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The Nanopoulos-Srednicki superpotential has been generalized to include Planck slot
non-renormalizable terms, including one proportional to Tr(4*), 4% being the 24-adjoint
representation. The symmetry breaking mechanism is shown to stay intact. We postulate
a new generation of particles and estimate their masses from mass-generation number graphs.
New mass ratios in terms of parameters is proposed. Those parameters can be adjusted to
yield any mass ratio at the grand unification mass scale. The parameters are also compared
under some very restrictive conditions, by equating the mass ratios to the experimental
values.

PACS numbers: 12.10.~g

1. Introduction

As the attempt of unification of all interactions [1] in particle physics has continued,
the introduction of fermion masses [2] has always been a difficult subject. The mass
terms which have been proposed are invariably in conflict with the symmetries, which
are required. Since the introduction of the toy model SU(5) by Georgi and Glashow [3],
theorists have introduced fermion masses by postulating Yukawa potentials, where fer-
mions interact with the Higgs particles, and by resorting to a conventional symmetry
breaking Higgs mechanism. Unfortunately this mechanism yields mass ratios my/m,
= m,/m, = myg/m, = 1 [1]. However Buras, Ellis, Gaillard and Nanopoulos [4] suggested
that such relations are only valid at the grand unification scale. They used the renormaliza-
tion group to compute the masses at the present energy levels and obtained striking results.
They showed under certain approximations that m, ~ 4.8-5.6 GeV and m, ~ 0.4-0.5 GeV.
The value of my is reasonable but m is slightly low. Since then the prevailing tendency
among particle physicists is to start to construct models at GUT mass level and then use
renormalizable group procedures to compute the experimental mass at the present energy
scale. But it is felt that some new ideas are needed to improve the situation. In an attempt
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to do exactly that, Ellis and Gaillard [5] suggested that we have to introduce the influence
of gravitation in computing masses. They introduced a non-renormalizable interaction
by coupling a 24-adjoint representation A'; and 5-Higgs field jointly with two fermion
fields. This is also sometimes referred as an opening up of Planck’s slot. They showed
that such a term will have contributions to the order of O(mxmy/my), where m, in the
Planck’s mass (~10!° GeV), my is the SU(5)-breaking scale (~ 10'45 GeV), and my
(~ 10% GeV) is the mass scale where SU(2) x U(1) breaks into U,,(1). Effects of this
order of magnitude have been estimated by Ellis and Gaillard [5]. The effect of these terms
they found are of the same order of magnitude as the original mass terms. In their paper
they used the experimental masses of the quarks and leptons to estimate the theoretical
parameters.

In a recent paper, Nanopoulos and Srednicki [6] argued that when global super-
symmetry is introduced into the GUT scale, this results in a larger unification scale about
1016 GeV in a minimal GUT. They estimated that such unrenormalizable terms would
contribute effects of the order of magnitude proportional to 10-2. They proposed a toy
model in the context of supersymmetry. They took SU(5) as the gauge group and a definite
form of superpotential. They then computed the mass ratios. They showed also that at the
grand unification mass scale, we can improve on the ratio {m,/m,| = 1 to 2/3 by suitable
choice of parameters.

It seems to us that it is not self-evident that the introduction of gravity induced effect
would not give rise to a term of the form A* or even one with higher power of A4 in the
superpotential. Whether such potential would yield symmetry breaking of the type
SU(5) — SUR) xSU) x U(1) — SUB) x U,,(1) has not been discussed anywhere. In
this paper we have introduced a superpotential following the pattern of Nanopoulos
and Srednicki [6] by adding higher non-renormalizable terms. We added an A4%term
in the superpotential to check whether symmetry breaking procedure works. We have
demonstrated that there is a solution, for the SU(5) breaking condition enunciated by
Witten [7] which corresponds to the process SU(S) — SU(3) x SU(2) x U(1) without
breaking the supersymmetry.

We have postulated the existence of a fourth family which we called (v, 4, 1, p).
We have made a crude estimate for the masses of this generation by plotting masses
against the family number. We have used these values and other approximate mass values
to have some estimate of the parameters introduced in the model.

