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RADIATION OF A SUPERCHARGED SYSTEM
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-A simple supersymmetric system of noninteracting photons and photinos at finite
values of temperature and supercharge is studiedf Particular attention is drawn to properties
of photons. Analogs of the Planck formula and the Stefan-Boltzmann law are considered.

PACS numbers: 05.30.Ch, 11.30.Pb

Supersymmetry [1] is widely believed to be a key for solving two fundamental prob-
lems of physics: the construction of quantum gravity and consequently the unification
of all interactions we know.

In this paper, however, we intend to consider quite a tiny problem being far from
the above ambitious program. Namely, we study a very simple supersymmetric system
of noninteracting photons and photinos in thermal equilibrium. We discuss properties
of the system at finite values of supercharge and temperature. In particular, we focus our
attention on properties of photons. We consider analogs of the Planck formula and the
Stefan-Boltzmann law. Thermodynamics of a supercharged system has been studied in
Refs. [2] and {3]. In our conmsiderations we exploit many results of Kapusta, Pratt and
Visnji¢ [2], and we present some of them for completeness.

We use space-time metric of the form g, = g,, = 233 = —goo = | and units
where c=h = k = 1. :

The supersymmetric Lagrangian density of the system of photons, photinos (and
antiphotinos) is [4]

i_
L = —1F,F"— > Py, p+5 D%, )
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where F"' = §*A"—0"A%, y is a Majorana spinor, and D is an auxiliary field finally
eliminated due to a trivial equation of motion D = 0. The Lagrangian (1) is invariant
{up to a total divergence) under infinitesimal supersymmetry transformation [4]

0A, = i&y,y,
6'/" = _%Fuvvuyve’{'il)‘}’sa:
oD = —&ysdy,y,

where ¢ is an infinitesimal Majorana spinor and y® = iy%y!y?y3, This invariance leads to
the existence of conserved supercharge current

Ju= =T F.7""ny
and consequently conserved supercharge
Q = | d’xjo(x)
being the Majorana spinor. Extending fields 4, and p in plane waves, one finds
Q = [ d*p0(p),
where Q(p) can be chosen in the following form [3]
0.(p) = Vo (a.(PbL(P) +ak(D)b.(P),
0:(p) = Jw (a-(H)bL(P) +aL(Pb.(P),
23(P) = Vo (a.(PbL(P)+aL(P)b_(P)),
Q4(p) = o (a-(HbL(p) +a . (B)b-(P)),

where » = |p| and a'.(p), b%.(p) are creation operators of photons with definite polariza-
tion (denoted by + and -) and photinos with +1 helicity, respectively. Each compo-
nent of supercharge is conserved, i.e. it commutes with the Hamiltonian

[H: Qa] = Idspdsq[H(p)’ Qa(Q)] = 0.
It has been observed in Ref. [3] that
[Q.(P), Q@] # O.

Thus, Q is not an extensive quantity because it cannot be determined simultaneously at
different space points of a system. We introduce another, extensive, conserved quantity,
Q, which is related to the supercharge

Q. = i | d*pe(P)QuLP),
where ¢,(p) are the operators satisfying the anticommuting relations

{ca(ﬁ)’ cq(é)} = 25@5(3)(13-6)



27

and
() = ck(p).

In addition, ¢,(p) commutes with all bosonic and anticommutes with all fermionic opera-
tors.! Thus, we transform the fermionic supercharge Q into bosonic one what is, in fact,
needed.

Among the four charges §, two commute and can be simultaneously diagonalized.
This means that the system can be decomposed into two subsystems, each of them con-
taining one component (one polarization state) of the 4, and vy fields connected (mixed)
by supersymmetry transformation. One can choose @, and Q. as two commuting charges
denoted later on by Q. and Q-.

The partition function for our system is

Z=Trexp[—-BH-p.0.—p-0)],

where B is the inverse temperature, § = T-'; p. and u- are chemical potentials of con-
served supercharges Q. and Q-. The Hamiltonian density (in momentum space) of the
system can be decomposed into two parts related to both subsystems

H(p) = 03(P)+02(P).
Because

[0.(),0-(A)]=0
and

[0u(P), 0u(P)]547 =0

the partition function factorize into modes — systems of photons and photinos in one
polarization state with the same momentum, p. In each mode there is an unlimited number
of photons while the number of photinos is 0 or 1. The factorized partition function is

Z = H Z;,(ﬁ’ ﬂ+)Z;(JB, o),

where

Z(B, uz) = Trexp [~ BQI(P) — 1+ 0:(P)].

Later on we assume that

Be =p_ =4, 2
what makes
@5 =<@>=22.

