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QUARKS IN NUCLEI: su(4) LIE ALGEBRA*
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It is shown that the spectrum generating algebra for the pairing interaction of quarks
is the su(4) ~ so(6) Lie algebra independently of the j-shell.

PACS numbers: 14.80.Dq

1. Introduction

The quarkish constitution of the nucleons must manifest itself at short distances,
however there is considerable controversy, at the moment, as to how to include the quarkish
composition of the nucleon: there has been little success in understanding low-energy
nucleon-nucleon forces in the framework of the three constituent quarks, see e.g. the review
by Bickman et al. (1983).

Recently the pairing interaction of quarks within the given j-shell in the nuclear matter
has been proposed and discussed by Bleuler et al. (1983). It is extremely important that
this simple phenomenological model is reproducing the characteristic properties of the
conventional nuclear shell structure. This gives the hope that the more sophisticated
phenomenological models of the quark interactions could be helpful in the more deep
understanding of the nuclear structure.

The effectiveness of the phenomenological models of this kind comes from the direct
rclation between these models and the theory of the Lie algebra representations. In fact
the total Hamiltonian of the quark pairing forces can be expressed, up to operator of the
number of particles, by means of the Casimir operators of the SU(4j+2) and SO(4j+2)
groups, which has been demonstrated explicitly by Bleuler et al. (1983).

Generally the method of the spectrum generating Lie algebras consists in the identifica-
tion of the total Hamiltonian operator H with the proper element of the enveloping algebra
of some Lie algebra, i.¢. one must express H by means of the set of the mutually commuting
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operators in the enveloping algebra. The spectrum generating Lie algebra obviously need
not to be the symmetry algebra of the Hamiltonian operator H.

The goal of this note is to point out that the Hamiltonian describing the pairing
forces of quarks in nuclei can be directly related to su(4) = so(6) Lie algebra independently
of the j-shell. In particular this mezns that the Hamiltonian operatcr can be expressed
up to “trivial” terms by means of the one Casimir operator of the SU(4) group and there
is no need to consider j-dependent groups SU(4j+2) and SO(4j+2).

The so(6) Lie algebra as the spectrum generating Lie algebra is the natural next step
in the well known family of the so called quasi-spin Lie algebras: so(3) for the pairing
correlations of the one kind of nucleons (no isospin) and sc(5) for the pairing correlations
of the two kinds of fermions (flavour without the colcur). We refer to our previous
papers (Oziewicz and Gorezyca 1981 and Oziewicz and Ciechanowicz 1984) devoted
to the problem of the so(5) Lie algebra as the spectrum generating for the pairing Hamilto-
nians. Inclusion of the colour results naturally, as we like to show here, in the so(6) Lie
algebra. This result opens the possibility of investigation of the phenomenology of the
three-and four-quarks correlations in nuclei by means of the exploitation of all, three
independent Casimir operators of the so(6) group, along the line indicated in Ref. (Ozie-
wicz and Gorczyca 1981) for the quadrupling forces.

2. Lie algebras of the tensor operators

Let X denote some linear space and X'* its dual, then the fermion creation
(= emission) and annihilation operators ¢ and a respectively can be considered as the
linear mappings

e: X — End{a X}
a:X*— End {A X},
with {e,, a,} = a(v) for Vve ¥ and ae X*. 1)

The above relation (1) tells us nothing but that a is of the degree one and antiderivation
of the exterior Grassmann algebra A X, (so called Fock space of the quantum states),
i.e. that the annihilation operators can be identified with the internal multiplication and
creation operators with the external multiplication in the Grassmann algebra.

Suppose that X is the (irreducible) G-space for some (Lie) group G. Then we have
the natural G-invariant isomorphism ¢ : X — X * which is defined by means of the
Clebsch-Gordan coupling to the one-dimensional (scalar) representation of G. G-
-invariance means that g* c & = ¢ o g~! where ge G and g* denotes the pull-back of g.
For the SU(2) case @ is essentially the T-transformation in (Bleuler et al. 1983). However,
we are choosing the different convention

(Po)w = (=)j0p®w) for v or wel[j]. #))

Here [j] is the carrier space of the linear irreducible representation of SU(2) with
dim[j] = 2j+1.
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Now it is convenient to define the “bosonic” operators in ¥ @ X,