In Section 2 we define our new superpotential and indicate how it reduces to the Nano-
poulos and Srednicki superpotential. We show in Section 3 that our superpotential yields
a symmetry breaking pattern SU(5) — SU(3) x SU(2) x U(1), following Witten. In Section
4 we write down the mass ratios of different particles in terms of parameters introduced.
We introduce the fourth generation in Section 5 and explain how we have estimated
masses of different particles in the family. In Section 6 we propose a mass ratio model
in the grand unification scale, which could be used to compute masses at present energy
level using the renormalization group technique. In another approach we have attempted
to compare the mass ratios of experimental and estimated masses and obtained under
some assumptions some relations between different parameters.
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2. The extended Nanopoulos-Srednicki superpotential

We extend the Nanopoulos and Srednicki [6] superpotential by introducing a term
proportional to 4* and two extra terms with order of magnitude proportional to M-3,
where M is the modified Planck scale introduced by them. The new superpotential runs
as follows:

W = p’Z+A+5AgA%+5 2, 4% +5 2,4%+ a HH + a,HAH + a5 (HA*H),;

+ Y aboF TH+M ™' Y o} {(FATH);+(F.T,AH);}
+M7? Z aizj[{(FiTiH) (Az)}j"' {FiT;AZI?}j+ {(FLAT,AH},+ {F.A* T.H},]
+M73Y o [{(F.TH) (4°)},+{F.T,AH),
i

+{(F;T,AH) (A®};+{F.AT,A’H};+ {F.A’T,AH} ;+ {F,A*T,H},]

+2 Bool T TH)+M ™' ¥ Bi (AT T:H);
+M72Y B (AT TH);+ M ™3 Y Bi (A’ T T,H);. Q.1

In the above superpotential 4 is a 24, H and H are the 5 and 5 representations of the
Higgs fields, T; and F; are the i-th generation 10 and 5 fermion representations. In principle
we should have taken the Cabbibo-Kobayashi-Maskawa (CKM) [8] rotated 10 and _§_fer-
mion representation as indicated by Nanopoulos and Srednicki, but since our super-
potential is parametrized we will assume that CKM parameters are absorbed in the other
constants. Z is a singlet used to break local supersymmetry, and 4 is. a constant which
must be adjusted to cancel cosmological constants.

In each term of the superpotential the fields have to be contracted in SU(5) indices
in all possible ways. Thus for terms involving H and 4 we have

A" =TrA" for n=2,3 and 4, .2)
HH = H,H", (2.3)

HAH = H,A%H, 2.4

as(HAH); = a3, H,A%A* H +a;,H,A° A° H". .5

In the terms of the form «.,;{( );+ ...}, the quantities in the parenthesis have to l?e
contracted in all possible ways in SU(5) indices and then multiplied by a parameter ay,;
belonging to i-th generation. We have thus:

a:)OF iTiﬁ = o‘(i)oF IiLCTi‘;.be’ (2.6)

o {(FLATH);+ ...} = oy Fan CTR A% H + o, FuCT*A° H,, 2.7
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o) [{(FTH) (4} )+ ...] = a2, Fau CTH A’ A%+ 03, F g CT A% A% H,
+oh FT CA° T A Hy+ob Foy CA%A® T H,, 2.8)
o5, [{(F,TH) (4%)};+ ..]
= o FL CTPH, A A% A+, Fay CTL A% H A% A%,
+ol FT CTE A% A A% H oy F oy CA% T H, Tr A?

+abFT CAS T A® A% H, + b6 Fay CA% A TP A%H,

+03,F CA%A" AT H,. (2.9)
Similarly
BooTi' TiH = Bootascac Tt CTii H, (2.10)
AT TH); = B 18abeaeA’s T Tt P CT H + B 28 abeaeA’s Tk ‘CTHH, (2.11)
ﬂzj(ATTH)j = Sabcae{ﬁgﬂ}'{“bcn? * Tr (4%)
+ B4, A% A TLCT H + B33 4° A% T °CT{'H
+ B A A TH/CT{H+ B35 4% A ",?}E”CT}{"H ¢
+ B A AT, TIPCT H  + 37 A% AT, TICTIH, (2.12)
and finally

BLAAPTITiH); = Eapcacl B1 Tr (A°)TLPCT H® + B3, 4% Tr (A*) T CTH*
+ B3 A% Tr (AT CTEH" + 4,4° (A, A T *CTL*H
+BLsA%, A% AL TIYCT,EH" + Bl A% AL AS T CTEH®
+ By AT AT A% TIFCTE HE + By A A% A% TR CTEH™). (2.13)

In the above expressions we have followed the terminology defined by Langacker [1].
All Latin suffixes run from 1 through 5. The constant M = mp/(87)!/ = 2.4 x 10'® GeV
has been introduced following the prescription of Nanopoulos and Srednicki [6].

