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An intrinsic time scale is naturally defined within stochastic gradient dynamical systems.
It should be interpreted as a *‘relaxation time” to a local potential minimum after the system
has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model
this time scale is of order of the age of the Universe,
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1. Introductory remarks

In the previous works [1, 2], random effects have been introduced to the Friedman-
-like evolution of the Universe, changing it into a stochastic process. It seems that there
is no realistic cosmology without probabilistic elements. Immense degree of extrapolation,
present in every cosmological research, may enlarge some instances of our “local lack
of knowledge” to the rank of an important “random factor”. Initial data, when known
with unavoidable measurement errors, inevitably lead to a non-deterministic behaviour.
Moreover, it is highly probable that quantum effects at Planck’s threshold impressed random
characteristics on all future evolution. Independently of this motivation, stochastic cosmo-
logical models form an interesting mathematical object worthwhile to be studied and
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developed. One of the most striking of its features is the fact that cosmological singularities,
being propetties of single phase trajectories and not properties of the entire phase space,
are stochastically irrelevant. The present work is aimed at studying another interesting
aspect of those stochastic world models which can be put into the form of gradient dynam-
ical systems. There is an intrinsic time scale naturally defined within such models which
can be interpreted as a “relaxation time” to a local potential minimum after the system
has been perturbed by a random fluctuation. We effectively complte this time scale for
both flat and non-flat Friedman cosmological models perturbed with a ‘“white noise’.
In the case of a simple flat model the intrinsic time scale can be expressed in terms of
fundamental physical constants, reproducing, in this way, one of the well known “large
number coincidences” between fundamental constants and the age of the universe. It
turns out that the intrinsic time scale is strictly connected with the structure of the phase
plane and with the so-called energy conditions.

In Sec. 2 we give necessary preliminaries of Friedman gradient dynamical systems.
In Sec. 3 we discuss their stochastic generalization with a special emphasis on two time
scales involved in the Fokker-Planck equation. In Sec. 4 the stochastic time scale is effec-
tively computed for Friedman-like world models filled with the perfect fluid. Sec. 5 con-
tains a short comment upon the obtained results.

2. Friedman’s cosmological models as gradient dynamical systems

As it is known (see, e.g. [3]), Friedman’s equation can be reduced to the form of the
dynamical system

. dH
H=— = ~H'-}(B+3p)+ 7
. dE E*+p
dt : E M

R
where H = z is the Hubble parameter, E = &!/2, ¢ being the energy density, p — pressure,
and A — the cosmological constant. The system has the first integial
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For the flat models (k = 0), system (1) can be given the form of a one-dimensional

gradient dynamical system
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with the potential function

H
V(H) =% 3 [E*(z)+ p(z, E(z))1dz. (4)
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For the perfect fluid with the ‘equation of state p = (y—1)s, 1 <y << 2, potential

(4) assumes the form
V(H) = } yH>*— % yAH+V, )]

Vo being a constant. More generally, after rescaling H = aH, where o2 = 21/(y-2),
system (1) for the perfect fluid is also a gradient dynamical system
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with the potential function
V(H, E) B> 32
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where ¥, is a constant. Potential function (5) is shown in Fig. 1. By using these functions
one can give a new classification of cosmological models (see [4]).
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Fig. 1. Potential functions for the flat cosmological models: with (a) 4 <0, (b) 4 =0, (c) 4 >0

3. Stochastic cosmological equations

Random effects influencing the evolution of the universe can be inciuded into the
cosmological scheme by the Friedman dynamical system (like that given by (3) or (6))

with a “white noise”
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where n; are “white noise corrections”, namely {n(2)> = 0 and (n{f), n(t+1)) = 206(z),
0 = const; i,j = 1, 2. Such world models were studied in {1, 2]. Their evolution is described
by the Fokker-Planck equation

2

5 P = V(PYV)+V(0P) ©®
determining the probability density (or density distribution) P corresponding to a given
potential V. D is here a diffusion constant (which for a process described by system (8)

opP
equals §). The stationary solution of the process s 0 can be easily found

P(x) = Nge V&P (10)

where N, is a normalization factor.

