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THE NORMAL PRODUCT IN QUANTUM THEORY
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The aim of this paper is purely technical. We want to show the positive points and
shortcomings in practical application of the two procedures in quantum field theory. The
first — the canonical quantization approach which uses the normal product (NP) and the
second procedure, the Feynman path inmegrat approach without the normal product (WNP).
To compare both procedures we have made detailed renormalization of the #* theory and
of the scalar electrodynamics.

PACS numbers: 11.10.Gh

1. Introduction

There are two main approaches in the quantum field theory. The first, the so-called
Canonical Quantization, where quantum fields are obtained by quantization of classical,
canonical conjugate quantities of appropriate classical field theory (see e.g. [1]). The
second is the Feynman Path Integral approach where generating functional for any Green’s
function is given by path integral of the appropriate classical action (see e.g. [2]). This
way of the formulation of quantum theory have become popular after proving that, with
unphysical particles called “‘ghosts”, non-abelian gauge theories can be unitary [3] and
renormalizable [4].

It is possible also to introduce “ghosts” to theory, without path integral formulation,
by requirement, that total lagrangian (with gauge fixing term) is BRS invariant [S]. By
introducing the BRS charge it is possible to state the conditions for Hilbert space where
S-matrix is unitary, and give canonical quantization formulation of non-abelian gauge
theories [6].

In practical applications, there are essential differences in both of the mentioned
approaches to quantum ficld theory. In the canonical approach to remove vacuum infinite
energy, the normal product is introduced for field operators. Then, in perturbative calcu-
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lation, using Wick’s theorem, any time ordered connections between operators from the
same normal product will vanish ({0|T(:¢(x)¢(3):)|0> = 0). This condition will eliminate
many Feynman diagrams from perturbative series, which would be present without nor-
mal product. In the Feynman path integral approach, the generating functional is expressed
by classical action and it is not usual to include normal product here. The aim of this
paper is purely technical. We discuss some positive points and shorcomings of the two
procedures — the quantum field theory with the normal product (NP procedure) and
without normal product (WNP procedure). The main advantage of the NP procedure
is that we have to calculate smaller number of infinite Feynman diagrams. On the other
hand, in this procedure, dimensional regularization is not gauge symmetric, and there
is no mass independent renormalization scheme.

In the next Chapter both procedures are discussed for a theory without gauge sym-
metry. To be more precise we have made detailed calculation for the ¢* theory. Few
comments for gauge theories, using the example of scalar ¢lectrodynamic, are given in
Chapter 3. In Chapter 4 our conclusions are given.

2. A theory without gauge symmetry

The two procedures NP and WNP are being discussed in details taking as an example
the theory ¢*. Most of our conclusions presented in this case are valid for the gauge
theory and also for the theory with spontaneous symmetry breaking. To see the difference
between two approaches we bave done detailed calculation up to second order.

In the next subsection we give short descriptions of our calculation. All necessary
Feynman diagrams in dimensional regularization [7] are given in Appendix A.

2.1. The renormalization procedure

In this section we briefly present our notations and the method of the calculation
of the renormalization constants. In the paper we use the dimensional regularization of
’t Hooft and Veltman [7]. As usual, n = 4—¢ is the new dimension. In the ¢* theory
the bare lagrangian is given by

go

ar - ¢S]

L(do, 0ub0) = 5 3ubo "o~ mods—

Next we define the renormalization constants Z,, Z,, (or dm?) and Z, by

€O

¢o = Z:‘%/2¢, Zy=1-4;, 4;= <_g‘> Q3ps )]
: ; \47n
mi = Z,m* = m*+6m?, om* = m? E (f—) d,, 3)
4
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o gY
go=p*"Z,8 Z,=1-4, 4,= E (ZE) - )

n=1

To find the constants Z,, Z,, and Z, to any order, it is enough to renormalize only two
Green’s functions:
i i
Graph in Fig. 1 = S, = =2 5
ap g 0 k2*m3_20 akz__mz_ZR (%)

and

®

ke
Fig. 2. The vertex Green function in #* theory

where Z, and Xy are the bare and the renormalized self energy for the ¢ particle respec-
tively. As usual we take interaction Hamiltonian 3¢, in the form:

