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Isoscalar and isovector giant resonances in doubly magic nuclei are studied in a relativ-
istic meson-baryon field theory. Time-dependent oscillations about static ground-state
configurations are described by linearized equations of motion. Coulomb effects are included.
Variational estimates of the solutions to these equations are obtained using relativistic
Hartree results to define the equilibrium densities. Energies and transition densities are found
for the lowest-lying collective modes, and the systematic dependence of the energies on baryon
number is examined.
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1. Introduction

To overcome some of the limitations of conventional nuclear structure theory at
nuclear and higher densities, a model relativistic quantum field theory has been developed
[1]. In this theory, nucleon-nucleon interactions are described by meson exchange rather
than static two-body potentials. The constraints of Lorentz covariance, causality, and
retardation are incorporated naturally, providing a more complete and satisfactory descrip-
tion of nuclei. Furthermore, the recent success of relativistic calculations of medium-
-energy nucleon-nucleus scattering [2] gives new evidence that relativistic effects in ordinary
nuclei cannot be neglected.

The original model of Walecka [1] consists of a nucleon field v, a neutral scalar
meson field ¢ coupled to the scalar density Py, and a neutral vector meson field ¥V, coupled
to the conserved baryon current $y*y. The model has been extended to include photons,
pions, and rho mesons using a renormalizable lagrangian density [3]. This provides
a consistent calculational framework in which to do nuclear structure physics. The ground
states of doubly magic nuclei have been studied in the self-consistent Hartree approxima-
tion to the extended model [4]. Calculated charge densities, neutron densities, rms radii
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and single-particle energy levels throughout the periodic table agree with experiment
at the level of the most sophisticated nonrelativistic calculations to date.

Since the relativistic theory successfully describes ground-state and single-particie
properties of nuclei, it is of interest to examine its predictions for excited states. Walecka
and Horowitz [5, 6] investigated collective excitations in a relativistic mean-field model,
using ground-state densities calculated in the Thomas-Fermi approximation. Coliective
modes were introduced by allowing the mean fields and nucleon densities to acquire
a slow time dependence. These modes are expected to describe the main features of nuclear
giant resonances. Isoscalar and isovector modes were studied for a model nucleus (baryon
number 4 = 67.19) with equal numbers of neutrons N and protons Z, and Coulomb
effects were neglected. Reasonable excitation energies and transition densities were
obtained for the lowest-lying modes.

In this paper, we extend the procedure of Refs. [5] and [6] to real nuclei and examine
the collective modes of excitation. We use self-consistent relativistic Hartree densities
[4], which provide a more realistic description of ground-state properties than Thomas-
-Fermi densities. Nuclei with N 3 Z are considered, in which there is only an approximate
separation of the collective motion into isosczlar and isovector components. We also
include Coulomb corrections. The model parameters are taken from the ground-state
calculations of Ref. [4], and no new parameters are introduced to describe the excited
states.

In Sects. 2 and 3, we review the formalism developed by Walecka and Horowitz
and extend it to include Coulomb effects. One begins by defining a collective variable
to describe the local (irrotational) velocity of the nuclear fluid. The nucleon motion modifies
the source terms in the meson field equations producing corresponding time-dependent
changes in the condensed meson fields. Since the nucleon dynamics is in turn specified
by the meson fields, collective modes of nuclear motion arise naturally in this approach.
An energy functional is introduced that, when minimized subject to appropriate constraints,
reproduces the linearized equations of motion for the meson fields and local hydrodynamic
velocities of the nucleons. Previous work [6] shows that variational estimates based on
this energy functional are sufficient for studying the properties of the collective modes
to an accuracy of 10-209;. The simplicity of the variational approach (as compared with
solving the full set of coupled hydrodynamic equations) allows us to examine the systema-
tics of these modes throughout the periodic table. Estimates for the energies of isovector
and isoscalar modes in doubly magic nuclei (*°Ca, #8Ca, °°Zr, and 2°5Pb) are summarized
in Table IT and Figs. 2-4. The systematics of the excitation energies are examined and
compared to experimental data on giant resonances in Figs. 5-7. Finally, the transition
densities are compared with other (nonrelativistic) calculations in Sect. 5.

We find that the systematics of the giant dipole (1-) resonance are accurately reproduc-
ed in this simple model, and the excitation energies are within 209 of experiment with
no adjustment of the parameters determined from ground-state properties. The systematics
of the other resonances with respect to nucleon number A4 are also reasonable, and the
energies of the isoscalar quadrupole (2+) and octupole (3~) resonances differ from experi-
mental values by approximately 209;.
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This paper has three main goals. First, as pointed out in Refs. [5] and [6], the nuclear
ground states in this relativistic formalism are described with an interaction that produces
Lorentz scalar and four-vector ccmponents of approximately several hundred MeV in the
nucleon Dirac equation. Delicate cancellations arise between these ccmponents in the
description of certain static properties, for example, the nuclear binding energy. It is
therefore not obvious that small deviaticns in these components will result in reasonable
collective-mode energies on the order of tens of MeV. In fact, we find that small oscillations
about the static configurations have a reasonable spectrum, and at least with our approxima-
tions, no new relativistic effects enter beyond those contained in the ground-state calcula-
tions.

