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Classical Yang-Mills equations for x;-dependent, static potentials are investigated. Four
classes of solutions are found. All solutions are unstable in the Liapunov sense. The solu-
tions do not exhibit chaotic behaviour in the x; variable.
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1. Introduction

In a number of recent papers it has been observed that purely time-dependent solutions
of classical Yang-Mills equations, i.c. 45 = Aj(x,), exhibit a chaotic behaviour, [1].
In particular, the values of the functions Aj(xo) change irregularly during successive
time intervals, so that one cannot predict the behaviour of Aj(x,) for xo —» +oo0.

In field theory the distinction between the time and the space coordinates is to some
extent dissolved. Let us recall, for example, that

— in Euclidean field theory there is no difference between time and space coordinates,

— in relativistic field theory Lorentz transformations, which are the symmetry of the
theory, mix time and space coordinates.

Therefore, it is natural to ask whether purely space-dependent classical solutions of Yang-
-Mills equations, e.g. 4; = Aj(x;), exhibit a chaotic behaviour.

Apart from the problem of chaotic behaviour, we find also another reason why it is
interesting to look at solutions of Yang-Mills equations in the simple case of poteatials
depending only on a single variable. Namely, the equations then still remain to be nontri-
vial, yet they allow for more or less complete analysis of solutions. The relatively compli-
cated equations we consider below should be compared with trivial equations obtained
in the Abelian case, e.g. d24"(x;)/dx3 = 0 for x,-dependent potentials.

* Paper supported in part by the Polish Ministry of Higher Education, Science and Technology,
project MR.L7.
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We consider the potentials which depend on 7 = k%x, +k*x;; for k, = 0the potentials
are purely x;-dependent. For such potentials Yang-Mills equations take the form of
Newton equations of classical mechanics. We find four classes of solutions. All solutions
are unstable in the Liapunov sense. The answer to the question about the chaotic beha-
viour is in the negative, in the sense that we observe rather regular behaviour of trajectories
for 7 - o0.

In Section 2 we obtain the Newton equations for the class of Yang-Mills potentials.
In Sections 3 and 4 we describe solutions of these equations. In Section 5 we present
our point of view on the integrability of the system. Section 6 contains some more general
remarks and conclusions.

2. Eguations of motion and their simple implications
We assume that

4y = AKX, m

where (k) is a constant four-vector. We also assume that 4 obey the algebraic gauge
condition
k,A% = 0. )

Then, Yang-Mills equations
0, F™ — g fp ALF™ = 0, 3)

where
F:v = apA:_' avAz - gf;bcA:.A:’

reduce to the following equations
K2 A"+ 8 opofoae ApA™ AT = 0, @
SuscALA™ = 0. ©)

Here dot denotes the derivative with respect to T = k%x,, f,,. are the structure constants
of the gauge group, i.e., SU(2).

Equation (4) has the form of Newton equation of classical mechanics.

With the help of Jacobi identity

f;zbdf;ihc +ﬁladf;ibc +ﬁ>hdf:iac =0

it is easy to show that the t-derivative of the Lh.s. of (5) is equal to zero. Therefore it is
sufficient to impose (5) only at the initial value of .
In the following we assume that A® are equal to zero except for

A = x, A2 =y, (6)
Then, the constraint (5) is obeyed automatically. The gauge condition (2) implies that
ko=0, ki =0. @)
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Thus, in this case © does not contain the time variable. For another Ansatz, e.g., 412 # 0,
A2 3% 0 and all other 4% = 0, 7 can contain the time variable.
For the Ansatz (6) equations (4) reduce to

ki = —g’xy’,  k'y = gyx™ ®

From (7) we see that k2 < 0 (k? = k2—k?). In the following we use the rescaled variables

For the rescaled variables the Newton equations are

2

X =xy, (%2)
j= =yt (9b)

It is easy to check that
H = 1(x*—=p*-x*?) (10)

is a constant of the motion. In fact H plays the role of the Hamiltonian for the system
(9), therefore we shall call it the energy. The Lagrangian is

£ = 1=y +xhyh). (11)

H is not positive definite. Let us remark that H is not related to the energy of Yang-Mills
field

& = L{ (E°E"+ B°B")d°x.

