SOLVABLE QUANTUM-MECHANICAL MODEL WITH EXPONENTIAL SPECTRUM AND GAUGE STRUCTURE

By W. Królikowski

Institute of Theoretical Physics, Warsaw University*

(Received January 9, 1985)

An exactly solvable, one-dimensional quantum-mechanical model of a new kind is constructed. It gives an exponentially rising discrete energy spectrum bounded from below and displays an explicit gauge invariance. To our knowledge, such a type of spectrum is novel for mechanical systems.

PACS numbers: 03.65.Ge, 03.65.Bz

In this note we construct an exactly solvable, one-dimensional quantum-mechanical model giving an exponentially rising discrete energy spectrum bounded from below. To our knowledge, no mechanical model possessing such a spectrum was described so far in the literature [1]. Speaking in general terms, the model can be characterized as a harmonic oscillator, where some additional interaction is introduced in the form of an energy-dependent "minimal" self-coupling. Despite its pure mechanical character, the model displays an explicit gauge invariance [2], which by itself is an interesting feature and may be significant for understanding the physical origin and affiliation (if any) of the introduced self-coupling. But we shall not attempt to speculate about this point here. We shall treat our model as a formal construction (of some stimulating properties).

Our construction is based on the hamiltonian of the form

$$H = m_0 + \frac{1}{2\Lambda} [p + gA(q, p)]^2 + \frac{\Lambda \omega^2}{2} q^2 - \frac{\omega}{2}, \qquad (1)$$

where q denotes a coordinate, p represents its conjugate momentum and A(q, p) is a Hermitian operator built up of both q and p, while $m_0 > 0$, A > 0 and $\omega > 0$ are mass-dimensional constants and $g \neq 0$ a dimensionless coupling constant. We specify the function A(q, p) by means of the following operator equation relating A(q, p) to the energy H given in Eq. (1):

$$-i[q, A(q, p)] = gl(H-m_0),$$
 (2)

^{*} Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoża 69, 00-681 Warszawa, Poland.

where l > 0 is a length-dimensional constant. We also impose the condition

$$A(-q, -p) = -A(q, p) \tag{3}$$

which guarantees that H(-q, -p) = H(q, p).

Note that in the momentum space Eq. (2) takes the form

$$\frac{\partial}{\partial p} A \left(i \frac{\partial}{\partial p}, p \right) = gl \left[H \left(i \frac{\partial}{\partial p}, p \right) - m_0 \right] \tag{4}$$

telling us that the gradient of A(q, p) in momentum space in proportional to the excitation energy $H-m_0$. As it turns out, this assumption causes the energy spectrum to rise exponentially, starting from the ground-state energy $E_0 = m_0$. We will call the dynamical system specified as in Eqs. (1), (2) and (3) a "pseudo-harmonic" oscillator. It becomes the usual harmonic oscillator when $g \to 0$.

Although Eqs. (1) and (2) define the hamiltonian H only implicitly, the eigenvalue equation for H can be solved exactly by means of the following pseudo-annihilation and -creation operators:

$$\frac{a}{a^{+}} = \frac{1}{\sqrt{2}} \left\{ \sqrt{\Lambda \omega} \ q \pm \frac{i}{\sqrt{\Lambda \omega}} \left[p + gA(q, p) \right] \right\}.$$
 (5)

They satisfy the commutation relation

$$[a, a^{+}] = 1 + g^{2}l(H - m_{0})$$
 (6)

and lead to the formula for H

$$H - m_0 = \frac{\omega}{2} \left(a^+ a + a a^+ - 1 \right) = \omega \left[N + \frac{1}{2} g^2 l (H - m_0) \right], \tag{7}$$

where

$$N = a^+ a. (8)$$

Solving Eqs. (6) and (7) with respect to $[a, a^+]$ and $H-m_0$, we obtain the following commutation relation:

$$[a, a^+] = 1 + (\lambda^2 - 1)N \tag{9}$$

(which can be rewritten also as $aa^+ - \lambda^2 a^+ a = 1$) and formula for H:

$$H = m_0 + \frac{\omega}{2} \left(\lambda^2 + 1\right) N, \tag{10}$$

where

$$\lambda^2 = \frac{1 + g^2 \omega l / 2}{1 - g^2 \omega l / 2} \,. \tag{11}$$

Note that $|\lambda^2| > 1$ (since $\omega > 0$ and l > 0) and $\lambda^2 > 0$ or < 0 if $g^2 \omega l/2 < 1$ or > 1, respectively. Note also that $\lambda^2 \to 1$ for the harmonic oscillator. Henceforth, we will consider the case of $g^2 \omega l/2 < 1$, thus we shall have $\lambda^2 > 1$.

Now, let us take into account the eigenvalue equation for N:

$$N|n\rangle = N_n|n\rangle, \quad \langle n|n\rangle = 1 \quad (n = 0, 1, 2, ...),$$
 (12)

where $|n\rangle$ and N_n are unknown (we only anticipate that the spectrum of N is discrete). Then, the commutation relation (9) implies

$$Na^{+}|n\rangle = (\lambda^{2}N_{n}+1)a^{+}|n\rangle,$$

 $Na|n\rangle = \frac{1}{\lambda^{2}}(N_{n}-1)a|n\rangle.$ (13)

Hence we can conclude that [3]

$$a^{+}|n\rangle = \sqrt{\lambda^{2}N_{n}+1} |n+1\rangle,$$

$$a|n\rangle = \sqrt{N_{n}} |n-1\rangle$$
(14)

and

$$N_{n+1} = \lambda^2 N_n + 1. \tag{15}$$

Defining $|0\rangle$ through the condition $a|0\rangle = 0$, which gives $N_0 = 0$, and solving the spectral recurrence formula (15) we get the spectrum for N:

$$N_n = \frac{\lambda^{2n} - 1}{\lambda^2 - 1} = \begin{cases} 0 & \text{for } n = 0, \\ 1 + \lambda^2 + \dots + \lambda^{2n - 2} & \text{for } n \ge 1. \end{cases}$$
 (16)

Then, Eq. (10) gives the following spectral recurrence formula and spectrum for H:

$$E_{n+1} - m_0 = \lambda^2 (E_n - m_0) + \frac{\omega}{2} (\lambda^2 + 1)$$
 (17)

and

$$E_n = m_0 + \frac{\omega}{2} (\lambda^2 + 1) \frac{\lambda^{2n} - 1}{\lambda^2 - 1}.$$
 (18)

Since $\lambda^2 > 1$, it is an exponentially growing spectrum $\sim \exp(2n \ln \lambda) + \text{const}$ (here $\lambda = \sqrt{\lambda^2} > 1$). To give a numerical example: with $\lambda = 4$ we have $E_n = m_0 + \frac{17}{2} \omega N_n$ where $N_n = 0, 1, 17, 273, ...$ for n = 0, 1, 2, 3, In the case of $\lambda^2 \to 1$ we obtain the harmonic-oscillator formulae $N_n = n$ and $E_n = m_0 + \omega n$. It is interesting to remark that the energy spectrum (18) is independent of the mass scale Λ (appearing in the hamiltonian (1)) when ω and λ^2 are fixed. Such a property is well known to hold for the usual harmonic oscillator (corresponding to $g \to 0$ or $\lambda^2 \to 1$) when ω is fixed.

Note that the energy spectrum (18) satisfies also the three-term recurrence formula [4]

$$E_{n+2} - E_{n+1} = \lambda^2 (E_{n+1} - E_n) \tag{19}$$

which is less informative than the two-term recurrence formula (17) equivalent to the spectrum (18) (if $E_0 = m_0$).