The superpotential W reduces to Nanopoulos and Srednicki potential if we set

12 = 0, a3j = 0, (2.14)
abo = oy =0, (2.15)
a}j = ai, = 0, (2.16)

aij = a%i = O, (2.17)
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a3; =0, (2.18)
Boo = B30 =0, (2.19)
Bi; =B =0, (2.20)
B3 = B3 =0, (2.21)
Bs; = 0. (2.22)

3. SU(5)-breaking

We wish to generate models, including ours, to follow the supersymmetric theory
building concept. Although our scheme is phenomenological, we would follow the
pattern of symmetry breaking developed by Witten {7] and used extensively by Dimo-
poulos and Georgi [9]. The objective is to keep the supersymmetry unbroken but break
the gauge invariance at the begining. The terms which play the dominant role of gauge
symmetry breaking are

v = W — terms involving non-adjoint fields
=1 2,4%+32,43+12,4% @G.1

We want to stress the fact that terms with higher powers of fields are the contracted
expressions in SU(5) indices. The conditions, which have to be satisfied to get the vacuum
expectation values of the fields by minimizing v with respect to them, are

KON
v,(p) = o0, - 0 3.2)
and
Ka = &aTa‘;:¢b = O, (33)

where T, are the generators of the gauge group.
¥ we minimize the potential for

KHY =(H) =<(Z) =(T) =<(Fp =0 G4
then the adjoint 24-fields, A%, satisfy under the restriction of tracelessness and the Eq. (3.2):
A AP+ (A8, A%, —1 8%, Tr A%)+2,(4°,4%,4%,—1 8", Tr 4%) = 0. 3.5)
Since we are looking for diagonal solutions, we set
A%, = ¢, 5%, (3.6)
For x = y, we must have

AoCx+ A 2—N+4i,c2—K =0, 3.7
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where

™M

N =

i

5
4 Y2 and K=1%14, Y ¢ (3.8)
=1

1 ¥y

¥y
Eq. (3.7) has a solution
¢, =0 (3.9
which corresponds to unbroken SU(S) symmetry.

If we look for a solution of the form ¢, = ¢, = ¢3 = ¢4, = cand ¢5 = —4c, the c must
satisfy the equation

Aoc—34, 2 +134,¢* = 0. (3.10)
Therefore if ¢ # 0, we must have

34,4 V942 = 52404,
C = .

3.11
264, (1)
We can remove the ambiguity of ¢ by setting
943 = 52404, (3.12)
and obtain
¢ = (34,)/(264,). (3.11a)
This solution corresponds to the symmetry breaking
SU(5) —» SU4) xU(1) (3.13)
To obtain a solution of the type ¢, = ¢, = ¢3 = cand ¢g = ¢s = —(3/2)c, the ¢ must
satisfy the equation
4igc—2Ac* +Thyc® = 0. (3.14)
If ¢ # 0, we have
A AT —28A0A
e 1i\/ 1 o’z (3.15)
A,
To remove the ambiguity we set
A2 = 28444,. (3.15a)
We get thus
¢ = A,/(7T43). (3.15b)

We have therefore demonstrated that the following options exist for the type of super-
potential we have introduced:

(11 A% =0, (3.16)
2] 4° = c[6%—56%6%], 317
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with the restriction Eq. (3.12) and ¢ given by the relation (3.11a), and
(3] A% = c[6%—(3) (8°46%,+ 5°56°))] (3.18)
with ¢ given by the Eq. (3.15b) and the restriction Eq. (3.15a).

As we know the Eq. (3.16) corresponds to unbroken symmetry of SU(5). The Eq.
(3.17) corresponds to SU(5) — SU(4) x U(1) breaking and the Eq. (3.18) corresponds to the
symmetry breaking SU(5) — SU(3) x SU(2) x U(1).

We have thus shown that even after introduction of a non-renormalizable term pro-
portional to Tr A%, the symmetry breaking procedure of Witten [7] stays intact but we
have to subject the A’s to constraints stated in the relations of Eqs. (3.12) and (3.15a).

We now introduce the next step of symmetry breaking {H;)> # 0 and (H) # 0,
but (F;> = {T;) = 0, which leads finally to SU(2) x U(1) - U,(1). Our choice will be

CO|H;|0) = 6°,v5/2, vy = 2mW/g' (3.19)
and

{0|H;|0> = 6%v0/2, v, =2mW]/g, (3.20)

where my, g, and g’ are well-known quantities.