#1(do) = 4 om*¢3+ 22 6t ™

Now, using general perturbative prescriptions (see e.g. [1]) we expand Green’s functions
So up to the second order, and 7, up to the third order, in the bare coupling constant g,.
Next both sides of the equations (8) and (9)

-Z3(k2—m(2,—-20) ="k*—m*—Zg, (8
Z;ZTO(kl’ k2: k3s k4) = TR(kla k2: k3a k4) (9)

are expanded in the renormalized coupling constant g.
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In each order, parameters a,,, a,, and d, are chosen in such a way, that renormalized
quantity X and g are finite. Of course the values of these parameters and also Zz and 1
depend on renormalization scheme.

2.2. Renormalization with the normal product (NP)

_ Only three graphs which are given in Fig. 3 will give contribution for the self-energy
Zo = Xo+6m? in the second order.

I3 = om?+ x4+ 2. (10)

> (D X

Fig. 3. Feynman graphs which give contributions to the self-energy z o in the NP procedure

Sign “NP” denotes that we calculate quantity using the normal product. Full formulae
for X§ and X7 are given in Appendix A. All graphs given in Fig. 4 will contribute to the
four particle Green’s function 157 (k,, k3, k3, k), in the third order. Adding contributions
from all graphs (more complicated formulae are given in Appendix A) we obtain formula
for the 75'. The full formula is of some length so is not given here. To get renormalized
Green’s function ty (k,, k2, k3, k) we follow the remarks from Chapter 2.1. In the min-
imal subtraction scheme MS [8] we obtain:

in the first order:

31
NP NP NP
=0, dyr = 0, = — 11
ai; 1 anl Ar ¢ ( )

in the second order:

1 1 9 1
NP _ NP _ A ¥
%52 = 12(4m)*’° %oz (47:)2( &2 +s € ) ’

1 1 ] ‘
&’ = (410;(— at ;()’—f—i—;‘)- 12)
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Fig. 4. Feynman graphs which contribute to the Green's function 7, in the NP procedure: (a) first order,
(b) second order, (c) third order

As we see from these formulae, the mass renormalization constant Z3¥ = 14 -4—g- d,
T
g 2
+ (2-—-) d,+ ... depends on the mass m? and dimensional parameter p2.
4

2.3. Renormalization without the normal product (WNP)

In comparison with the previous approach two additional graphs given in Fig. 5
will contribute to the self energy I, ane we have

PRALIES LT T e (13)

Z3 and ¥ are given in Appendix A. To find Green’s function 19" (ky, k3, k3, ks), we
have to add to 5 (k,, k,, k3, k) all contributions from graphs in Fig. 4:

oV (ky, Ky, k3, ky) = ThV(Ky, k3, ks, ks)+(contributions from graphs in Fig. 6). (14)
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Fig. 5. Two additional Feynman graphs which appear for the particle self-energy in the WNP procedure
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Fig. 6. Additional Feynman diagrams which appear in the scattering amplitude of the § particles for the
WNP procedures: (a) second order, (b) third order

Now we find the renormalization constant parameters in MS scheme:
in the first order:

31
R (15)

11
VT 4n e
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in the second order:

g LU e 115 T
2 T p@n)? e 87% &2 12(4n)? &’
1 9 1
WNP 17
= SR Sy At 16
a5 (47'5)2( 82 3 8) ( )

In contrary to the NP procedure, now mass renormalization constant Z¥F does not
depend on m? and p2.

2.4. Comparison of both procedures NP and WNP

To find the differences in both procedures we have made detailed calculation for the
¢* theory but greater part of our conclusions are valid not only for this specific model.

I: using the same renormalization scheme (MS in our example) both procedures
result in different renormalized quantity and different renormalization constants. But
we can change renormalization scheme for the NP procedure 1o get the same renormalized
quantity as in the WNP one. This means that we can make renormalization group transfor-
mation [9] for the first procedure (e.g. NP) to get physical quantity from the second one,
thus to conclude — both procedures are physically equivalent.