As was mentioned at the beginning, our mechanical model is gauge invariant. In fact, the wave equation

$$H\psi = E\psi \tag{20}$$

and the operator equation (2), where H is given in Eq. (1), are invariant in the position space under the following gauge transformation:

$$\psi(q) \to \psi'(q) = e^{ig\alpha(q)}\psi(q),$$

$$A(q, p) \rightarrow A'(q, p) = e^{ig\alpha(q)}A(q, p)e^{-ig\alpha(q)} - \frac{\partial\alpha(q)}{\partial a}$$
 (21)

This follows from the relations

$$e^{ig\alpha(q)}[p+gA(q,p)]\psi(q) = [p+gA'(q,p)]\psi'(q)$$
 (22)

and

$$e^{ig\alpha(q)}[q, A(q, p)]e^{-ig\alpha(q)} = [q, A'(q, p)].$$
 (23)

In order to satisfy the condition (3) in the new gauge (21) it is enough to require that $\alpha(-q) = \alpha(q)$.

It may be worth while to note that the same energy spectrum as given in Eq. (18) holds also for the "reciprocal" quantum-mechanical model, where [5]

$$H = m_0 + \frac{1}{2A} p^2 + \frac{\Lambda \omega^2}{2} [q + gB(q, p)]^2 - \frac{\omega}{2}, \qquad (1')$$

$$i[p, B(q, p)] = gl(H-m_0)$$
 (2')

and

$$B(-q, -p) = -B(q, p).$$
 (3')

In this case the pseudo-annihilation and -creation operators, now of the form

$$\frac{a}{a^{+}} = \frac{1}{\sqrt{2}} \left\{ \sqrt{\overline{\Lambda}\omega} \left[q + gB(q, p) \right] \pm \frac{i}{\sqrt{\overline{\Lambda}\omega}} p \right\},$$
 (5')

lead to the same formulae as before: (6) and (7) as well as (9) and (10) (where λ^2 is given by Eq. (11)). Hence the same energy spectrum (18).

Finally, we should like to remark that the operators $\tilde{q} \equiv q$ and $\tilde{p} \equiv p + gA(q, p)$ in the original model and the operators $\tilde{q} \equiv q + gB(q, p)$ and $\tilde{p} \equiv p$ in the "reciprocal"

model satisfy the commutation relation of the same form

$$[\tilde{q}, \tilde{p}] = i[1 + g^2 l(H - m_0)],$$
 (24)

where H is given by Eq. (1) and Eq. (1'), respectively. The noncanonical commutation relation of the type (24) was considered by Saavedra and Utreras [6] who made the bold conjecture that at small distances the usual Heisenberg canonical commutation relation [q, p] = i should be thus modified [7]. This might be an approach alternative to that of postulating the novel kind of self-coupling as introduced in hamiltonian (1) or, eventually, the novel "reciprocal" self-coupling as introduced in hamiltonian (1').

REFERENCES

- [1] Cf. e.g. S. Flügge, Practical Quantum Mechanics, vol. 1 and 2, Springer-Verlag, Berlin-Heidelberg-New York 1971. For the case of singular potentials cf.: K. Case, Phys. Rev. 80, 797 (1950); W. M. Frank, D. J. Land, R. M. Spector, Rev. Mod. Phys. 43, 36 (1971).
- [2] This explicit gauge invariance should be distinguished from the interesting implicit gauge structure discussed recently for mechanical systems in F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
- [3] Cf. the classical reasoning for the harmonic oscillator in P. A. M. Dirac, *The Principles of Quantum Mechanics*, 4th ed., Oxford University Press, Oxford 1958, p. 136.
- [4] This is an interesting formula by itself. Masses of charged leptons e^- , μ^- and τ^- satisfy it when $\lambda=4$ (with a great accuracy!), if $E_1=m_e$, $E_1=m_\mu$ and $E_2=m_\tau$. Then it implies that $E_3=28.5$ GeV. Would E_3 be the mass of charged lepton of the fourth generation?
- [5] Cf. W. Królikowski, Acta Phys. Pol. B14, 629 (1983); B15, 861 (1984).
- [6] I. Saavedra, C. Utreras, Phys. Lett. 98B, 74 (1981).
- [7] Cf. also H. S. Snyder, Phys. Rev. 71, 38 (1947).