Second, the parameters used to describe the ground states are determined primarily
from the bulk properties of finite nuclei. The single-particle interaction is extremely simple
(it contains only four adjusted parameters), and it leads naturally to a shell-model spectrum
for the single-particle levels [4]. Our results show that the same interaction produces
reasonable collective-mode spectra, without any further adjustment of parameters.

Finally, since the present approach is based on simple, time-dependent mean fields,
it is of interest to study the systematic dependence of the mode energies on the baryon
number. This is most easily done with a variational calculaticn. Given the success of our
variational results in reproducing these systematics, it is clear that a more detailed study
of collective modes in a relativistic fremework is needed. This may be done by extending
the familiar techniques of the Tamm-Dznccff and rendcm-phase approximations, as we
describe briefly in Sect. 6.

2. Linearized equations of motion

We describe the nuclear moticn by introducing locel, irrotaticnal velocity fields
v, = —Vy,(x, t) and v, = —Vy,(x, ) for protons and neutrons, respectively. (Departures
from irrotational flow are corrections to our approach end have been discussed by Serr,
Bertsch, and others [7]). The local hydrodynamic moticn ¢f the nucleons changes the
sources that determine the classical mescn fields. By allcwing the fields to develep a time
dependence, we may then look for departures frcm the static field ccnfiguraticns that
oscillate with a well-defined frequency. Since the nucleon dynemics is in turn determined
by the meson fields, collective moticn cf the nuclecns throughout the nucleus arises natu-
rally in response to the oscillating fields. The nucleon motion is locally incoherent (describ-
ed by the hydrodynamic velocity) but globally coherent due to the time-dependent
meson fields. It is therefore reascnable that this picture will provide an approximate
description of giant resonances in nuclei. '

In nonrelativistic hydrodynamic ¢pproaches to giant rescnences [8-10], which are
known to have limited success, no time dependence is introduced into the nucleon-nucleon
- interaction. More refined approximations (such as the rencdom-phase 2pproximation
(RPA))must be used to include such time dependence. In the present e pproach, the nucleon-
-nucleon interaction is instead mediated by dynamical mesons, énd time dependence
arises naturally in response to the local hydrodynamic nuclear motion. Thus, the excita-~
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tions described here are mor the result of collision-based equilibrium (“first sound”);
they are instead composed of long-range coherent oscillations of the local Fermi surface
(“zero sound”’) brought about by the changing meson fields.

As in Refs. [5] and [6], Bernoulli’s equation relates y, and v, to appropriate chemical
potentials y, and p,. Our chemical potentials differ from those of Walecka and Horowitz
only by the addition of a Coulomb term:

lip = gvVO +‘%‘ gobO + EAO +(k%p +M*2)1/2’
o = 8Vo—% gobo+(k, +M**)!/2, ¢y

Here M* = M—g. ¢, defines the nucleon effective mass in terms of the nucleon mass M.
The scalar, vector, and rho meson coupling constants are denoted by g, g,, and g,; and
@, V5, and b, are the corresponding meson fields. The Coulomb potential is 4,, and
a« = e*[4n ~ 1/137. The proton (neutron) Fermi wavenumber is kg (k) and is specified
in this model by n,, , = k?:pm/?ﬂz2 with n,(n,) the proton (neutron) density. We use the units
h = ¢ = 1 throughout.

The values of the input constants are given in Table I and are those used in the relativ-
istic Hartree calculations of the nuclear ground states [4]. The three couplings g, 8., &,
and the scalar meson mass m are determined by the saturation properties of infinite

TABLE 1
Model parameters
Field Meson JT Mass (MeV) g* C? = g (M¥m?)
¢ 4 00 520 109.626 357.47
Vu w 10 783 190.431 273.87
by I3 1-1 770 65.226 97.00

The parameters are determined from bulk nuclear ground-state properties as discussed in Ref. [4].
The nucleon mass is taken to be M = 939 MeV.

nuclear matter and the rms charge radius in “°Ca; the resulting Hartree calculations
provide a good description of the static properties of doubly magic nuclei. The parameters
are not changed in this work and no new parameters are introduced to describe the
collective oscillations.

The hydrodynamic equations used here are identical to those in Refs. [5] and [6],

except that the Coulomb field is included. The nuclear motion is described by Bernoulli’s
equation:

_ %
ot

3
+1 (V) + —Mi =0, (29)
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and two continuity conditions:

on

—é—t‘—’ -V - (n,Vy,) =0, (3a)
5
a’:“ ~V - (n,V9,) = O. (3b)

The meson fields are specified by the local baryon sources:

(aua“'l'm?)VO = gv("p+nn)’ (43)
(aua“'i'm:)bo = ';— gq("p_nn)’ (4b)

ka an

2 M*dk
2 —
(6“6“+ms)¢0 = gsm J + f (_-——~k2+M*2)1/2 . (40)
] V]
In the Coulomb gauge, the potential 4, is determined by Poisson’s equation

—V34, = en,,. (%)

The static solutions to these equations reproduce the Thomas-Fermi results of Ref. [11),
although in the present calculations, the ground-state densities are taken from the Hartree
results. This is discussed in detail below.