1 In Ref. [3] the supercharge was modiﬁ~ed with the help of one-component c(p) field. In this case
however contrary to what was stated in [3], [Q1, Q4] # 0 even though {Q,, Q.} = 0.
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{4> denotes an expectation value of operator A. According to (2), both subsystems are
symmetric in such a sense that average numbers of photons (photinos) with different
polarization are equal at any temperature. In other words, photons (photinos) in the
system are unpolarized. Thus,

z =T [Z(8. w]*.
14
The partition function of a single mode found by Kapusta, Pratt and Visnji¢ [3] is
— - nho e
z = 1-%-2";1 e"?? ch (ﬁ,u Jnw). ?3)

Numbers of photinos and photons with momentum p are, respectively, [3]

< (P))

E» =1-221, ) = —<v(p))-

The supercharge and energy carried by particles with momentum p are the following

e 0
@@ =27 Iz,

0
(H(p)) = -2 o In Z;+p<Q'(P))-

In the above formulae contributions from the both subsystems are included. The total
energy carried by photons is

U = ¥ o(n(p)).
14

2 fa

where V is a volume of the system, we find

Changing

U= v Ooal 3n(p)y
=5 ww”{n(p)).
0

Thus, the energetic spectrum of photons is

V
Um = 5—7132 w3<n(ﬁ)>s (4)

where

2 2 w0
)y = = = inZp+ + L Tinz—14z0

ap B ou
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The above expression is an analog of the Planck formula. Because the sum (3) cannot be
expressed in terms of elementary functions, analytic calculations can be performed in
some limits only. For u — 0 and T # 0 one finds

BZuZ

Z;=cth(%ﬂw)+4 Ty ﬁ )

+0(*pt 0’

For this case
(B =2 ! ! 1+ 0(f*u*
KQ'(B)> = 2Bpo [ Fo_i t gy |LTOE R @]

and
2

(@'> = —=uVT’[1+0(Bu™)]. ©)
120
It is seen that the expectation value of supercharge vanishes when px = 0.

_ Vv 4, 1 p*po cth  (Bw) 44,2]
Ua,—;;w [e"“’—1+ 4 sh(Pa) +0(f"p"w?) |-

The above formula changes to the Planck formula for ¢ = 0. Pressure is defined by
p=T i inZ
av
For u — 0 one can find an equation of state of supercharged photon-neutrino gas, namely

= 3 [CHY—7 n<Q"].

Using the formula (5), the equation of state can be rewritten in the form

_ 60 <Q'>
24 —'3"[<H>'" 2 VT’]'

An interesting limit is at 7 = 0 for nonzero supercharge, u # 0. In this case the parti-
tion function (3) can be approximated as follows [3]

1 for |yl <o,

7 - e POV for o < lul < (14/2) Jo,

.e“”(""’"“""a’ for (Yn—1+n)Jo < |u < {(Jn+n+) Jo.
At T = 0 the photon spectrum is

0 for |ul <o,
V _
U, =43 o for \/2 i <o <iul,
pl — lul
-1 —————— e & ——m————
; 0°(2n—-1) for NCTWES <Jo < NN
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Fig. 1. The energetic photon spectrum at zero temperature

The above distribution is plotted in Fig. 1. Let us notice its unusual form with many sharp
peaks. For w — 0, U, approaches a smooth curve

V 2
— o * —11.
2n 2w
In contrast to the photon one, the photino energetic spectrum, W,, at T = 0 is quite
familiar
0 for p<.o,
W,=3V 5 . _
: — for w < f.
2n* \/ #
It coincides with the spectrum of degenerated Fermi gas where the number of particles
is conserved. u? plays a role of Fermi energy. The total energy of photons at T =0 is
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expressed by the formula
A

U =
8n?

Vb,
where

1= 3 En- [t a=T) =t A F D = 1002

The value of 1 has been found numerically. The expectation value of Q' at T = 0 is

2n .
’ =___V ,
Q"> T2 VH

where

1= SVRIWAHT=D T (it i) ] = 1001 ..

In Fig. 2 we show the photon spectrum found numerically described by formula (4)
for some values of u. Because the particles are massless, there is no natural energy scale
and arbitrary units of energy are used.

An analog of the Stefan-Boltzmann law can be found by integration of the formula
(4) with respect to frequencies. In Fig. 3 we show U as a function of T. It is seen that at
fixed T, U increases with (Q’), however, this increase becomes weaker when the tem~
perature rises.

We conclude our considerations as follows.

%
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Fig. 2. The energetic photon spectrum for T = 10 at four values of chemical potential



32

1087

Stefan- Bottzmann

1034

tinT

) l
T ¥ T

1 2 3 &

Fig. 3. The total photon energy versus temperature for four values of chemical potential

Even at zero temperature the photons radiated from the supercharged system carry
finite energy which increases with the value of supercharge. The energy distribution of
photons is not smooth, but it exhibits many sharp peaks. 4

At finite temperature the form of the photon spectrum is similar to that described
by the Planck formula, although a maximum is shifted to higher frequencies. The total
energy of photons increases with the value of supercharge, while the increase with tem-
perature is weaker than T4,

I am grateful to J. I. Kapusta for his letter.
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