The r.h.s. of (9) we regard as forces. Their vector field

Fo xy(_fc)

is presented in Fig. 1. F is perpendicular to the radius ¥ = (x, ), and |F| = VX3P + 3.
It is obvious that there are no closed trajectories in the x—y plane. Hence, there are no
periodic motions. Typical trajectories are presented in Figs. 2-5.

Trajectories of the type A extend from x = —o0 to x = + 0, or vice versa. Trajecto-
ries of the type B lie entirely in one of the half-planes x > 0 or x < 0 — they possess the
turning point at which % = 0. Trajectories of the type C start at x = + (x = —0o0)
for © = —oo and they approach the y-axis, with the point y = 0 excluded, from the right
(left) for 1 > + 0. Trajectories of the type D are characterized by x = 0 or y = 0 —the
forces vanish on them.

Trajectories of the type A can have E = H < 0 or E > 0. Trajectories of the type B
have E < 0, because in the turning point x = 0, x2 > 0. It is easy to see that in the turning
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point it cannot happen that y = y = 0. Therefore, the inequality for energy is sharp.
Trajectories of the type C end at a point (0, y), ¥ # 0, for 1 = +00. They have E = 0.
1t is easy to prove that there are no trajectories which end on the x-axis, including the
point x = y = 0, i.c., the trajectory either crosses this line or entirely lies on it. Trajectories
of the type D have E>0if y =0, or E<0 if x =0.

Solutions of the type D are linear functions of 7 because the nonlinear terms vanish
for them. They correspond to the Abelian case mentioned in the Introduction. The type D
solutions are not stable in the Liapunov sense in the obvious manner. For example,
a small departure from the y-axis would result in completely different trajectory such
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Fig. 1. The force F=uxy y . F is tangent to the circles x3+y? = const, IF| = [xp| (334 y2)M3
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Fig. 2. Examples of trajectories of the type A. The dashed line corresponds to a trajectory with E = 0 —
it crosses the y-axis and x-axis under the angle n/4
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Fig. 3. Examples of trajectories of the type B. The trajectory on the Lh.s. is characterized by x = y = 0

at the turning point
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Fig. 4. Example of a trajectory of the type C. Trajectories of this type cross the x-axis under the angle /4
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Fig. 5. Examples of trajectories of the type D
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that |x] = oo for 7 — c0. Small departure from the x-axis would give a trajectory of the
type A or B which have quadratic dependence on 7 for large 7, see the next Section. In
the following we shall discuss the nontrivial trajectories A, B, C.

3. Solutions of the types A and B

We shall investigate these solutions for © — . The behaviour for 1 - —oo can be
obtained from the analysis presented below by the change r — —1'. More precisely, the
Cauchy problem for <0 with the data x(0) = x5, ¥0) = yo, dx/di(0) = x,,
dy/d«(0) = y, is equivalent to the Cauchy problem for 7' > 0 with the initial data
%(0) = X0, YO = yo, dxjdr(0) = —x,, dylde(0) = —,.

The behaviour of trajectories for t close to zero has to be obtained by numerical
methods. We adjust the t-variable in such a way that T = 0§ corrésponds to the turning
point for trajectories of the type B, or to the point x = 0 for trajectories of the type A.

Now, let us fix our attention on the trajectories which for t - + oo flow to the right
in the x—y plane, Fig. 2. That is, for 7 >0

% = +V2E+77+x%% > 0, (12)

and x > 0. We shall consider these trajectories for large 1. The trajectories flowing to the
left can be obtained by the replacement x — —x. It follows from (12) that in the considered
region x(t) is monotonically increasing function of 7. Therefore we can regard y and p as
functions of x. Then,

d -
d_i = pQE+p +x31) 12,

d

P o yQE+p R TI, (13)

dx
where p = J.