To describe the collective oscillations, the boson fields and baryon densities are
written as the sum of a static (ground-state) contribution plus a small, time-dependent
increment, and we linearize Eqs. (1)—(5) about the equilibrium static solution. We then
look for normal-mode excitations with harmonic time dependence, so that the increments
take the form of the real parts of {idy,, i5y,, dn,, Oy, 8o, 8V, 8bo, 54, e™ . All quanti-
ties in braces are functions of the coordinate x.

The equations are simplified by assuming that the collective modes have much lower
energy than the meson masses: w? < m?, mZ, mZ, which is clearly a good approximation
for giant resonances (o0 < 40 MeV < m, =~ 500 MeV). We also assume that the baryon
density does not vary significantly over the Compton wavelength of the omega and rho
mesons. This approximation is not essential, but it simplifies the calculations considerably.
When this approximation was relaxed in several test cases, the quantitative results were
changed by less than 59, and the systematic 4 dependences discussed in Sect. 3 were
virtually unchanged.

The preceding approximation reduces Eqs. (4a) and (4b) to

5Vo = 2% (Smpn),  Obg = &L (n,—5n,). ©)
m, my

Linearization of the other equations and substitution of (6) yields coupled eigenvalue
equations in six unknowns:
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Bernoulli’s equations:

2

M* n?
Mowéy, = L2 (on,+6n,)+1 B Lo (on,—on)+ —— SM*+ ——— o, +eddy,
my Q £Fp €F,KF,
g 1 g * n?
Mody, = = (6n,+6n,)— — == (dn,—dn,)+ SM*+ on,, )
my 4 my Fa erKE,
two continuity equations:

V- (n,Véy,) = —wdn,,
V- -(n,Véy,) = —wdn,, &)

a scalar field equation:

K*d*k 5n on
SM* = gZM* 71, 9
(2) f j ik & ( " spn> ©)

and a linearized Poisson’s equaticn:

Vi—m?—g?

V354, = —edn,. (10)

Here ¢ (ka _+M*2)12 and ke, kg,, and M* are determined from the equilibrium
ground-state solution.

In deriving these results, contributions to the energy of order (v/c)? have been neglected
in transforming from the rest frame of the nuclear fluid to the laboratory frame and by
omitting the three-vector parts cf the mesen fields (as well as the electromagnetic vector
potential A). This is reasonable in view of the relatively low frequencies of the desired
solutions. Equations (7)—~(10) reduce to the results of Horowitz and Walecka [6] in the
limit of « = 0, N = Z, and equal ground-state densitics for the neutrons and protons.
The simplicity of this limit previously allowed exact numerical solution of these equations
for the isovector case, in which the neutrons and protons oscillate against each other.
The added complexity of the general case (corresponding to real nuclei) makes an exact
numerical integration of the present equations more difficult. We therefore utilize the
variational method described below.

3. Variational calculation

To estimate the eigenvalue of the lowest-energy mode with given angular momentum
l, we use a variational approach [5]. This is preferable to a direct numericzl integration
of Eqs. (7)-(10) for several reasons. First, the coupled differential equations are difficult
to solve numerically when N # Z and o # 0, as there is no exact separation into iscscalar
and isovector modes. Second, since the hydrodynamic description of nuclear motion
breaks down in the low-density region outside the nuclear surface, there are difficulties
in defining the proper boundary conditions when realistic (¢xponentially decaying) ground-
-state densities are used. Finally, litte is sacrificed in the variational approach if we are
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interested in the lowest-lying modes. In the N = Z limit, where exact solutions have
been obtained for the isovector modes [6], variational estimates give the eigenvalues to
within 5%. These solutions, together with other theoretical analyses (the phenomenolog-
ical Tassie model [12], nonrelativistic RPA calculations, and fluid-dynamical models
18, 9)), allow us to construct simple yet realistic variational trial functions. By minimizing
the computational effort, we can easily examine a wide variety of results to test the underly-
ing physics and to determine if microscopic relativistic TDA or RPA calculations of excited
states are warranted in the present model.
We therefore consider the minimization of the energy functional

E[dv,, 6%,, On,, On,, SM*, 84,] = t[dy,, v,]+v[dn,, dn,, SM*, 54,], ayn
where
t= M [ dx % [n,(Voy,)* +n,(Vop)], (12a)
g g2
v =fd3x L 2 (On,+6n,)* +1 = (5n —on,)?
2 2
me(2 Ona SM*+%n? oy, oM
er 8Fn kF EF Fp anan

kr

K*d’k 2
3 {(VoM*)*+ m+gs(2)3 f f i@y | OM)

+eSAoon,—5 (V8A4,) ¢, (12b)

subject to the conmstraint
M § d*x8yp dn,+M [ d*x5yp,0n, = 1. (13)

This functional reduces to the one used by Horowitz and Walecka [6] when « = 0. When
the constraint is incorporated with a Lagrange multiplier w, the Euler-Lagrange equations
resulting from (12) are precisely Eqs. (7)—(10). (One must also assume natural boundary
conditions nVy - 0 as |x| — o0 so that surface terms vanish.) By substituting the fields
that satisfy these equations into (12) and carrying out several partial integrations, we may
identify E with the eigenvalue w. Thus variational estimates of the lowest eigenvalues may
be obtained by minimizing E subject to the constraint.

