence does exist.

The macroscopic cosmological models described by (43) and (44) predict sensible
mean matter density for the present state of the Universe (at present a = 10?® cm):

€ 12a _ _
?2- = 'aTc;- ~4 10 29g -cm 3 (45)
in the case k = 1 and
£ 6a - -
‘;2— = a—2c3 zO,S-lO ”g-cm 3 (46)

in the case k = 0.
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The negative pressure existing in our cosmological models leads to the gravitational
repulsion between the particles of the cosmological substratum.

At the cost of the work performed by the negative pressure and torsion during expan-
sion the continual “‘creation’ of matter takes place in the presented models, e.g. in the
case k = 1 the total mass of matter contained in the model increases proportionaily to the
a(?) from the initial value of order 10-* g. However, these models are evolutionary models,
not steady-state models, because the expansion dominates over the creation and, in con-
sequence, the mean matter density in the models decreases as a2 from the initial density
of the order 10%3 g - cm~3, At present the matter is probably “created” in the active nuclei
of galaxies.

The models of expanding Universe presented in the paper are very interesting; espe-
cially the model with k = 0. They are without singularities and, in macroscopic domain,
they are simpler than the standard Friedmann models. Moreover, in the framework of
these models, it is possible to explain the observed isotropy of Universe [9]. The standard
Friedmann models are powerless in this field [9].
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