4. Mass coefficients

We now recall (see for example [1]) that 5-fermion fields are given by
dy H bi
ds $2 b3
Fia = .‘_1:; s Fau= 5;_ », and  Fy,; = / bg @0
é u T
_IL Ve JL

""Ve L ‘-V“

and 10-fermions by

Th =(/J/2)| us —u; 0 —-uw* -4
ul u? ul 0 —e
d* d* d* et 0

0 —u§ —uy —u' -—-d'
-u; 0 uj —u? —-d?
, “.2)

e . | same as Eq. (4.2), only replace u by c, 4.3)

2L " ld by s, and e by u . :
_ | same as Eq. (4.2), only replace u by ¢, 44

T;b_[dbyb,andebyr L “4

In the above expressions %° stands for the charge conjugate field of  and y; for the
left chiral field of v.
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To obtain the mass matrix, we now compute from the superpotential W, terms
which contribute to fermion mass terms by substituting sequential breaking: SU(5)
< SU3) xSU(2) x U(1) 7> SU(3) x U,(1) given by Egs. (3.16), (3.17), and {3.18). We get

M = vo[mg, +m},(c/M)+m31(c/M)>+m},(c/M)*] (d,d* +3,d* + d3d°)
+0o[mgz +myy(c/M)+m3a(c/M)Y? +m3,(c/M)*] (2% e™)
+(v5/3/2) [mos +mia(c/M) +mas(c/M)* +m3(c/M)’] (fyu' +ii,u” +ii3u’)
-+ similar terms involving second and third generation leptons and quarks,
where
Moy = %oo/2,
my; = "(%)“iu +(%)°‘i12,
may = (H)as1 +@)oza ~ (33 +(3)thas
myy = —(Dag — (G5 —(GHads + ()b +(F)hs — ~@ass+(ass,
moy = agef2 = myy,
miz = =3 — (Do,
mya = (Dah, + (s +(3)ohs +($)oka,
myz = —(as —(ED)as, —(FPoha — s — (Falks
+(EDozs —GHesa,
mo3 = 4B,
mis = (3)B11—6B12
mys = 30851 — (B2 —Bos—(DBha+Bos—(ED)Bhs +9B51,
mys = — 1584, —(5)B52— 45853 +(DBra— ($)B5s

+PBs—(3)Bs7—CD)B5s.

4.5)

(4.6)
@.7
(4.8)
(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
(4.14)
(4.15)

(4.16)

4.17)

Therefore in our calculation for the d-quark and electron the most general mass

ratio turns out to be

Ma _ myy +mi,(c/M)+mj,(c/M)*+m3,(c/M)*
me  mg;+mi,(c/M)+miy(c/M)* +miy(c/M)>?

(4.18)
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We can also express the mass ratio between the d- and u-quarks as

my mpy +miy(c/M)+m3,(c/M)* +m},(c/M)>? . I:\/E Uo]

my  mby+miy(c/M)+mis(c/M)*+miy(c/M)? (4.18a)

vo
Similar results can be derived for other families. We can also compare the masses of
different families. For example, the ratio of the masses of d- and s-quark can be written
down as
Mma _ myy +mi(c/M)+m3 (c/M)? +m} (c/M)>
m,  mgy+miy(c/M)+m3,(c/M)* +m3 (c/M)*”

(4.19)

As we have mentioned earlier, we can go over to the results of Nanopoulos and
Srednicki if we use Eqs. (2.14) through (2.22). We note that those conditions lead to
constraints on m’s as follows:

myy = mg, =0, (4.20)
myy = mi; =0, (421
m3; = m3; =0, (4.22)

m§; = 0, (4.23)
my; = md, =0, 4.24)
m}; = m3; = 0, (4.25)
m3; = m},’= 0, (4.26)

my, = 0. 4.27)

When the above conditions satisfy, the mass ratio for d and ¢ becomes

Ma _ T_.;.l - (EDeg + Rz — Bz + Pz
m, m}  (3ad; +@ada+@azs+ (@)

(4.28)

which is the same as their result.

We can proceed now in two different directions. Firstly the parameters of all these
equations could be adjusted in a new way to yield suitable mass ratios at the grand unifica-
tion mass scale. These ratios could then be used in the renormalization group theory
technique to evaluate the masses of the quarks at the present energy level.