E=e®e and A=(aRa)-P. 3)
Let
XQN =N’ and H'QXF = @xy. )
Then we define
foxEE/\A"Pfx ()

where PL. is the projector on X te subspace and
(E A A) (v@w) = [E°, 4”]. (6)

For the particular case the operators (5) are related to the number and isospin opera-
tors, cf. with the definitions (2.3) and (2.4) in (Oziewicz and Gorczyca 1981).
Now we like to calculate N%; operators for the particular case when X = [j] and
(4) means the SU(2)-irreducible splittings, i.e.
2j
el = )?% [J], ete. )
We obtain the following result
N3y = J(1=(=)"*) (=) +2] 72N, ®)
where J = /27 +1 and N, denotes the number operator
N, = No(=)jPj, Q)
where
N = eQ(a - ). (10)

In (9) the factor (=) j is due to our convention (2). In a similar way for L # 0 we get

Nk = JK {'}’ JK _,L} (=) +(=)H = (=) K1) (=)**IN OPZ-. (11)

In the last formula, {...} denotes the Racah coefficient for the SU(2) group, see e.g. (Var-
schalovich et al. 1975) or (Jucys and Bandzaitis 1977).
Let us define

E§K§NAE°P.I;K9
Ak =N A Ao Pf,

Mix=NAN-Py (12)
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in a way similar to Egs. (5-6). For X = [j] we get

J K L
Ejx = (1=(=)""5 (=)~ KKJ{J j J}E ° Pjis

J K L
AJK= -( )(1 ( )21 K)( )] K J{] J J}A ij;
My = (=)L —(=) ¥ hJK {j JK JL}N Py (13)

These expressions show that the E, 4 and N operators (3) and (10) jointly with the
corresponding set of the projectors {P,‘j} are generating the Lie algebras.

Suppose that G = ;SU(2) and let G-irreducible spacebe o = [/, ] @ [/,]1 ® ... ® [J,).
Then the natural generalization of the formulas (8) and (11) above is

Nj‘x = (I‘_I 515K(5L10k1) (_')}:K'(i -(”)221'+K‘)

+ (H J. K‘ {:”l JIF }l;)} (( )2211+J¢+( ):erl‘K‘ ( )U;+K,_1)

X(—)“:L"”‘N ®P5':‘,‘ (14)

In a similar way one can generalize the other commutators (12-13) and the formula like
(14) is one of the main results of the present paper. It should be obvious that in (14) L, J
and X denote the multi-indices, say J = {J,, J,, ..., J,}, etc. Now the number operator
(9) should read

N; = N+ ®(-)}P],, (15)
Therefore
N3y = (T3 A= (=2 (=) "+ 2T Qi+ DTHN}. (16)
Let us consider several illustrative examples of the formula (16). Let J = {0, 1} then
N§; = J3(1+(=)F¥{~ +———~——-——-——N.}. 17
2 = V3TN G D G n
For j, = j and j, = } both half-integer we have
N}, =23 1+—1—N (18)
JJ 2 +1

which is well known, see e.g. formula (2.5) in (Oziewicz and Gorczyca 1981).
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For J = {1, 1} the formula (16) gives

, 2
N9, = 3(1—(=)F 2 {1+ ——-—~~——-N}, 19
u = =N @A 1

which for example for j, = 1 and j, = § is reduced to the form
N3, = 6(1+% N)). (20)

The case J = {0,0, 1}, (spin, flavour and ‘‘colour”: {, 4, 1} corresponds to the pairing
forces introduced by Bleuler et 1. (1983). We made here the mathematically justified
identification which we will discuss in the full line in the next communication. Then the
tedious calculations, see the last Section, shows that the spectrum generating Lie algebra
for the pairing interacticn of quarks is the su(4) >~ so(6) Lie algebra independently of the
J-shell.

Summarizing we see that the resulting, X -induced, Lie algebras are generated by
the set of the G-irreducible tensor operators {E’, 4’ and N’} where we are denoting

E' =E-P}; and A’'=4.Pj,
however
N =(-y*'N.P], @n
It is important to realize that for G = x SU(2) and for # = [j,] ® ... ® [j.].
A+(=)Y**E and 4A)=0. (22)

Because
;EAAOPf‘K:EJAAx, (23)

therefore one can present the Lie algebras of the G-irreducible tensor operators in the
basis independent way

E' A A = (=Y208,k—-B+(=)*5JK Z {j ’_( }L} NE,

N A EX = (=)Y*12JK {J ) {‘}EL.