Since E depends on six independent functions, a complete minimization is still quite
difficult. To simplify the calculation, we use the following procedures, Whlch are similar
to those in Ref. [5]:

1) Notice that the scale transformation dy — déy, on — d-6n, 54, — d-'8A4,,
and OM* — d-15M* leaves the constraint condition unchanged. Thus E can be minimized
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immediately with respect to d?. The result is
Epin = 2(tU)1/2, (14)

which implies that the best estimate for E is found by minimizing the geometric mean
of t and v. This is equivalent to minimizing E with respect to the relative normalizations
of the densities dn and velocity potentials dv.

2) Following Walecka [5], we introduce a variational ansatz for SM*:

OM* = —a(dn,+dn,). (15)

This assumes that on the average, the change in the scalar field is proportional to the change
in the baryon density. This is true in nuclear matter at long wavelengths, and holds approxi-
mately in finite nuclei if the effect of the gradient in Eq. (9) is not large. Using (15), we
may eliminate M* from the functional (11) and minimize directly with respect to the
parameter a.

3) For the velocity potentials dy, and ¢, describing a mode of angular momentum
1, we choose a spatial dependence proporticnal to x7Y,o(Q), where p is an (integer) variatio-
nal parameter. This is the same form used by Horowitz and Walecka and yields a gcod
approximation to the exact solutions for the velocity potentials found in Ref. [6]. Note
that if the nucleus were an incompressible liquid drop, the exact solutions for modes of
angular momentum / would behave as x', so we expect to find the variational value
Pmin = L

4) The relative sign of dy, and dy, is chosen according to the isospin character of
the mode. Isoscalar modes have neutrons and protons moving in phase, so we choose
6y, and Jy, to have the same sign. Neutrons and protons move 180° out of phase for
isovector modes, and we thus take dy, and dy, to have opposite signs. As discussed by
Sagawa and Holzwarth [13], giant resonances correspond to constrained motion of the
system, imposed by the external probe, rather than eigenmodes of excitation. The preceding
sign choice (as well as [0y,| = |6y,]) follows from the connection between the transition
operator and the velocity potential [10].

5) The density fluctuations dn, and dén, are given the same dependence on the radius
and an angular dependence of Y;4(2). For a given dn,, Poisson’s equation (10) is solved
exactly for 64,. After a partial integration, the Coulomb contribution to the energy functio-
nal reduces to

¢ J‘ Prdds’ on,(x)on,(x")

ECoul = J‘dsx ’;_ eéAO(x)anP(x) = % —4; Ix— x’|

(16)
We further simplify the variation by taking dm, = bon, and determine b variationally
from (12). This is a good approximation for all but the heaviest nuclei, where it may be
necessary to also scale the radial dependence, as discussed below. Inthe N = Zanda = 0
limit, direct minimization of (11) leads to b,;, = * 1, which is independent of the radial
form of én,,. This represents, of course, an exact factorization of the isoscalar and isovector
modes. In the general case, the variationally determined value of b is close to +1.
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The basic ansatz for the density fluctuations is taken to be [5, 6]

q
n, = C (1> (1— i) Yio(Q). on, = bon, an
Xo Xo

where ¢ is an integer variational parameter and x, is determined from the ground-state
density, as described shortly. This ansatz gives good agreement with the exact transition
densities found in Ref. [6]. The velocity potentials oy, and Oy, are written as
Sy = C(x/x,)"Y;o(€2), with a relative sign specified by the isospin character of the mode.
The increments in the Coulomb potential and effective mass are eliminated from E using
Egs. (15) and (16), the normalization constant C is eliminated using (13), and the resulting
functional is minimized directly with respect to a. The energy functional then depends
explicitly only on the ground-state nuclear densities, the variational parameters p and
g describing the proton fluctuations, and the neutron/proton scale parameter b. These
are determined numerically by minimizing the geometric mean of ¢ and » (se¢ Eq. (14)).
Note that the conservation of protcns implies | d®xén, = 0, which is automatically satisfied
for / > 0. For monopole (/ = 0) modes, we replace (x/xo)? with (x/x,)?—¢ and choose
¢ to satisfy proton conservaticn.

One of the important features of the present investigation is the use of ground-state
densities determined from relativistic Hartree calculaticns. This allows for a more accurate
description of the nuclear interior :nd surface than in the Thomas-Fermi approach.
Nevertheless, the Hartree densities have expcmentially decaying tails at large radii,
and the linearized hydrodynamic equations break down in this region. It is thus necessary
to impose a cutoff radius x, on the variational trial functions and consequently in the
integrals determining the energy functional. Since the dynamics of the coliective modes
is determined primarily by the nuclear suiface, variaticnal results should be insensitive
to the cutoff, as long as it is chosen sufficiently far into the tail region. The quantitative
effects of the cutoff are casily investigated by performing calculations for a range of
reasonable values of x, (see the discussion in Sect. 4).