In the second procedure, we note that it is reasonable to adjust the parameters to
compare the masses of quarks and leptons at our present energy level. This process has
been carried out by Ellis and Gaillard [5] to estimate the magnitude of parameters. We
shall also proceed along this alternative line and try to determine the ratios of these
constants under certain restrictions at a later stage. We are well aware of the fact that the
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number of parameters in our technique is more than necessary for our purpose. However
it is not totally unreasonable to carry out the comparison of parameters. We intend to do
exactly that in Section 6.

Before we go into these two studies, we would like to introduce a new generation
of leptons and quarks, which we speculate to exist, in Section 5.

5. Fourth generation

We conjecture in this section that a fourth generation of particles exists and we
designate it as (v, 4, I, p). We estimate their masses tentatively by extrapolating graphs
of masses of the particles having the same quantum numbers versus the family number.
We have taken the mass values of fitted experimental results from a table produced by
Marciano [10]. Table I shows the data of first three families. The fourth generation is
a speculation and the masses of the new particles are extrapolated by a prescription,
which we explain now. In Fig. 1, we have plotted the generation number along the x-axis
and the neutrino mass bounds along the y-axis. A smooth extrapolation gives us a mass
bound of v, < 1.75 GeV. From Fig. 2, we have determined the estimate for the A-mass
to be 5.6 GeV.

Since we do not know the mass of top quark, we have estimated the l-quark mass
for two different values of top quark mass, m, = 20 GeV and m, = 30 GeV in Fig. 3.
We find corresponding values to be ~ 100 Gev and 125 Gev respectively.

TABLE 1
Fermions in standard model
Family Name Charge Color Mass
No.
1 Ve 0 0 <60eV
e -1 0 0.51 MeV
u 2/3 3 4.00 MeV
d —-1/3 3 10.00 MeV
2 Yy 0 0 <0.52 MeV
i -1 1] 106 MeV
c 2/3 3 1.25 GeV
s —-1/3 3 200 MeV
3 Ve 0 0 <250 MeV
T -1 0 1.78 GeV
t 2/3 3 >20 GeV
b -1/3 3 4.5 GeV
4 i 0 0 <1.08 GeV
A -1 0 ~5.6 GeV
1 2/3 3 ~100 GeV (if m = 20 GeV)
~ 125 GeV (if my = 30 GeV)
p -1/3 3 ~14 GeV
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From Fig. 4 we obtain the mass of the p quark to be around 14 GeV. All these
values are put in fourth family data of Table L

We can easily compute the contribution of the superpotential for the fourth genera-
tion. The 5-fermion has to be written as

P
j 23

F4al. = l P (5.1)
1

—Vi L

and 10-representation as

o -5 -5 -1 -p'
-5 0o I =P —pz-‘

Te=VD| & - 0o P -pJ. (5.2)
e N L ¥
PPt P AT 0

Using these values we can easily extend Eq. (4.5) to incorporate the fourth generation.

6. Parameter adjustment

A. In this section, we shall proceed in two different ways to adjust the theoretical
parameters. We shall first approach the problem from the GUT mass-scale level. At this
level we propose the following relations for different generations which have wider adjust-
ment possibilities then those used by Nanopoulos and Srednicki. For the fourth generation
we set

4
mp Moy
—_— o e = ] 6.13
m, mgz ( )
with
my, =mh,=0 for i=1,2and 3. (6.1b)

my, mi;  ai —(Pai,
o Sl S S (6.2a)
m, My oyt
with
miy=mi, =0 for i=1,2and4 (6.2b)

For the second generation we propose

2 2 2 2

m, my (Paz+a,—3) 33 +(3) 224 (6.32)
RS Y 2 2 2 2 .
m, my (D) oz, +ag,+o3s+as,
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with

mh, =mi, =0 for i=1,3and 4. (6.3b)
Finally for the first generation we suggest

mg _ ’L“é - dazy + 1203, + (3)o33 — 4034~ (Hazs + (s — ()t (6.42)
m, m}, dak;+120d;+(ass+6ad,+ (Dot —(Dade+ (s,

with
miy, =mi, =0 for i=23and4 (6.4b)

In Eq. (6.2a), we can retain the ratio m,/m, = 1 if we just choose o, = 0. On the
other hand from Eq. (6.3a), we can generate a GUT mass scale ratio m,/m, = 2/3 if we
set a2, = (6/5)02; and o, = a3, = 0. As suggested by Nanopoulos and Srednicki,
this ratio may improve the renormalization group computation of the mass of the s-quark.
at present energy levels. The ratio of d and ¢ masses can be adjusted to 1, that is my/m, = 1,
if we choose al, = a}s = a}g = a3, = 0. It can be brought to any other value at that
scale if we choose appropriate aj;’s.