From (13) it follows that
d 2)2 2
Ty +p7) any?,
dx
i.e.,
x2y2(x)+pA(x) = xey*(xo) + P (%) +2 | sy*(s)ds. (14)

X0

Thus, x2y?+ p? increases with x (and with 7, because % > 0). Comparing (14) with (10)
we see that

%2—2E = x2y*(x0)+P*(x0) +2 | sy*(s)ds.

X0
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Formula (14) can be rewritten in the form

Py =1, as)
where
fP=Xx2=2E>0, b*=x?(x>-2E).
Thus, y and y lie on a t-dependent ellipse. It is easy to check that for 1 — 4 oo
db*
dt
Thus, b% decreases (and f? increases).

Let us now investigate the trajectories in more detail. Because of (15) we can write
that

y = x1f(x) cos g(x),  p = f(x) sin p(x). (16)
From equations (13) it follows that the functions

X=2¢p, O=2Inf-Inx
obey the equations
¥(x) = x* cos y(x) (17a)
x'(x) = —x"¥sin y(x)—2x(2E + x exp (3(x)))" /2, (17b)

where coma denotes d/dx.
It is easy to find an approximate solution (for x -+ + o0) of this set of equations. The
form of (17a) suggests that for x — oo

¥(x) = 0,
ie.,

Hx) =~ ;. (18
Then, (17b) gives

1(x) ~ =2 /xexp(—co/2),
ie.,
x(x) & =% %32 exp (—co/2)+¢c4. 19

Thus,

112 gos (cy/— % exp (— o/2)x*?),

sin ¢y /=% %% exp (— co/2)). (20)

It is easy to check that this solution is consistent with (14).
The dependence of x, y, p on 7 is not difficult to obtain. From (12), (20) we obtain
the equation

¥(x) ~ exp (co/2)x

P(x) ~ exp (co/2)x'/?

% ~ 2E+x exp ¢q (21)
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which has the solution

x(7) = § exp (¢o) (1= 10)" + (7o) (1 —T0) +X(%)- (22)

The 7 dependence of y, p follows from (20). On the other hand, (9a) and (20) give the
equation

i = exp (co) c0s” (€12~ exp (— cof2)x*?).
The soluion (22) is consistent with this equation — it emounts to the replacement of cos?
by a mean value of it which, as we see from (22), turns out to be 1/2.
From (22) and (20) it follows that the trajectory is not chaotic — one can predict
x,y for 7 — 0.
The system (17) obeys the Lipschitz condition. This is a very nice feature of 1t, because
then one can use rapidly convergent iterative procedure for construction of the solution

based on a contractive map, see, €.g., [2]. In order to prove the Lipschitz condition let
us write (17) in the form

o = f(6),
where

cos ¥

. (9 .. "
o= (7) > J(O) =x (—sin 2 —2x*(2E+x exp \9)_“2)'

Using the following inequalities

(cos x;—c0s x2)* < (x1—x2)

(sin y; —sin JCz)2 < (0 _Xz)z»

(a+b)? < 2(a®+b?),

it is easy to check that

A Iy 2 3 2

f(0)—f(@)° < 2 Ot —x2)

+8x’[(2E+x exp 9;)"V/2—(2E+x exp 8,) 7 /?]%. (23)

In order to estimate the last bracket on the r.h.s. of (23) we assume for definiteness that
192 > 01, 192 == '01+5, 5 > 0. We have

QE+xexp $) Y ~(2E+xexp 8,)"/?
8

d
= - fd_ (RE +x exp (8, +8))"?de
g

0
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s
= 1 x [ exp (9;+6) QE+x exp (8, +0))**do
V]

&
= % | h(x exp (9, +6)) QE+x exp (8, +0))” *do,
0

where
h(z) = z(2E+2)-1.