In physical terms, imposing a cutcff radius implies that only the particles in the nuclear
core are accurately described by the hydrodynamic approximation. Thur, oscillations
of the core are studied in the present approach. The least-tightly-bound nucleons contribute
significantly to the nuclear tail, and their effects may be incorporated using a core-plus-
-valence model, as in Ref. [14). (We have verified that the total number of nucleons outside
of the cutoff x, is < 1in celcium and < 3 in lead.) Alternatively, one can define a com-
pletely consistent dynamics using either a time-dependent Hartree approximation or an
extended (nonlinear) version of the hycrodynamic equaticns. These approaches are beyond
the scope of this initial investigation, but offer fruitful areas for future study.

To choose the cutoff x,, the relations for the chemical potentials (1) are inverted
using the staiic Hartree mean ficlds to determine “local” Fermi wavenumbers kg (x)
and kg _(x). This defines local proton and neutron densities that are similar to those in the
Thomas-Fermi case. The chemical potentials u, and p, are chcsen so that the volume
integrals of these local densities reproduce the proper number of protons and neutrons.
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The local densities are found to be nearly identical to exact Thomas-Fermi results in the
nuclear surface, in cases where the latter have been calculated [11]. Moreover, the approxi-
mate local densities vanish at radii close to those obtained in the Thomas-Fermi calcula-
tions (see Fig. 1), and these radii are used to define reasonable ranges for x,. The values
of x, determined in this fashion are used to specify the variational trial functions and also
to truncate the integrals over Hartree densities needed in the evaluation of (12).

O.15
m 0.0 208pp
,.E_ =
"’m B —— HARTREE
Q | --- THOMAS - FERMI
005 | " LOCAL -DENSITY
-
Obxlxxlillllnnnnf ; I
0 2 a 6 T8 T 10

r (fm)

Fig. 1. Ground-state baryon density of *°®Pb. Relativistic Hartree results [4] are indicated by the solid
curve, and the Thomas-Fermi calculations [11] are denoted by the dashed curve. The dotted curve is the
local density found by inverting the chemical potentials as described in Sect. 3. The three arrows show
several choices of cutoff radii. The central arrow gives the average of neutron and proton cutoffs for 2°5Pb
{xy = L(xep+xon) = 8.35 fm], which was used to calculate the resuits in Table I and Fig. 4. The other
two arrows show the minimum and maximum cutoff radii used to study the sensitivity of variational results

The sensitivity of the variational results was tested by varying the cutoff radii over
a reasonable range and also by allowing different cutoffs x,, and x,, for neutrons and
protons in Eq. (17). (This introduces a scaling of the radial dependence in the proton
and neutron trial functions.) Detailed results will be discussed in the next section. As
a further check, an alternative density trial function of the form

on, = Cxt 2y (@), on, = bCxT O Yo (2) a8
p dx o a 2% o )

was used. This is a generalization of the Tassie model result [12], where n ~ x'~!(dn/dx)
x Y;0(2). Wethus expect to find ¢,,;, ® /—1 for isoscalar modes. Since the relative magni-
tude of the neutron and proton fluctuations is built into the ansatz, we also expect |b,;,!
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to be close to unity. For monopole modes, we used

dn
on, = Cx** [x ECE +(q+2)n,,J Yo(92),

dn,
én, = bCx?"! [x :{% +(q +2)n,,] Y0(9Q), 19

to automatically satisfy [d®xdnm = 0. Recent fluid dynamical calculations of collective
modes show good agreement between Tassie model predictions and more elaborate
calculations of transition densities [15]. When this alternative ansatz was used with the
model nucleus of Refs. [5] and [6], the variational energies were modified by less than
19%. For the present calculations with Hartree densities, a cutoff must again be imposed,
but variational estimates were found to be relatively insensitive to the precise value of x,.

4. Results and discussion

Energies of the lowest-lying isoscalar and isovector modes for 0 <</ < 4 were found
for 4°Ca, #8Ca, 9°Zr, and 2°®Pb using the ground-state Hartree densities of Ref. [4].
A summary of results is given in Table I, and representative energy spectra are compared
with experiment in Figs. 2-4. The systematic A dependence of the eigenvalues is illustrated
in Figs. 5-7, where we plot excitation energy times A3 as a function of the baryon number.
These results were calculated with the trial function of Eq. (17) and equal cutoff radii for
neutrons and protons. The cutoff radius was determined by inverting Egs. (1) as described
in Section 3 and averaging the values obtained for neutrons and protons: xo = 3(Xop+ Xo,)-
Theoretical error bars indicate changes obtained when the cutoffs are varied about the
values determined from this procedure and when different cutoffs are used for protons
and neutrons. The sensitivity of the energies to these variations is discussed below.

TABLE II
Variational collective mode energies (in MeV)

40Ca 48Ca 9°Zr 208Pb

Isoscalar /=0 474 44.6 38.7 28.1
2 21.5 20.1 16.9 11.8

3 30.9 28.1 23.8 16.3

4 39.9 36.4 30.5 20.8

Isovector /=0 349 339 322 27.2
1 17.2 16.8 15.1 12.3

2 234 229 21.1 17.6

3 27.8 26.9 25.4 21.5

4 31.6 30.5 289 24.7

Variational estimates of eigenvalues for the lowest mode with a given angular momentum /. The
trial function in Eq. (17) was used with equal proton and neutron cutoffs.
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Giant resonances of several muliipolarities are observed in most medium and heavy
nuclei. The experimental energies [16] follow systematic trends that are indicated in Figs.
5-7. The A dependence of the variational results is similar to experimental values, and
the eigenvalues agree with experiment to within approximately 20 % for all but the isoscalar
monopole. Reasonable variations in the cutoff radii may change the absolute energies
by +109 but do not appreciably modify the systematic trends.