B. On the other hand we can ignore the renormalization group technique of computa-
tion of mass at present energy level from the GUT mass level, as has been done by Ellis
and Gaillard [5], and concentrate on the parameter fitting of experimental masses to form
an idea about the magnitude of non-renormalizable components.

Although there is a large number of possibilities, by which we could adjust the param-
eters to get the experimental mass ratios, we are tempted to assume a kind of “partial
universality of parametrization”, implying that

Wy = oy = o, (6.5)
B = B = B (6.6)

Both of the above relations should hold for a fixed pair, 7, j but k£ and / could be arbitrary.
The motivation for introducing such universality is to design a way to sec how (¢/M)
influences the parametrization at least at lowest power terms. Using Eqs. (4.18), (4.6)
through (4.13), and (6.5) we get

my ag—(Pod(e/M)+CDas(e/ MY — A5ai(c/M)?
me  ab—3al(c/M)+(EDai(c/M)? —dai(c/ M)

(6.7)

We can equate this value to experimental ratio my/m, = (1/200). Assuming o} = a3 = 0,
we find
ai(c/M) = 2.05 ap. (6.8)

Thus the zeroeth and the first order terms are comparable. For m,/m, = 2, under the
similar assumption we find

ax(c/M) = 0.18 o2 (6.9)
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For my/m, = 2.5, and a3 = «3 = 0, we obtain
aj(c/M) = 0.21 ;. (6.10)

Finally from the extrapolated mass values of the new generation of particles with
my/m, = 2.5, we get again

at(c/M) = 0.2045. (6.11)
Making the same approximation by setting the coefficients of (¢/M)? and (¢/M)?

equal to zero and assuming Eqs. (6.5) and (6.6), and requiring mg/m,, = 10/4, m_fm_ = 1/6.3,
my/m, = 4.5/30, and m,/m, = 14/125, (setting v, = vy), we obtain relations

Bi(c/M) = 0.89 p4+0.0016 a5, (6.12)
B(c/M) = 0.89 2—0.96 02, (6.13)
B(c/M) = 0.89 p3—0.93543, (6.14)
Bi(c/M) = 0.89 B3 —1.25q5, (6.15)

It is perhaps worth mentioning that utilizing the masses of d- and s-quarks for example,
we can obtain relations between océ and o}, such as

o2 = —0.027 ol (6.16)

The derivation of the above relations justifies the conjectures originally put forward
by Ellis and Gaillard [5] that the terms proportional to ¢/M are comparable with renormali-
zable components.

7. Concluding remarks

In the above treatment a generalization of Nanopoulos-Srednicki superpotential
has been carried out. We have shown that even if we add a non-renormalizable term
(~ 4% in the superpotential, we can break the symmetry in the pattern SU(5) —» SU(3)
x SU(2) x U(1) —» SU(3) x U, (1). This superpotential has been used to compute the
fermion mass term. Qur result yields those derived earlier by Ellis and Gaillard end Nano-
poulos and Srednicki formulae of the mass ratios. We have postulated the existence of
a new generation of fundamental particles whose masses we have conjectured following
a graphical extrapolation. We have then proposed a new mass ratio scheme between differ-
ent particles in the GUT mass scale. By adjusting the parameters suitable mass ratios
can be obtained, which finally could be used in a renormalization group ccmputation
of mass at present energy scales.

We have also related these parameters under certain special conditions ccmparing
the masses with experimental or conjectured values. With our present assumption the
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constants cannot be completely determined. But we have seen that the non-renormalizable
terms yield comparable quantities as conjectured by Ellis and Gaillard.

We are looking for other physical assumptions which would reduce the number of
parameters used in this computation. This type of non-renormalizable potential terms can
also be used in other processes. One can estimate the effect of such potential on magnetic
moments of particles. The topic is at present under investigation.

The author wants to express his deepest thanks to Professor E. Merzbacher for going
through the manuscript and offering critical remarks. Thanks are also due to Dr, K. Yama-
moto for some valuable critical comments.
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