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The ﬁ-operation preceded by the regularization procedure is discussed. Some argu-
ments are given, according to which the results may depend on the method of regulari-
zation, introduced in order to avoid divergences in perturbation calculations.
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1. Introduction

Divergent integrals, which we meet in perturbation calculations of QFT are the
source of technical difficulties, we have to overcome. The regularization is just one of the
methods to deal with them.

We often meet a following opinion: the final (and finite) results obtained when different
methods of regularization are used do not depend on the method chosen (up to the set
of finite renormalization constants). This statement is true if applied to the methods
being in actual use: the analytical, dimensional or the Pauli-Villars regularization methods
[1-6}.

However, examples of other “regularizations” may be presented, giving results which
disagree with the standard ones. We shall discuss some examples of such regularizations
and then we shall come back to the problem of the universal criterion of the correctness
of regularization procedure [7].

2. The regularization and the R-operation

At first, two definitions.
a. Let us denote the divergent integrals by

I(k) = | daf (k, ), )
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where k is the set of external variables (external momenta), & is 1the set of variables of
internal integration, ¢.g. the internal momenta or the integration variables of the so called
a-representation.

b. By R-operation we mean the product of subtraction operators n(i— M ») defined
e.g. by Bogoliubov [8]. Each operator (i—My) realizes the subtraction connected with
subdiagram 7.

There are two methods of dealing with divergences:

1°. The R-operation without any regularization of the integrand [9]. In this approach
the integration over the variables & has to be performed (and is possible) after the R-opera-
tion is realized on the integrand f(k, a).

This approach is often criticized, because the left-hand side of the expression

R[ § daf(k, )] = | daRf(k, a) [0))

is not well defined (the integral does not exist). In practice, we have to start with the right-
-hand side and continue the calculations.

2°. In order to avert the formal objections mentioned above, we have to regularize
the function f(k, @) and in this way to restore the formal meaning to the integral over a.
Instead of f(k, a) we use some function ¢(k, a, y) (y is some set of variables) satisfying

¢(k, x, YO) = f(k, 1) (3)
(or at least ¢ treated as a function of a has to be distributionally convergent to f with
9 = 7o) and for which the integral | @(k, a, y)da is well defined if y is taken from some
area containing y, (except y,, of course).
Now, the R-operation is realized on the well defined expression [8, 10]

Iif ok, a, pda = | Ro(k, @, y)da. %)

After the right-hand side integration is performed, we are allowed to take y = yo.
Ts the method 2° for every regularization equivalent to 1°? If we define regularization
as in (3), the answer to this question is, in general, negative.

Examples:
Let the divergent integral be of the form

29

I(k) = J f?e““" )
1]

(we assume all variables as dimensionless).
Ad 1°. The R-operation realized as in the version 1° reduces in this case to the sub-
traction
o de  _.  _a
RI(k) = I(k)=I(ko) = | — ("% —e ™)
o
0
= —Ink—(-Inky)= —Ink+C. (6)
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The constant C is added in order to stress the freedom of choice of the subtraction point
ko (cf. P, in [10]). The final result is

Io(k) = —Ink+C 0

and this will be our standard to compare with other results.
Ad 2°. a. The analytical regularization (a correct one)

da —ak
Ireg(k: ?) = a;_-, e (8)
0
5 do —ak —ako -y -
RIreg(k’ ?) = al—y (e —e ) = r(?) (k —koy)
0

= (% +> {[(~In k)—(—1In ko) ]y + O(y*)}

0 Ink—(—lnky) = —Ink+C. )
The result is correct (as compared with [10}).
b. The examples of false regularizations
Let us take

©
¥

k
Lefk,y) = fda e e ™ (10)

0

One can say, the factor k" is “strange”. However, it does not introduce any new singularity
and it tends to 1 (for k # 0) when y tends to 0. Now, the subtraction gives

o0

d _ _
RIreg(k’ Y) = j‘dl(fy (kye ak—kaQ aRO)

0

compare with the
~ | calculation of (9)

] =Ir(n-Irx =0 W. (11

So this time, the “amplitude” Ij; (k) is a constant.
What more, for an arbitrary function ¥(k) a regularization of the integral (5) can
be given, leading to the result [;;,(k) = ¥Y(k); namely, if

e—ak

Ioy(ks v) = fd“[¢(k)k]7 e (12)

0
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the R-operation gives

o ¢ d
Rl = [ 55 (000ORT e = [T}
o
= [6(k)"— $(ko)'I0(3) ——> In $(k)~In (ko). (13)

Now, it is enough to take
¢(k) = exp (¥(k)). (14)

The last two examples may be called the “pathological” ones. However, it becomes
clear that the opinion, according to which “the result of calculations does not depend on
the method of regularization used”, needs some specification of the class of proper regulari-
zations.