I1: comparing the formulae (11) and (12) with (15) and (16) we see the difference only
for mass renormalization.

aff = ¥, aF = o™ and  d)F # 4. )
The additional graphs in the WNP procedure (Fig. 5) change the propagator renormaliza-
tion. These additional graphs appear also on the external and internal line in Fig. 6, but
they do not change four point vertex renormalization (ayy = ay ). Field renormaliza-
tion constant Z is introduced to cancel infinity which is multiplied by powers of mo-
mentum (in our case k2, because kinetic energy counter term is the following Z; 5 0,49"¢).
The graphs in Fig. 5 do not depend on particle momentum (formulae (A9) and (A10)
from Appendix A), but only on mass m. So, they do not change renormalization constant
Zy and aiy = ay. Formulae (A9) and (A10) from Appendix do not depend on momen-
tum because four particle coupling is momentum independent (Graph in Fig. 7 = —igo in
our case). In any renormalizable field theory four particles cannot couple with derivatives,
as a result of this Feynman four particle vertex does not depend on momentum. For any
renormalizable field theory in which three particle vertex is momentum independent the two
procedures NP and WNP differ only in masses renormalization (5m™™* % sm*"™").

II1: Weinberg [10] and ’t Hooft [8] have found the practical way to investigate the
renormalization group. The base of this approach is the existence of renormalization
scheme independent of mass, where renormalization constants do not depend on mass.
For the NP procedure d5° does not fulfil this condition (see Eq. (12)). It means that the
mass independent renormalization scheme does not exist for the ¢* theory. On the other

hand, if we add all graphs from Fig. 3 and Fig. 5, mass dependences disappear, in spite
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2

4
of that separate graphs depend on ¢ = In e (sece Eqs. (A4), (AS), (A9) and (A10)

m2

from Appendix A). Mass independent renormalization scheme exists only for the WNP
procedure.

IV: for on-mass shell renormalization scheme, to get renormalized particle self-

-energy we subtract appropriate bare graphs for the particle momentum k? = m? (see

Fig. 7. The vertex Green function in tree approximation in ¢* theory
e.g. [1]). In the case of the ¢* theory, in agreement with the BPHZ prescription [11],
for particle ¢ self-energy we have (index of the diagram w = 2):
Za(k?, m?) = Zo(k?, m) = Zo(k?, m)ja e
dZ, a*z°

s (k*—m?)-2
k2 =m2

2_ 2 4
g kz=,,.z((fck) 2kkm?®+m*), 17

where k is any momentum which fulfils K> = m?. But the WNP procedure differs from the
NP procedure in the independent of momentum graphs (Fig. 5). So already after the first
subtraction in Eq. (17) contributions from this additional graphs are cancelled and we get:

NP2, mPy = EPNP(K?, m?), (18)

The renormalized constant Z,, is obviously different in both cases. Other renormalized
constants are the same as in the previous renormalization scheme MS. In our ¢* theory
we have:

2
EN(KE, m?) = RO, ) = (ﬁ) {s,i(kz, m)
dzd
k2=m2 dk2

where X} is given by Eq. (A4) in Appendix A. Both procedures, the NP and WNP, are of
the same physical renormalized quantity if we use the on shell renormalization scheme.

—Zi(k?, mY) (k* - m’)} , (19)

k2=m3
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3. Gauge theories

For the gauge theories there is an additional problem connected with freedom of
gauge transformation. Regularization and renormalization can disturb gauge symmetry
but renormalized Green’s functions must have such symmetry. Usually is more practical
to use regularization which preserves gauge symmetry; then all the couiiter terms in lagran-
gian also have this symmetry.

