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An exactly solvable, one-dimensional quantum-mechanical model of a new kind
is constructed. It gives an exponentially rising discrete energy spectrum bounded from below
and displays an explicit gauge invariance. To our knowledge, such a type of spectrum is novel
for mechanical systems.
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In this note we construct an exactly solvable, one-dimensional quantum-mechanical
model giving an exponentially rising discrete energy spectrum bounded from below. To
our knowledge, no mechanical model possessing such a spectrum was described so far
in the literature [1]. Speaking in general terms, the model can be characterized as a harmo-
nic oscillator, where some additional interaction is introduced in the form of an energy-
-dependent “minimal” self-coupling. Despite its pure mechanical character, the model
displays an explicit gauge invariance [2], which by itself is an interesting feature and may
be significant for understanding the physical origin and affiliation (if any) of the introduced
self-coupling. But we shall not attempt to speculate about this point here. We shall treat
our model as a formal construction (of some stimulating properties).

Our construction is based on the hamiltonian of the form

1 Aw?® w

H= m0+§—/—1[p+gA(q, p)]2+_.2_q2_.2_, @

where g denotes a coordinate, p represents its conjugate momentum and A(g, p) is a Hermi-

tian operator built up of both g and p, while m;, > 0, 4 > 0 and @ > 0 are mass-dimen-

sional constants and g # 0 a dimensionless coupling constant. We specify the function

Atg, p) by means of the following operator equation relating 4(g, p) to the energy H given
in Eq. (1):

~ilg, A(q, p)] = gl(H~my), o)
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where [ > 0 is a length-dimensional constant. We also impose the condition

A(—gq, —p) = —A(q,p) €))

which guarantees that H(—gq, —p) = H(q, p).
Note that in the momentum space Eq. (2) takes the form

aAv'a =gl| H ; 9 4
e (’a?”)‘g[ ('5;”’)“'"‘)] @

telling us that the gradient of 4(g, p) in momentum space in proportional to the excitation
energy H—my,. As it turns out, this assumption causes the energy spectrum to rise exponen-
tially, starting from the ground-state energy E, = m,. We will call the dynamical system
specified as in Egs. (1), (2) and (3) a “pseudo-harmonic” oscillator. It becomes the usual
harmonic oscillator when g — 0.

Although Egs. (1) and (2) define the hamiltonian H only implicitly, the eigenvalue
equation for H can be solved exactly by means of the following pseudo-annihilation and
-creation operators:

a 1 — i
= =< JAw g+ — [p+gA(q, . 5
a+} \/2{\/ wq \/Aw{p gA(q p)]} O]
They satisfy the commutation relation

la, a*] = 1+g*((H—myo) (6

and lead to the formula for H

H-—-my = —;)—(a+a+aa+-—1) = o[N+% gzl(H——mo)], N

where
N = a*a. ®

Solving Egs. (6) and (7) with respect to [a, a*] and H—m,, we obtain the following com-
mutation relation:

[a, &1 = 1+(A2-1N 9

(which can be rewritten also as aa*—A%a*a = 1) and formula for H:

w
H = my+ 5 (A2 41N, (10)

where
1+ gwlf2
T 1-gwl2’

12
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Note that ]42] > 1 (sincc @ > 0 and / > 0) and 2> > 0 or < 0if g’wl/2 < 1 or > 1, respec-
tively. Note also that 42 — 1 for the harmonic oscillator. Henceforth, we will consider the
case of g2wlf2 < 1, thus we shall have A2 > 1.

Now, let us take into account the eigenvalue equation for N:

Nin)d = N,jn), <{njnd) =1 1n=0,1,2,..), 12)

where |n) and N, are unknown (we only anticipate that the spectrum of N is discrete).
Then, the commutation relation (9) implies

Na*|n) = (A*°N,+1)a*|n),
Nainy = = (N, 1)aln). (13)

Hence we can conclude that [3]
+ IN 1
a*ind = V22N, +1 n+1),

ajny = /N, |In—1> (14)
and
Nn+1 = )‘ZNn'*'l (15)

Defining |0) through the condition a|0) = 0, which gives N, = 0, and solving the spectral
recurrence formula (15) we get the spectrum for N:

A -1 0 for n=0,
Np=—— = 2 2n-2
AF—1 T+A%+ o+ for n>=1. (16)

Then, Eq. (10) gives the following spectral recurrence formula and spectrum for H:

2 o .,
E,1—mo = A(E,—mg)+ ~-2—('1 +1) a7
and
E + 2 a2 1);‘2"_1 (18)
= mo+ — (4 - .
nT Mot T

Since 4% > 1, it is an exponentially growing spectrum ~ exp (2n In A)+const (here
A= /12 > 1). To give a numerical example: with A = 4 we have E, = mo+75- oN,
where N, =0,1,17,273, ... for n =0, 1,2, 3, ... . In the case of 4> — 1 we obtain the
harmonic-oscillator formulae N, = n-and E, = my+wn. It is interesting to remark that
the energy spectruin (18) is independent of the mass scale A (appearing in the hamiltonian
(1)) when o and A2 are fixed. Such a property is well known to hold for the usual harmonic
oscillator (corresponding to g — 0 or A2 — 1) when w is fixed.
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Note that the energy spectrum (18) satisfies also the three-term recurrence formula {4}
Eyi2—Epsy = lz(EnH“En) (19)

which is less informative than the two-term recurrence formula (17) equivalent to the
spectrum (18) (if E, = my).

As was mentioned at the beginning, our mechanical model is gauge invariant. In fact,
the wave equation

Hy = Ey (20)

and the operator equation (2), where H is given in Eq. (1), are invariant in the position
space under the following gauge transformation:

w(q) > ¥'(q) = " Py(g),

. . d
A(q, p) = A'(q, p) = €D A(q, pye” @ — —:-@ . (21)
q
This follows from the relations
e p+gA(g, p)]yw(a) = [p+24'(4. DIV (@ (22»
and
e 9[q, A(q, p)]e” **? = [q, A'(4, p)]- (23

In order to satisfy the condition (3) in the new gauge (21) it is enough to require that
a(—gq) = «g).

It may be worth while to note that the same energy spectrum as given in Eq. (18)
holds also for the “reciprocal” quantum-mechanical model, where [5]

1 Aw
H=mo+ —p+ ——[q+gB(q,p)] ——2~ @y
ilp, B(q, p)] = gl(H—my) )
and
B(—q, —p) = —B(q, p). 3

In this case the pseudo-anmihilation and -creation operators, now of the form

“ Lo 2170 (g +gBla, pI 5
=5 —— w ) T —=== !
at J2 q+8o4,p \/ TS p Sy
lead to the same formulae as before: (6) and (7) as well as (9) and (10) (where A? is given
by Eq. (11)). Hence the same energy spectrum (18).
Finally, we should like to remark that the operators g = g and p = p+gA(q, p)
in the original model and the operators ¢ = g+gB(g, p) and P = p in the “reciprocal™
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model satisfy the commutation relation of the same form

l9, ] = il +g*(H-my)), 29

where H is given by Eq. (1) and Eq. (1'), respectively. The noncanonical commutation
relation of the type (24) was considered by Saavedra and Ultreras [6] who made the bold
copjecture that at small distances the usual Heisenberg canonical commutation relation
[g, p] = i should be thus modified {7]. This might be an approach alternative to that of
postulating the novel kind of self-coupling as introduced in hamiltonian (1) or, eventually,
the novel “reciprocal” self-coupling as introduced in hamiltonian (1’).
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