S0
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35+ ot ———
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3 33—
= 25 +
< + ot
w —_— -
20 |- 2 —
——— 2+ ‘— n———
-0 o
10~
0 —
VAR. EXPT. VAR. EXPT.
1SOSCALAR ISOVECTOR

Fig. 2. Energy spectrum of collective modes for *°Ca. Variational estimates are from Table II and experi-
mental levels are from Ref. [16]. Experimental uncertainties are indicated by shading
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Fig. 3. Same as Fig. 2 for %9Zr
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The qualitative agreement of the present calculations with experimental systematics
is an important result. As Bertsch [10] and others [15, 17] have noted, nonrelativistic
hydrodynamic models predict incorrect systematics — for example, isoscalar quadrupole
excitation energies that scale as 4-1/2. Evidently, the collective modes found here are not
simply the surface oscillations of an incompressible liquid drop [18]. Despite the simplicity
of our approach, a significant part of the underlying dynamics is retained through the
interaction of the nucleons with the oscillating meson fields.

50 ¢~
asr 208p;,
40 |-
35
30~
ey ot— o*
S st at—
- . . — 2+
4 -
°r N
- \ 27
i1sf- 3 . -
+ o () - —
(]
VAR. EXPT. VAR. EXPT.
ISOSCALAR ISOVECTOR

Fig. 4. Same as Fig. 2 for 2°®Pb

The systematics of the isovector dipole excitation are in good agreement with the
data, with variational eigenvalue lying 10-20 9, below experimental results. The isoscalar
energies scale approximately as 4'/3, with the quadrupole results about 15% higher than
experiment and the octupole energies slightly lower than the data. We again remark
that the small number of input parameters are determined from static nuclear matter
properties; no new parameters were introduced to improve the present dynamical cal-
culations.

The isoscalar monopole excitation is a compressional mode, and its energy is related
to the compressibility of nuclear matter [19]. As previously noted [4], the compressibility
in the current model is too high by about a factor of two, and consequently, the calculated
monopole energies are significantly greater than experimental values.

In general, we find that the calculated isovector levels are lower than experiment,
while the isoscalar results lie higher. The calculated isospin splittings for the quadrupole
mode are therefore substantially less than those observed in real nuclei. There are two
distinct reasons for this discrepancy. First, the oscillation of the local effective mass M*(r)
in isoscalar modes leads to a sensitive cancellation between the repulsive (én)? and (6M*)?
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terms and the attractive cross term éndM* in the potential energy functional v (see Eq.
{12b)). The variational ansatz for this oscillation (Eq. (15)) and the truncated Hartree
ground-state densities reproduce this cancellation only approximately. This has been
verified by evaluating the variational energy of the (spurious) isoscalar dipole mode,
which occurs at 5to 10 MéV (rather than at zero energy). Thus the isoscalar mode energies
are overestimated by similar amounts. ‘
In contrast, the isovector modes involve almost no change in the local effective mass,
since the neutron and proton densitics oscillate essentially out of phase [6]. The underesti-
mation of the isovector energies may thercfore be related to the symmetry energy. In the
static solutions, the proper symmetry energy can be obtained by choosing the rho meson
coupling appropriately [4]. It is known, however, that a significant contribution to the
symmetry energy of nuclear matter arises from exchange contributions that are neglected
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in the present formalism [20]. These additional contributions may be required to achieve
a correct symmetry energy for the dynamical modes. Both of the preceding features
in our simple approach are expected to improve in more sophisticated calculations.

If we compare the results for the model nucleus (4 = 67.19) of Refs. [5] and [6] to
the systematic trends by scaling with appropriate factors of 4'/3, we find similar results
for the isovector modes. The isoscalar levels, however, are considerably higher (up to
50%) in the present calculations. This can be attributed primarily to the different meson
masses and coupling constants. The net potential energy contributions of the scalar

28

)

n
H

T TTTTTTTTTTT

EXCITATION ENERGY (MeV)
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Fig. 8. Excitation energy for quadrupole modes in °°Zr as a function of neutron/proton scale parameter b.

The variational parameters p = 2 and ¢ = 4 are held fixed. The dots mark the values of b at the local minima

in the energy functional. (These p and ¢ values are chosen for illustration and do not lead to the absolute
minimum energies for these modes.)

and vector meson field fluctuations (see Eq. (12b)) are determined by these values. The
constants in the present case accurately predict the static properties of real nuclei.

Turning now to the effect of the Coulomb potential, we find that the incremental
Coulomb energy is small compared to the other contributions. Even in lead, it contributes
only a few percent of the total potential energy v in Eq. (12). Although the effect of the
Coulomb potential on individual isoscalar and isovector modes is difficult to determine
quantitatively, setting o to zero leads to only small modifications in the results presented
above.