Dimensional regularization is gauge symmetric [7], but only in the case, when we do
not use the normal product. To see this let us consider vacuum polarization in the scalar
electrodynamics. A charged, spinless particle can interact with one or with two photons
(see Fig. 8). Then the one-loop approximation for the vacuum polarization iIl,, is:
the WNP procedure:

ill}"* = Graph in Fig. 9+Graph in Fig. 10, (20)
the NP procedurc:
illy, = Graph in Fig. 9. 91}
. AN M
x P2 N
AN AN
N AN
N o
’Y\/\/\/ //
/’ T
P4 \ ieo (P7 'Pz)'u s d 5
/ Py 2iep 9y, v

Fig. 8. The two way of interaction for the charged, spinless particle § with photons 4,

k

M v

Fig. 9. The momentum dependent contribution to vacuum polarization in scalar electrodynamics

M v

Fig. 10. The momentum independent contribution to vacuum polarization in scalar electrodynamics
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From (20), in the case of the WNP procedure, we get:

iy (k?, m*y = —i(k*g,,—k,k)I(k*, m?), (22)
where
2 1 1 4y
(K, m*) = ej(u®)~** @t {% Y —37+3h —

1 k2
- de(1—2x)2 In (1 + —5 x(x— 1))}.
m

Because of the factor k?g,,—k,k,, the dimensional regularization is gauge independent,
and k"1 = 0. For the NP procedure from (21) we have:

i (K3, m?) = —i(k*g,,— k,k Ik, m*)+ig,,Q(m?), (23)

where

2m* (2 Anp®
Qm*) = W) — = —y+1+hn ,
() = &5y s (5 - —
and IT(k?, m?) is the same as in Eq. (22). The term which disturbs gauge symmetry in
inff(ing(mz)) depends only on mass m because the additional graphs in the WNP
(Fig. 10) are momentum independent. For the on-mass shell renormalization scheme contri-
bution from the additional graphs are cancellied and

ill}"*(on mass shell) = ilTjy(on mass shell). (24)

The mass renormalization constant Z,, is different in both cases. To remove infinity from
the not gauge symmetric term in Eq. (23), we have to introduce photon mass counter-term

SM?
( > A,,A“) to the lagrangian. And we sce that: the dimensional regularization is not

gauge symmetric for theory with the normal product.

The question is now which procedure is more practical in application of the gauge
theory. For the WNP procedure we have to calculate more Feynman graphs, but the
dimensional regularization is gauge symmetric. So it is easier to make its renormalization
because it is also gauge symmetric. If we know uI}," (Eq. (22)) then one easily calculate
illyy = JI" —(Graph in Fig. 10). It is more difficult to get ilT}y (Eq. (23)) directly from
the graph in Fig. 9. For the gauge theories in spite of greater number of graphs, necessary to
calculate, the WNP procedure is more practical because calculations are simpler, the dimen-
sional regularization is gauge symmetric. But the fastest way to get photon propagator
II(k?, m?) in Eq. (22) is to calculate only the part which is proportional to k,k, in the 77 0
Because additional graphs in the WNP procedure do not depend on momentum, the
term proportional to kk, in the il is just IT(k2, m?).
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4. Conclusions

Using the very simple models we compare, from practical point of view, two

approaches in quantum field theory. The first, the canonical quantization approach,
which uses normal product (NP) and the second procedure -~ the Feynman patn integral
approach without normal product (WNP).

I

VI:

We have found that:

: both procedures are equivalent in the sense that there exist renormalization schemes

in which the same physical results are obtained,

: for any renormalizable field theory in which three particle vertex is momentum

independent the two procedures NP and WNP differ only in masses renormaliza-
tion,

the mass independent renormalization scheme, necessary for Weinberg and ’t Hooft
approach to renormalization group, exists only for the WNP procedure,

: using the on-shell renormalization scheme both procedures give the same physical

renormalized quantity,

: the dimensional regularization is (is not) gauge symmetric for the WNP proce-

dure (the NP procedure),
the WNP procedure is more practical for the gauge theories.