In our negative examples the fault was in the presence of the external variable k in
the regularizing factor. However, the statement, according to which in proper regulariza-
tions the external variables have to be separated from the regularizing factor, would be
too strong. For example, if a’s are the internal momenta, the analytical regularization

1 1 1 Y 15
-
pP—m?  pPP_mi\pP-m? 15)

contains external variables in the regularizing factor (p?>—m?)™". (In this case, however,
the separation is gained afier the o-representation is introduced.)
Let us return to our example. The regularization

(14ky? _
Ireg(k’ )") = ‘} ‘a“l——_t e “kdd (16)

0
after the subtraction

@®

N 1+ky? 1+kgy?
Rchs(ka y) = J‘( ‘y‘ e-—ak_ of e_“"") do
o

11— —
Y ocl b

4]

1 1
= [(1 +ky?) I —(1+koy?) E—] 'y
= I( i——1—]+"r [1 ~ 1]
= ?)l:k, | 2] o1 g

y—0

——> —ink—(—Inky) = —Ink+C an
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gives a correct result, though the regularization factor (1+ky?) depeds on k. Whereas,,
if we take (1+ky), we obtain

A 1 1 1 1
Rl (k) = I'() [ﬁ - 7{7] +vI(y) [I:,—.T - E’"—‘]
(] 0

220 Ink—(—Inko)+k—ko = —Ink+k+C (18y
and the result is false.
So, the crucial point is not the absence of the external variable (variables) in the:
regularizing factor, but the character of this dependence.

3. Recapitulation

Let us limit ourselves to the regularization of the primitively divergent diagram
(subdiagram) I', realized by a regularization factor x(k, a, y)

[f(k, &)yda — | ¢(k, a, y)da = | x(k, @, y)f(k, @), (19)

where x(k, a, yo) = 1, (or, it tends distributionally to 1), and of course the integral
{¢(k, a, y)da is well defined for some y # p,. ,

The criterion of the correctness of the regularization of primitively divergent dia--
grams has been already discussed in [7], where, instead of subtractions, the integrand is
simply differentiated with respect to external variables. (These two methods of calcula-
tion are equivalent.) The criterion is:

lim [ d4p(k, «, y)da = | &% f(k, a)da (20)
Y70
where
o4 s o t - o +1 21
= T =z —
%= G @y =3 @n
i=1

and oy is the index of the diagram I.
Referring this to (19) we have a condition:

lim | 0,[x(k, @, y)f(k, ®)]da = | 0, f(k, @)da. (22)
bind (]
The most simple way to satisfy (22) is to take y independent on k. Here is the place
of the analytical, dimensional and Pauli-Villars regularizations (in the a-representation).
However, this is not the only possibility; in order to stay in the framework cf (22),
it is enough to have 0;,x(k, @, y) distributionally convergent to zero as y — y,, in the sense
of integration with 0., f(k, @), where k;, U k, = k, k, # &.
In the few trivial examples we have discussed above, the functions y(k, «, y) were:
o'k, o'(1+ky), a’(1+ky?), whereas, the functions d,y respectively: «’yk’™ !, o'y, o’y2.
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‘Only the last one tends to zero (distributionally) when y — 0 (in the sense of integration
‘with ot exp (—ak)).

Finally, let us compare the usefulness of two methods denoted as 1° and 2°. The
ﬁ-operation combined with regularization (2°) is mathematically “clean” — however,
in the framework of this method there is no possibility to check the result. For verification
we are forced to refer to the universal result calculated by the use of 1°, in other words,
to check whether the following four operations:

1. regularization 1A =¢,

2. subtraction R,

3. integration | ... de,

4. “taking off” the regularization 1o: Ao¢ = f, applied to f(k, a) satisfy a commutation
relation:

2° - 2 | RAf (k, @)da = [ RIS (k, @)da = | Rf(k, a)da — 1° (23)

being a straightforward generalization of (20) for any complicated diagram.
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