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A POTENTIAL MODEL OF FUSION WITH TRANSMISSION
COEFFICIENTS CALCULATED BY THE MATRIX METHOD*
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A barrier penetration model of heavy-ions fusion is presented. To calculate the trans-
mission coefficients through any one-dimensional barrier of nucleus-nucleus real potential
a matrix method is used. The parameters of the model are the critical radius and the param-
eters of nuclear interaction. The model is tested on several cases of fusion, i.e. @ +4%44Ca,
12C412C, 160+ 160 and 2*C+2*Mg and it is found to reproduce the data quite well.

PACS numbers: 25.70.1j

1. Introduction

The interaction potential V(r, ) of two colliding nuclei in the sudden-approximation
is given as a sum of nuclear V,, Coulomb ¥, and centrifugal terms, i.e.

h2I(I+ 1)

Vir, ) = V. (N+V(r)+ 2ur?

)
In the potential model of fusion it is assumed that the incoming particle penetrates the
potential barrier and the fusion occurs, when it reaches some critical distance R, [1, 2].
In our model the energy dissipation of the relative motion at distances R > R, is neglected.
At the distance R = R,, the kinetic energy of the ions is then decreased abruptly. The
fusion cross section can be written as follows [2]:

Ogus(E) = ’Ei Z [1+(—D"*¥8/21+1)] 21+ 1) T(E), 2
=0

where k is the wave number of incoming particle, and § = 0 (§ = 1) for nonidentical
(identical) nuclei, I is the spin of the incident particle, T(E)’s are the transmission coeffi-
cients through the potential barrier at R, for a given angular momentum I
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The crucial point in Eq. (2) is the calculation of the transmission coefficients T(E)’s.
There are several approaches to calculate T;’s: f.i. the semiclassical method [3], the para-
bolic approximation [1, 4], the double barrier method [2] and the parabolic approximation
with a Coulomb tail [5]. These approaches to calculate T}’s give relatively simple expres-
sions for the fusion cross section but the approximations introduced influence the physical
interpretation of the results significantly. As a consequence of these approximate calcula-
tions of the transmission coefficients one gets usually wrong information about the fusion
process, even if one knows the interaction potential. In the present paper we propose
a matrix method for the calculation of transmission coefficients for any shape of the static
nuclear potential barrier.

2. The matrix method of T)s calculation

Let us take two points on the r-axis, namely R,, and R.,, (see Fig. 1). We assume that
the fusion appears for r < R_,. R, is the distance beyond which the nuclear potential
V, becomes negligible. The potential curve for a given angular momentum [ is divided
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Fig. 1. The shape of the potential barrier for a given angular momentum /. The form of the wave functions
in all intervals is defined in the inset

in the region of R, < r < R, into N equal parts. Each part forms a rectangular barrier
of height V, = V(R.,+(@n—2)a), (n = 1,2, ..., N) and width a = (R.,,~ R.,)N. The wave
going to the right (left) is labelled by “+* (*“—""). We assume V(r) = 0 in the intervals
[R,—4r, R,), [R.+a—Ar,R.+a), .., [R,+Na—d4r, R,+Na), (without points
R, R.+a, ..., R+ Na). The corresponding wave functions have the following forms:

p=A%" 147, yp=AfeM+A7e™*, ., w= A5 +A5e7".
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On the other hand in the intervals [R., +(n—1)a, R . +na—A4r) (with points R,,, R, + na).
the corresponding wave functions have the forms ¢ = B e+ B e (n = 1,2, ..., N)
For r = R, v = Erur+&-u~, where u* = G+iF and G, F are the Coulomb wave
funciions [5].

The wave function and its derivative must be continuous at the points R, R, +a—4r,
R.+a, ..., R+ Na—A4r, R+ Na. If we climinate all 4, and B, (n = 1,2 ..., N) from
the equations of continuity, we have for 4r — 0:

—+ 0

+ ikRoe R +
(o) -k

where the matrix elements of T(x,) and C are the following:

* 1 . aa k .

t(e,) = t3,(a,) = cos a,a—5 i ™ + — ] sin a,a, (4a)

a"

* 1 = a’l k .
tai(e,) = t15(a,) = 7 i — — — )sina,a, (4b)

k Ay
cll = C;Z = '%' [u+(cht)'—iu+,(gcut)]’ (53)
c21 = 6:2 = %— [u+(gcut)+iu+,(9cm)]’ (Sb)
with

k = (QuE/h?¥)'3, (6a)
% = [2u(E—V,)[h*]'2, (6b)
Qeur = k- Rcuv (78)

%
ut = [iil . (7b)
dQ =@cut

k .
If E = V,, the term — sin «,a which appears in Eq. (4) has the value ka and the sin-
aﬂ

gularity disappears at the turning points.
If N> « i.e. a - 0, the transmissions coefficient through the potential barrier for
the wave going to the right has the form:
2
] (83)
$~ =0

T+ =[ ¢
A
2
] . (8b)
A+t =0

and for the wave going to the left:
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One can show, that T+ = T-, because the Wronskian W(G, F) = 1. Thus the transmission
coefficients do not depend on the direction of the incoming wave. The formula (3) will
be used in calculations of the fusion cross sections from equation (2).

3. Applications and discussion of the results

We have analyzed the experimental fusion cross sections for the systems a+4%%4Ca,
12C412C, 12C+24Mg and 0 +1%0. For the cases a+*%**Ca we have assumed that the
nuclear potential ¥, is equal to the real part of the optical model potential which reproduces
the elastic scattering very well {6] i.e.:

Vir) = —Uof*(r, d, b),

where
UO = U1+ UzEQ,
and
___dAl/S -1
£, d,b) = [1+eXp (’—_b_L)] .