E : jodo

N’ A A% =2jK E {J k ‘T‘}A",
joJ o

N’ A N¥ = (=)YJK E ((-)“‘—('«)L){; f ]L} NE. (24)

It should be obvious that the tensors £ and 4 of rank J = {0,...,0,J,, ..., J,}

are generating the subalgebras. The above Lie algebra (24) is determined completely by
the G-irreducible modul ¥°. It is appropriate therefore to refer to this algebra as the
X -algebra. Does any relation of the corresponding group, X -group, to the Aut X exist?

»
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3. Simplest examples

The trivial example is the case of J = {0, ..., 0} when putting E = E’, etc. we get
the su(2) quasi-spin algebra

EAA=242¢4N, NAE=+cyE, NAA= —cud,
where ¢ = 2]ji "

Let us consider the Lie algebra of tensor operators (24) for the case o = [j] ® [3]
with the half-integer j. If J, = 0 then (22) = J, = 1. Putting E = E'“! and 4 = 4V
and using the algebraic formulas for the Racah coefficients presented in the monograph
by Varschalovich et al. (1975) we get from (24):

EAAd=-23+2j7'(/6 N°=2NY),
N A E=(3)TTJU+3)2-DE,
N A A= (BHTIVIH)E-D) 4,
N ANf = —(1+(=)*8JK ! {é ? _;_} N (25)

In particular N* A N = 2j-1N!. This is nothing but sp(4) ~ so(5) Lie algebra, cf. with
e.g. formulas (2.10) in (Oziewicz and Gorczyca 1981). This is the spectrum generating

algebra for the nuclear pairing and quadrupling forces, see the references cited in (Oziewicz
and Gorczyca 1981).

4. X = [j1® [5] ® [1]: spin ® flavour @ colour

Bleuler et al. (1983) introduced SU(3)-invariant generalized pairing force for quarks
in nuclei. This case corresponds to SU(2) x SU(2) x SU(3) group of the spin, flavour and
colour, with the irreducible representation [j] ® [3] ® [three’ dimensional fundamental
representation of SU(3)].

3

Let us consider the simplified mathematical model of the x SU(2) group with the
space of the irreducible representation X" = [j] ® [3] ® [1]. For J = {0,0, J5} and
half-integer j, (22) = J; = 1. Putting as previously E = E’ and 4 = A’ we get from (24),

EAA=-2/3+J2]7'2N°~N'=N?),
NY A E=—(26)) 'LILLL+1)—4]E,
NE A A = (=42 6)) *LIL(L+1)—4]4,

N’ A N¥ = JK( YD) Z«—)’”‘—(—)L) {f A f f} N". (26)
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The tedious identification is showing that this algebra (26) is isomorphic to
su(4) ~ so(6) Lie algebra.

Let us indicate that for the SU(2) x SU(2) x SU(3) group with & = [[1® [3] ® 3
and for E = E'®%®% and 4 = 43" we have

E A A ~ const + N'+N°&, X))
what follows from the Clebsch-Gordan splittings
33 = 3*@6, 3*®3* = 3@6*, 3®3* = 1@8.

We ar eomitting here the cumbersome expressions znd the procf that the 15-dimensional
Lie algebra (27) is isomorphic to su(4) with N® operator generating the su(3) Lie subalgebra.
This exact identification needs the Racah cocefficients for SU(3). We cen conclude that
the pairing force of Bleuler et al. (1983) E- 4 = E ® A o }5. can be expressed through
the second degree Casimir operator cf su(4) algebra.

It is illustrative to see what gives the neglection of the spin in the previous example,
i.e. when we consider the fluvour ® “colour” alone. Then from (22) we see that the full
algebra for " = [3] ® [1] is generated by J = {0, 0}, {0, 2} and {1, 1}. It is interesting
that the {1, 1} is generating the subalgebra of (24). Let us put E = E®"D and 4 = 4%
then we get from (24):

EAA=6+2/6 NOT—gNO— /6 NGV NI
=6 NOB LN ete,
We see therefore that this is 56-dimensional Lie algebra. However if we put
N' oc \J6 NP —2NtD,

and if we will violate the isospin invariance by considering only zero isospin components
of the E and A tensor operators then we get the 15-dimensional Lie subalgebra isomorphic
to (26).

The present paper has been inspired by the excellent seminar given by Professor
Konrad Bleuler at the Warsaw University, November 1983, in which one of us (ZO) has
had the opportunity to participate.
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