Now, let us recall that we consider the region of phase space such that x >0, x > 0.
Then,
2E+xexp®, = x*=e> 0. 24)

Therefore, also
2E+xexp(¥,+0) = ¢

because ¢ > 0 and x exp #, > 0. Let us also recall that f2 = x exp ¢ increases with t. On
the other hand, the function A(z) decreases monotonically when z = x exp ( + o) increases
(for z > 2|E|, however this is the case because ot (24)). Putting all this together we obtain

é
§ h(x exp (8, +0)) QE+x exp (8, +0)) " ?2da < e~ '2h(f2)s,
o

where
13 = PX(10) +x*(10)y*(10)

is fixed by the initial data for the trajectory specified at some tv = 1, > 0.
Therefore, from (23) we obtain the Lipschitz condition

(F(6)—F(O)1* < 3x™%(x, — x2)* +2x% 2R (f2) (3, — 9,)

< mi(x)(6,-6,), 25)
where
m?(x) = 3x "2+ 27 R2(fE)x2.
Also
I/(6)] < K(x), (26)
where

K?*(x) = 3x2+8e1x2,

Thus, applying the procedure described in [2] one can obtain better and better approxima-
tions of the solution of the system (17). The approximate sojution (20) can be used as the
zeroth order approximation.

The solution (20), (22) is not stable in the Liapunoyv sense. For example, the difference
x1(t)— x,(7) grows quadratically with 7 if the two trajectories 1 and 2 have even slightly
different ¢q. In fact, the instability can already be guessed from the form of the equation
(9a). The non-negative force xp? enhances differences between initially neighbouring
trajectories.
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4. Solutions of the type C

Solutions of this type can be regarded as a limit of solutions of type B when the
turning point approaches the y-axis (with the point x = y = 0 excluded). It turns out
that the trajectory reaches the would be turning point only for ¢ — co. The shape of the
trajectory for t - —oo is given by the analysis given in the previous Section, i.e. by (20).

Solutions of the type C are not stable in the Liapunov sense — a small change of the
initial data given at T = 1, can give E # 0, and therefore the trajectory with the new initial
data will be of the type A or B.

Below we present an approximate form of solutions for 7 — + 00 and we again prove
the Lipschitz property. This property has to be proved anew because the considerations
of the previous Section relied heavily on the particular features of trajectories A, B.

Trajectories of the type C have E = 0, because for 1 — +00 y = y, = const, y — 0,
x-0 x-0.

We restrict our attention to the trajectories approaching the y-axis from the right,
i.e. x > 0. The other trajectories can be obtained by the reflection x —» —x.

Let us start from the observation that for these trajectories x < 0 for any finite 1.
Otherwise the trajectory would run away from the y-axis. Therefore we can consider
y and p = y as functions of x instead of 7. Because now

= —Jrr+x%? <0,

we obtain that

dy -
- =~ +x"H7,
X
dp _
dx yx*(p?+x2y?) 712, (27
X
Introducing & = x~! we have

dy - -
—= = (PP +yH) T, (28)
d¢

dp “3 242, 2\=1/2

& ETy(P e +yY)T

Using (28) it is easy to prove that

d(y’+&p%)

2
7 2p%,

ie.,

¢
Y(O+EP () = Y (&) +Eop*(Lo) +2 ej' sp(s)ds. (29
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From (29) it follhws that y, p lic on a £-dependent ellipse. Theretore, we write
y = g(&) sin g, (302)
p = £7g(&) cos ¢. (30b)

From (29) it follows that g2 is an increasing function of &.
The equations (28) give for

r=2¢, 9=2Ing-In¢
the following equations
¥ = &1 cos x($), (31a)
A = —& tsing+2E7% exp (- 9/2), (31b)
where comma denotes d/dx.
We would like to obtain an approximate solution for the system (31) for ¢ > &,
&, being sufficiently large. To this end one has to proceede in a different manner than in the

previous Section (compare with (18)). We expect that y — y, # 0. Therefore (30a) implies
that @(£) has a limit ¢, # krn for ¢ —» oo. Theretore, for & > &,

# ~ &1 cos 2¢,,
ie.,
P = cp+cos (2¢p) In &. (32)

Thus, the assumption ¢ = ¢, made in (18) is not valid here. The reason is that now ¢
has a limit when & — oo, while in (18) cos y oscillates for x — 0. Because of (32) the second
term on th= r.h.s. of (31b) tends to zero for ¢ — 0. Thus, the approximate form of (31b) is

¥~ — &1 sin 2¢,.