E, is the energy of a-particle in the laboratory system.

For the other cases we have used the Satchler folding model potential [7, 18]. Thc
Coulomb potential was taken to be that of an uniformly charged sphere of radius R,
We have calculated the fusion cross sections as a function of energy with transmission
coefficients based on the matrix method. The critical values of R,, used in the calculations
are given in Table I. The width barrier parameter a was taken to be a = 0.05 fm.

The results of our calculations are presented as a solid line in Fig. 2. For comparison
we present here also the results based on the Hill-Wheeler parabolic approximation (dashed
line) for the a+4%*4Ca systems. One can see, that the present approach gives a much better
fit to the experimental data [10] than the Hill-Wheeler method.

As a second case, we have fitted the experimental data of Kovar et al. for the 12C +12C
system [11] — the results are presented in Fig. 3. One can see, that the experimental
points are well reproduced up to an energy of 22 MeV. In Fig. 3 the data of Parks et al.
[12] and Nambodiri [13] are also presented. The points of this last experiment are placed
near the curve of present model. The Hill-Wheeler method feproduces well bnly the points
of the experiment made by Nambodiri.

The curves given by our method and by the parabolic approximation are very similar
for the 2C+24Mg [14] (Fig. 4) and 1°0+-1°0 {15, 17] (Fig. 5) systems. Both describe the
experiment very well. The bad fits of the fusion excitation function obtained by the Hill-
-Wheeler method can be seen on the graph of the a+4°Ca reaction (Fig. 62). The parabola
used in this method is a bad approximation for the potential barrier curve; these two curves
agree only at the vertex area. If we consider then the reaction 2C+2*Mg, we see from
Fig. 4 that both curves lie very close to one another, so the parabola is a good approxima-
tion for the potential barrier in this case (Fig. 6b).
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Fig. 2. Fusion cross sections for & +4%44Ca from Ref. [10]. The solid line is the result of present model.
The dashed curve gives the Hill-Wheeler approximation
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Fig. 3.-Fusion cross sections for 2C+'*C. Data (@) are from Ref. [i1], (M) from Ref. [12], (O) from
Ref. [13]. The curves have the same meaning as in Fig. 2
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TABLE 1
Potentials used in the calculation. Ry = ref(Ar'/2+ A1!/3). For ®+4*3Ca: Ry = re, A/, For details
see text
Reaction Potential Ryt (fm) R (fm) rer (fm)
U; = 198.6 MeV
U, = —0.334
x+44°Ca d= 1.37fm 12.015 1.81 +£0.05 0.53+0.02
b=129fm
Reout = 4.45tm
U, = 171.8 MeV
U, = —0.146 .
z+4Ca d = 142 fm 12.015 2.214£0.08 0.63+0.02
b= 125fm
Reoul = 4.58 fm
Satchler-fold.
2cy12C Reoyt = 5.95 fm 11.625 3.48+0.05 0.76 + 0.01
Satchler-fold.
12C+34Mg Reoy; = 6.73 fm 15.025 4.93+0.05 0.95+0.01
Satchler-fold.
16Q 4+ 150 Reoul = 6.55fm 13.025 5.53+0.05 1.10+£0.01
1
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Fig. 4. Fusion cross sections for '2C+2*Mg. Data were taken from Ref. [14]). The curves have the same

meaning as in Fig. 2
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Summarizing, it follows from the present considerations, that the parabolic potential
approximation can be used only if the shape of the potential barrier is close to a parabola.
In all other cases, one should be cautious with the interpretation of the results obtained
by the use of the Hill-Wheeler method, even if one gets a good fit for the fusion excita-
tion function since it can lead to a wrong physical interpretation. It follows from the
analysis of 12C+2*Mg and 104 1°0 reactions, that the critical distances in the present
calculations are close to one fm.
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Fig. 5. Fusion cross sections for °0 + 10, Data (@) are from Ref. [15] and (O) from Ref. [17]. The curves
have the same meaning as in Fig. 2

Galin et al. [8] propose the value R, = 1.0+0.07 fm, which is equal approximately
to the sum of two half nuclear matter density radii. A similar observation is contained in
the work of Natowitz et al. [9]. One should notice that our R, is not defined by the radius
of the half density, but that it defines the distance for which the assumed nuclear potential
is meaningful for the reproduction of both elastic scattering and fusion processes [16, 19].
Hence our critical radius is a free parameter and it is impossible at present to calculate
it correctly.

In any case, however, the critical distance R_, is determined by the shape of the po-
tential of the colliding ions, their internal structure and, in some cases, by shell effects.
The most popular approach to study the fusion process has been proposed by Glas and
Mosel [1]. However, a consequence of a simple barrier penetration model with the inverted
parabola approximation is that the barrier parameters obtained from the Hill-Whecler
transmission probability are not realistic.

The main advantage of the present model is that the transmission coefficients are
calculated for any shape of a realistic potential barrier. Using this method we have been
able to reproduce the experimental fusion data of the strongly nonsymmetric system
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o +%944Ca as well as the symmetric *2C+12C and %0+ 160 systems. OQur model is valid
over a broad energy range and works with any realistic nucleus-nucleus interaction. It
takes into account the exact form of the Coulomb potential and the centrifugal barricr
and it uses a general matrix formalism for calculating the transmission coefficient through
a realistic potential barrier.

In our calculations we have used the real potential of a Saxon-Woods optical model
potential, and the Satchler folding potential. These potentials are known to reproduce
satisfactorily the elastic scattering data [16, 18] and in the present paper we have shown,
that they fit also the energy behaviour of the fusion cross section.

The authors are deeply indebted to G.R. Satchler fcr providing the numerical values
of our potential.
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