As analysed by Gilmore [5, 6], the first term, on the right-hand side of the Fokker-
-Planck equation (VPVV), the so-called transport term, describes a tendency for a probabil-
ity density function P to move towards the nearest local minimum of the potential function
V. The second term (V2(DP)), known as the diffusion term, expresses both a certain fuzzi-
ness of the potential centred around a local minimum, and a probability with which a sto-
chastic fluctuation can lead the system from a metastable state to a distant global mini-
mum. One can see, therefore, that two time scales are involved in any stochastic process
described by Fokker-Planck equation (9), namely: (a) a time scale T, associated with
the relaxation toward a local minimum after the system has been perturbed, and (b) a time
scale T, associated with the transition from a local minimum to the global one.

The time scale T, is given by

T, = max {1/4;} (11)
where 4; are eigenvalues of the linearization matrix of the considered gradient dynamical
system, that is to say, of the matrix ¥;;(x,) where x, is a critical point of the system (see [6]).
For potential functions given in Sec. 2, there is no T, time scale since they have no global
minimum.

4. Examples
(1) Flat cosmological models described by system (3) perturbed with a white noise,
1/2
having potential (5). There are two ciitical points H, = + (3—) which represent the
expanding and contracting de Sitter universes. One readily finds

1

Tl = i W. (12)

If one agrees to inteipret the cosmological constant A as being linked to the energy
density of the vacuum (as it is a commonplace in contemporary grand unifying theories),
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A= — ¢ , where G is the gravitational constant, and ¢,,, = —’;1—4-—, one immediately
ets
& hz hz

T = G PG © mice (13)
where m,, is the proton mass. Surprisingly enough, this turns out to be well known “large
number coincidence” giving the age of the universe in terms of fundamental physical con-
stants. Numerical value of T, is ~ 10%° years.

For models with the vanishing cosmological constant, A — 0, one obtains 7; — oo,
which should be interpreted as a “relaxation time” for a perturbed model to go to the
asymptotic de Sitter state.

(2) Flat cosmological models described by system (3) perturbed with a white noise,
having potential (4). The linearization matrix is

d
Vi(Ho) = 3 I (E*H)+ p(H, E(H))|g =g,

and consequently
1

TI = .
d
7 T, (E*(H)+ p(H, E(H))|g=g,

(14)

(3) Cosmological models described by system (6) perturbed by a white noise, having
potential function (7). The linearization matrix reads

2 . 3y
—H, —E
V= o 20
Y 3y 3y q

2% 2 °
For static critical points (H, = 0), the eigenvalues are 4,, = + —21E0, and con-
o

sequently the *‘relaxation time” T, to the Einstein static state

1

Tl = W . (15)

1/2
For non-static critical points, one has H, = +o (—3—) s 0 which, as a “relaxation

time” to the de Sitter state, gives

o 2a
T, = max {T}, T{} = max{-—=, —:—} (16)
2H0 3'}’H0
It is interesting to notice that till the radiation era, i.e. for y > 4/3, T, = T}, and
after the radiation era, i.e. for y < 4/3, T, = T3.
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5. Comment

A possibility to obtain a large number coincidence of the order of the age of the
Universe as an intrinsic time scale of a stochastic cosmological process is certainly a striking
circumstance. Two factors are responsible for this result. First is that the world evolution
has been assumed to be a stochastic process of a particular kind (white noise perturbed
Friedman), and second that the dynamical system describing this process turned out to be
a gradient system with explicitly known potentials. Is all this another coincidence? One
suggestion could be made. If one agreed to treat “stochastic corrections” to the Friedman
equation as vestiges of quantum inaccuracies in the initial data for the universe, one would
have another interconnection between the effects of fundamental laws of physics and the
global world structure.

Another, apparently more formal, interconnection is evident from the above considera-
tions. Stochastic time 7, turns out to be strictly related — through the linearization
matrix — to the phase space structure of the underlying non-perturbed dynamical system.
On the other hand, it has been demonstrated, in Ref. [7], that the situation and character
of critical points is uniquely determined by strong energy condition ¢+p > 0 and the
Lorentz invariance condition £+3p—24 > 0, and consequently there are energy condi-
tions which determine the stochastic time scale. One might speculate that some global
constraints, such as energy conditions, play no less a role in shaping the structure of the
universe than does the Friedman equation itself.
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