As expected, the magnitude of the variationpal parameter b, which determines the
relative normalization of neutron and proton fluctuations, is approximately equal to
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unity for light nuclei (N = Z) and between unity and N/Z for the others!. In Fig. 8, an
example of the excitation energy as a function of b (for fixed p and ¢) illustrates the distinct
isoscalar (b > 0) and isovector (b < 0) minima.

Finally, we consider changes in the eigenvalues when the cutoff radii and variational
trial functions are varied. For equal neutron and proton cutoffs, energies of the lower
multipoles change by 10-15% for reasonable variations (approximately +3 fm in lead
and +%fm in calcium), with isoscalar energies more sensitive than isovector energies
because of the sensitive cancellations involved in the former. The isovector dipole modes
are the least sensitive to the cutoff radius. Similar results are obtained when different
proton and neutron cutoffs are used. The higher multipoles are more sharply peaked at
the nuclear surface and are consequently more sensitive to the cutoff values. We remark
that although calculations based on Thomas-Fermi ground-state densities have a well-
-defined cutoff radius, there is similar sensitivity to the precise location of the nuclear
edge. Calculations were also carried out with the altemative trial function of Eqgs. (18)
and (19). Energy eigenvalues agreed with those of the basic ansatz (17) to within 109,
.and the minimized transition densities had similar shapes. The p and g values for the
isoscalar modes agreed with those predicted in the Tassie model, namely, p,;. ~ [ and
9min ~ I-1.

5. Inelastic electron scattering

Normalized transition densities are needed to describe inelastic electron-nucleus
scattering [18, 21]. Since we work with linearized field equations, the normalizations are
not determined by the preceding formalism. To specify the correct normalization for the
collective modes, we follow a procedure analogous to that in Ref. [6].

First, a hamiltonian describing the collective dynamics is derived by eliminating
meson and neutron degrees of freedom using the variational simplifications described
in Sect. 3. The dynamics is then completely specified by dn, and dy,, and the system is
quantized by interpreting these as operators with canonical commutation relations.
Finally, we equate the hamiltonian H (which is a functional of dn, and dvy,) to the
normal-mode expression

H =Y w,}(ala,+a,al). (20)

This procedure fixes the normalization of the transition density.

We begin with the lagrangian density %, given in Eq. (31) of Ref. [6]. This describes
(in lowest order) the dynamics of the collective modes in this model. The Euler-Lagrange
equations resulting from 2, are the linear equations of motion presented in Sect. 2, and,
for simplicity, Coulomb terms are neglected here (their contribution is not significant).
The vector meson fields ¥, and 6b, are eliminated in favor of dn, and on, using Eq. (6).
OM* is replaced using Eq. (15), where we consider the parameter a to be determined

1 This is for equal proton and neutron cutoffs. Otherwise an overall scaling factor is included in
b, as is clear from Eq. (17).
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from the variational calculation. The neutron fluctuations are similarly replaced by proton
fluctuations according to on, = bén, and oy, = séy,, where b is determined from the
variational results and s = 1 is specified by the isospin character of the mode. (All results
in this section are for equal neutron and proton cutoff radii.)

The result is a lagrangian density &,, which is quadratic in én, and oy,:

_ 1+|b))? o5y
, = — (__2M2) W(x)dn2 + M < (1+|b])on, at" —3 [, +62n,] (Vo) ¢+, (21)
where
W(x) = (C3(1+b)2+%; CY(1—b)*—~aM*M?*(1+b) (—1- + i)
&Fp  EFa
2 2 1 b2 -2
+M*? | —— + (1 +1b)) (22)
erka“; I anan
and

Ci = gi(M?*|m}).

This provides an approximate description of the collective motion, in that the meson
and neutron fluctuations are related to the proton fluctuations in the same manner as in
the variational calculations of Sect. 3. The proton fluctuations satisfy the Euler-Lagrange
equations

W) (1+1b
Moy, = TEALE) -
M
V- [(n,+b’n)Voyp,] = —a(1+|b))dn,,. (24)
The corresponding hamiltonian density #, follows immediately from (21):
— 1+’
#r= W(x)on2 +% M[n,+b’n,] (Véy,)’, (25)
and the hamiltonian is simply the volume integral of #,
— 1+b[)?
H= J dPx# = fdax (( 21\l42[) W(x)on}+% M[n,+b’n,] (V&pp)z). (26)

Proceeding as in Ref. [6], we expand the proton density fluctuation and velocity potential
in normal-mode solutions of the Euler-Lagrange equations (23) and (24). In the Schrédin-
ger representation, we find the time-independent ficld operators dn, and dvy,:

on, = /1 21: [(0n)n Yindpim +h.c.],

51/)p =i \/% ; [(5wp)nlnma‘n1m~ h.C.], (27)
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where [dym, 45m] = 1. (All other commutators are zero.) The hermitian conjugates (h.c.)
are added to make the increments real. The Euler-Lagrange equations (23) and (24) may
be combined to yield (7 = n,+bn,)

Sy '+ (—2—: +h") Oy n— l(lx%l) A(dy,) = W , (28)
which is of Sturm-Liouville form and implies
(O = By i,
W(x) M oy
§ W(x) Bn)ii(0ny)ux’dx = 8w M*(1+|b])"2. 29

It is easily verified that when substituted into (26), the normal-mode expansions and normal-
ization conditions lead to (20).