This gives y ~ In £, in contradiction with the assumption that lim y(£) = 2¢,, unless

[Sad-
20 = 1, 3n 33)
(larger values of 2¢, give @, > 2n). Thus,
P = co—Iné. (34
Then, (31b) gives
X = —& Vsin g +2E72 exp (—co/2). (35
This equation has the approximate solution
y = n—E"texp (—co/2)+2kn. (36)

Here k = 0, 1, in accordance with (33). Inserting (36) into (31a) we obtain the improved ¢:

8 = co—In £~} exp (—co)¢ 2. @7
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Formulae (36), (37), (30) give
y = lyol (1 =%yl 2xH) +0(x*),
¥ = +3x*+0(%),
where
[vol = exp(cof2), x=¢"1-0.
This approximate solution is consistent with (29).
The 7 dependence of x, y can be obtained from the equation
X = —(p*+x2y)TH
For small x this equation gives
).C = —xlyol,
ie.,
x(t) = Xo €xp (—1¥ol7) (38)

for © - +co. This formula is consistent with (9a).

Finally, let us prove the Lipschitz property for the system (31). This system has the
form

6 =7(&),

. (9 .o cos
o _(X>’ o) =¢ 1(—sinx+2§'3lzexp(—9/2))'

Calculations analogous to those presented in Section 3 give

where now

(@) —F(@) <3 2 —12)* +2E * 27 2(E0) (9, —92)* < m¥(§) 16, =6, (39)
where
m(&) = 3E72+2E7*g72(&y).

Here g%(&,) = g%(é(t = 1o)), where 1, is sufficiently large. In order to obtain (39) we have
made the following estimation (¢, > &):

_ _ 3,-9
¢ 12 [exp (—84/2)—exp ("\92/2)] =¢ 2 exp (—94/2) (1 —€xp ! 3 2)
31

31

g—l(fo) f e ’ds < ~l(fz)

Here we have used the fact that g(&) increases, as it follows from (29).
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Also, it is easy to prove that

|F(8) < K(©),
where
K*(&) = 38724887 *g72(&).

Thus, again we can use the iterative procedure for constructing the solution with any
desired accuracy, [2], starting from the approximate solution (36), (37) as the zeroth
approximation.

We would like to mention that the existence of solutions of the type C was observed
in the paper [5], in slightly different context of Yang-Mills equations in the presence
of uniformly color-charged plane. However, that paper contains oaly a numerical analysis
of the solution.

5. Remarks on the problem of Integrability of the system

The lack of the chaotic behaviour of the trajectories suggests that the system (9) is
integrable. However, we know only one exact constant of the motion, namely the Hamilto-
nian H.

Equations (9) are related to the equations considered by Savvidy and others,
{11, by the analytic continuation y — iy. (Nevertheless, the trajectories of the system (9)
are totally different from the trajectories of that system.) Therefore, the second constant
of the motion for the system (9) cannot be an analytic function of x, y, X, y, because the
analytic continuation would give the second regular constant of the motion for the
Savvidy’s system, in contradiction to its rather well-established non-integrability.

In fact, we expect that the system (9) is not integrable. We think that the chaotic
behaviour of the trajectories is absent because the trajectories for 1 — oo stay in the region
of the phase space lying far from singular points of the constant of the motion. Then,
the usual cause of chaotic behaviour in a conservative system, that is multiple scattering
on the singularities of constants of the motion, [3], would be absent. Of course, definite
statements can be made only after the singularities of constants of the motion are
found.