APPENDIX A

We give all the necessary one and two loop Feynman amplitudes using dimensional

regularization. As usual we introduce the parameter n = 4—¢ and the mass dimensio-
nal parameter y. To find renormalized Feynman amplitudes (not only renormalization
constants) we need linear parts in the & of same graphs. For the Euler Gamma func-
tion these linear parts are denoted [12]:

I'e) = % -7+ Coé, (A1)

1
r'(—1+¢ = —'8“+7“1+018, (A2)

where

2
Co = %(72'*' z), ¢y = 7—=1=co,

and y is the Euler constant y = 0.57721... . It is convenient to introduce the parameter

4np®

t=ln—7. (A3)
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Feynman graphs from Chapter 2.2
(A) for the self-energy I3,
Graph in Fig. 1la = —iX}

— m? [1 1/, k?
= '—lgg(“z) (47t)4 [;;_T + ';(T“?'*’C" 12"{2) +zll{] (A4)
k m
a
k @
b

Fig. 11. Vacuum polarization in #* theory second order contributions

where
k2
5= 5108 )+ (o =) 0-1-D-20-1-32)
and
1 1
Nk, m?) = |dx | d ! K B 2InlkZB
(K", m®) = X Q —Q_A-z—mzAs m: A
o 4}
+in(ed)) - ~mo— — % In(1-e(l-x) - -_‘-’—-—in(z-gx)],
e (1-e(1-x))? (1-gx)?
where 4 = gx(1—x)+1=p, B = gx(1—-x) (1-9),
Graph in Fig. 11b = —iZX}
, 2, 22 L 2 ., £ 1 g2
= —igedm~(p°) 2dn) - +y—E&— —5(—)'54'15 +¢o) | » (AS)

(B) for the Green’s function 13",

2
Graph in Fig. 12a = i%?(uz)—'/ 2

o [—i— +c—v+A(s)+eAl<s)]. (A6)
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where

4m?2
—_—— 1— j1—- —
4am s
A(S)=2+ 1—'——"111 ——— I,
s 4m?
1+ /1— —
s

Ay(s) = 5 (Co—yE+3 E)+5 (E=1AE)+3 R(9),

1

R(s) = J\dx In? (1-— ;SE x(l—x)) , s = (ki +kp)>

0

and

All other graphs in second order we get by transforming the Mandelstam variable s into
t and u in Eq. (A6). In the third order for the 7y, we have kinds of graphs neccssary
to calculate.

1 2-A(s)

Graph in Fig. 12b = Graph in Fig. 12¢c = —igjém? —

@t smamz A

The other graphs of this type are obtained from (A7) by changing s = ¢, and s = u.

Graph in Fig. 12d = igg(gz)"mny

X [-82—2 + —Z—(1——2y+2§+2A(s)}+%+2(c0—75+-§ )

+(§—7) QA()+ 1)+ R(s) + A(s) +1,(s, mz)] , (A8B)
ky P 2 ky
k2 ke kr ke
@ [+

k ks

2 ks ks
I P

1 \ A v e K

Fig. 12. Third order contributions to %o
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where
1—Px)*2
z(sm)—jdxfdyfdg In (1—-Px)
x(1- Px) 2, 2 2,.2 S
I=x=x"(e"-0)+(1—-x)" (¥ -y);;i
x—1 x
+ In v , P=¢'—p+1.

) s
1+ ~y)—
m

As previously, to get remaining graphs we have to change s —» ¢ and s — u.

The additional graphs appearing in Chapter 2.3

(C) for the self-energy X3

2
—&/2

Graph in Fig. 5a = —iX3 = —igy(u? _
p g iZo go(1”) an?

2 € 1 z2
x (—- . +y—-1-¢+ ?(5(7‘“1)—’2‘5 +01)>, (A9)

m
4(4m)*

Graph in Fig. 5b = —iZ§ = igd(u®)™*

4 4
x [— ot —s—(y—-lf-—%)+2§?—lf—§2+01—Co+(§-y) (?—6—1)], (A10)

(D) having the one-loop (A9) and the iwo-loop (A10) graphs it is easy to find all formulae
for the graphs in Fig. 6. We do not give here the lengthy formulae.
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