In Fig. 9, normalized proton transition densities are shown for isovector modes
in lead. Transition densities for the lighter nuclei are similar. Note that as the multipolarity
! is increased, the peak in the density moves to larger radii, as expected. In Fig. 10, the
proton transition density for the isoscalar quadrupole excitation in 2°®Pb is compared
with the corresponding result of a nonrelativistic RPA calculation [9].

To describe inelastic electron scattering, we use the plane-wave Born approximation
(PWBA) [18, 21]. For quantitative comparison with experimental data, theoretical form

0.008

0.002

™ T T 1T 7T T T 1T ] T T 1

0

r (fm)

Fig. 9. Proton transition densities for isovector modes in 2°®Pb, The variational trial functions are from
Eq. (17) and are normalized as described in Sect. 5
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is the normalized variational result. The dotdash line is a nonrelativistic RPA calculation of the surface
oscillation contribution that dominates the 2+ state

factors are usually calculated in the distorted-wave Born approximation (DWBA), partic-
ularly for heavy nuclei [22]. Since the present approach has uncertainties at the 10-209,
level, the PWBA analysis is sufficient and more transparent. This simplification also
allows us to use the formalism in Ref. [6], and we merely quote relevant results.
The Coulomb form factor for an excitation of an isolated state |nL) is given by

xo
2L+1

2
fia) = — L[ dxx2(5np(X))..Lh(qx)] , (30)
0

where, for simplicity, we consider only the transition charge density arising from point
protons. It is straightforward to include the proton charge form factor, as discussed in
Ref. [4). For the transverse form factor, we include only the convective contributions
of the protons, with the result

Xo
dn

1 2
f1(9) = LIL+1) RL+1) Y [ j dxx(dp(X)ar <—P) jL(qx)] . €Y
q dx
(1]

Representative results are shown in Figs. 11 through 14.
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The lowest state of each multipolarity exhausts a large fraction of the corresponding
energy-weighted sum rule [9]. For example, the dipole states in 4°Ca, *8Ca, °°Zr, and
208ph exhaust 99%, 85%, 859%, and 65%;, respectively, of the Thomas-Reiche-Kuhn
sum rule. This reflects the highly collective nature of these modes.

6. Summary

We have described isovector and isoscalar collective modes in a relativistic mean-
-field theory by adding small time-dependent fluctuations to the ground-state meson
fields and nucleon densities. Local hydrodynamic variables were introduced to describe
the nucleon fluids, and the equations of motion were linearized about the static configura-
tions. Variational estimates to the solutions of these equations were obtained using relativ-
istic Hartree results to define the equilibrium densities. Energies and transition densities
were found for the lowest-lying collective modes in the doubly magic nuclei 4°Ca, 48Ca,
907Zr, and 298Pb,

One key feature of the present approach is its simplicity. With parameters determined
completely from the bulk properties of the static solutions, reasonable results were predicted
for the excited states. The calculation is self-consistent in this sense and leads to the
important conclusion that the large Lorentz scalar and vector components responsible
Jor the ground-state properties are also compatible with collective nuclear excitations.
Because the mesons mediating the nucleon-nucleon interaction are inherently dynamical,
time-dependent oscillations of the nucleus arise in a very simple and transparent manner.
In addition, the use of a simple variational principle to describe the motion allows for
systematics to be examined with a minimum of computational effort.

The main limitations of the present approach are discussed in detail by Horowitz
and Walecka [6]. The use of local hydrodynamic variables, the assumption of irrotational
flow, the linearization of the field equations, the limit of large masses for the vector mesons,
and the variational method are all of limited accuracy. Nevertheless, this simple frame-
work describes collective modes that display the qualitative features of giant resonances
and follow the experimental systematics very reasonably. Thus a more sophisticated
calculation has the promise of yielding accurate quantitative predictions.

There are two alternative directions in which to improve the present calculations.
It may be feasible to extend the hydrodynamical description to include higher-order
corrections and thus be more compatible with the exponential decay of the Hartree
ground-state densities at large radii. Several nonrelativistic fluid-aynamical formalisms
have recently been developed and have had some success in describing giant resonances
[15, 17]). While this approach is computationally simpler than a true microscopic calcula-
tion, it has not been useful for describing detailed quantitative features of the excita-
tions [8].

Alternatively, since the relativistic Hartree approximation successfully describes
the ground state, a microscopic TDA or RPA calculation based on the resulting nucleon-
-nucleon interaction may be accurate. Nonrelativistic RPA calculations have been suc-
cessful in predictions of centroid energies, transition probabilities, and reaction cross
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sections, and one has the advantage of obtaining a more complete spectrum of the low-
-lying excitations [8, 9]. In many of these calculations, however, the residual nucleon-
-nucleon interaction is adjusted to reproduce some empirical properties of excited states.
One benefit of the present approach is that an interaction determined entirely from ground-
-state properties could be used. Work is currently in progress on this topic.

The authors are pleased to acknowledge useful discussions with Professors G. F.
Bertsch, C. J. Horowitz, and J. D. Walecka.
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