However, we think that such investigation for the system (9) is not interesting. Namely,
the question of integrability is of prime importance when one looks after behaviour of the
trajectories for © — oo, because in this limit numerical methods for a direct calculation
of trajectories are useless, in general. For the system (9) one can predict the behaviour
of trajectories in this limit — therefore the question of integrability is not so important.

6. Ending remarks

(a) It is easy to calculate gauge fields F,, for 4} considered in this paper. We have

2
v 1%2'1 A7 = 6753x(1) + 58} (x),
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where © = k®x,+k3x;. This gives

2
g . R dx a dy
\/i_k’z“i an =0 l(gv()ku'"guokv) dt +4 z(gvlkp—gulkv) dt

+0% ik x(D)1(2) (84180 — Zu0801)> (40)

where (k) = (0,0, k;, k3), (g,,) = diag (1, —1, —1, —1). Thus, there are nonvanishing
color electric and color magnetic fields.

(b) Omne could also obtain classical Yang-Mills mechanics such that the Newton
equation (9b) has the sign plus on the r.h.s. (while Savvidy’s mechanics is characterized
by the sign minus on the r.h.s. of both (9a) and (9b)). Namely, for z = 4%, w = A!2,
after the rescalling as in Section 2, we obtain the following Newton equations

d*w d’z

e = wz?, —d—Q_E = zw?, 41

where ¢ = koxo—ksxs, k? = k}—k% < 0. However, these equations do not seem to be
so interesting as those considered in [1}, or equations (9). The reason is that here the
trajectories can reach the infinity in the w—z plane during finite time p, i.e., the gauge
potentials A2, A!2 have singularities for finite x,, x5. For example, let us assume that
R = z. Then (41) gives

w=wi

This equation has the singular solution

w(@) = V2(go— )™

It seems that all solutions >f (41), except the trivial ones (z = 0 or w = 0), are singular
for some finite g.

Let us notice that chaotic behaviour of trajectories seems to be lacking also in the
case of equations (41). Equations (9) give regular 4j for all 7 = k%x,+Kk%x;.

(c) We have observed the lack of chaotic behaviour of gauge potentials when they
depend only on 7. This suggests that one should be rather cautious in generalizing to a wider
class of Yang-Mills potentials the conclusion of papers [1] about the presence of chaotic
behaviour when A4; depend on ¢ = k,x° with time-like (k,). It might well happen that
even the gauge potentials initially close in some sense to those considered in [1] would
evolve in completely different direction in the space of all gauge potentials, leaving far
away the region of chaotic 43. In order to resolve this question — are the chaotic trajecto-
ries typical for full Yang-Mills theory — one should investigate more general 43, e.g.,
Ay(xo, 1), where r = |x|. However, then one encounters many difficulties. For example,
to our best knowledge, there exists no definition of chaotic behaviour for systems con-
servative with infinite dimensional phase space.

One could reformulate the problem of existence of chaotic behaviour as the problem
of integrability of the classical system. If the system is integrable then it should not be
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regarded as chaotic, because one can predict the behaviour of classical trajectory for
large time. Again, we think that it is rather risky to conclude that the full classical Yang-
-Mills theory is non-integrable because the equations considered in [1] give non-integrable
classical Yang-Mills mechaunics. For example, it might happen that the constants of the
motion are regular (regular here means finite; a more refined definition of regularity
remains to be adopted) for all classical Yang-Mills fields which vanish at spatial infiaity
sufficiently fast — the constants of the motion might involve | d3x. The gauge potentials
considered in [1] are outside of this class of potentials. The potentials considered in
our paper also do not vanish at spatial infinity. Therefore, we think that the plausible
non-integrability of the system (9) would not imply non-integrability of the proper
classical Yang-Mills theory which deals with fields vanishing at spatial infinity.
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