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The definition of the fermionic path integral is given which allows one to introduce
the path integral representation of Feynman propagation function for theories with the
fermionic degrees of freedom.

PACS numbers: 11.15.Kc¢

1. Introduction

One of the most important problems in supersymmetry is to find the workable mechan-
ism for breaking it. The supersymmetry differs significantly from ordinary symmetries.
For example, it is difficult to break it spontaneously at the tree level and if it is unbroken
at this level it remains unbroken to all orders of perturbation theory as a result of the
peculiar boson-fermion cancellations. Therefore one has to search for some nonperturba-
tive effects which break supersymmetry. However, it is usually very difficult to investigate
such effects. To study them some simple models were invented. In particular Witten [1]
introduced the supersymmetric version of ordinary quantum mechanics (SSQM). SSQM
is invariant under some kind of supersymmetry transformations and consequently it must
contain “fermions”. To represent the fermionic degrees of freedom within the “coordinate
representation” one introduces the Grassman variable {({* = 0) as an additional argument
of wave function [2]

D= d(x,{;0).
Expanding with respect to { one obtains

B(x, {5 1) = Py(x, 1) +{Py(x, 7).
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The theory can be developed along the same lines as ordinary QM. One introduces the
Feynman propagation functiop

K(x,tix, 0 t) = Ko+ KL+ K0+ KL
The wave function evolves according to the equation
®(x, ¢ 1) = [ K(x, L t]x, {5 0@, ¢, ¢)dx'dl!

where the integration rule {d({-{ = 1 was adopted. The fermion-number conservation
law implies K, = K3 = 0.

One would like to represent the Feynman kernel in terms of functional integral. To
obtain such representation we make the Wick rotation to Euclidean time and write

K(x, {58, {5 t) = § Dx(m)DL()Dn(x) exp {— [diL}. (1

We restrict ourselves to the (Euclidean) lagrangians of the form

d
L = Lg(x, 5c)+11_(:ijc + W(x)) L.

Here Lg(x, X) is the bosonic part of the lagrangian, n and { are Grassman variables and
1 is canonically conjugate to {. In other words, Eq. (1) represents the “mixed” functional
integral: we had started from the functional integral over paths in phase space and then
integrated over bosonic momentum variables.

In connection with the Eq. (1) the question arises how to define the integral

§ DLDn exp nAL

where A4 is the first-order differential operator
A= —0,+F(t).

Sometimes it is quite simple. If one uses the definition of measure in Grassman path integrals
given by Berezin [3] one obtains

Det [ —0,+ F(1)]

j DDy expnAl = —— [a] @
To define the operator 4 one has to specify the boundary condition. If, for example, we
are going to calculate the partition function, we impose the antiperiodic boundary condi-
tions. Then the eigenvalues of 4 can be calculated in a simple way and one obtains closed
expression for the integral under consideration [4]. Similarly with the periodic boundary
conditions we would get the expression for the regularized Witten index [5]. However,
in the case under consideration the situation is more complicated. In analogy with the
usual case we should integrate over the paths {(¢) with the boundary conditions {(t") = (',
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{(t) = ¢ and the paths 5(¢) with free boundary conditions (because #(z) is the momentum
canonically conjugated to {(¢)). But the former conditions are incompatible with the form
of 4: we cannot impose such boundary conditions on the first order differential operator.

The most straightforward approach to this problem is that based on time discretiza-
tion procedure [2]. On the other hand Leinaas and Olaussen [6] attempted to solve it in the
following way. They defined the integral for the simplest case 4 = —&, by the suitable
normal-mode decomposition and then changed the integration variables to obtain the
answer in general case. The Jacobian of this change was read off from the composition
law for Feynman kernel. However, we feel that simple and concise treatment of this problem
is still lacking. Such foirmulation seems to be helpful in the discussion of instanton effects
in SSQM. There are some subtle problems concerning the fermionic zero modes and their
contribution to various matrix elements (cf. [2, 7-9]). To understand those problems fully
we have to have the clear understanding of the notions used.

We do not pretend to mathematical rigour. We think, however, that our approach
is internally consistent and simple enough to be useful.

2. The fermionic path integral
We are going to define the integral

t

0
jDC(T)Dn(T) exp f drn(z) [- 5. TF (T):, (0, 3)

¢

{(t) = £, n(t) — free b.c., {(t') = {’, F(t) — real.

0 0
Let A = — = +F(r) and let At = = +F(7) be the formal adjoint of 4. Then At 4
T T
is the second order differential operator. Together with the boundary conditions
@(t')=0, ¢t)=0 4)

it defines the selfadjoint operator acting on the Hilbert space of square integrable functions
on the interval (¢', ¢). Denote by {g,}7 and {4,}7 the sets of eigenfunctions and eigen-
values of 4% - A, respectively. The operator AT - 4 is positive definite at least as long
as t' > —oo or t < oo, Indeed, if A, = 0 then

At A, =0
and consequently
Agp, =0,

The above equation together with the boundary condition implies

¢ =0.
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Remark now that {A; *4¢,} is also an orthonormal set (4, *4g,, i *49,) = (L) ¥ (9.,
At Ap,) = J,. Moreover, if x is such a function that (x, 4p,) = 0 for all n, then

Aty = 0.

But the space of the solutions of this equation is onedimensional. This in turn implies that
if we pick up the solution ¥ = g, such that (po, po) = 1 then the set {go, {1, 24¢,} T}
will be complete and orthonormal ((4¢,, ¢o) = (@, Atgo) = 0). As a result we can
expand!

7(t) = No@o(t) + ;1 A, A, () - 1, )

with Grassman variables #,. Now let {(7) be the unique solution of the boundary value
problem

At AL =0, Cc(t') = C” Cc(t) ={. (6)

Remark that this problem is well defined in spite of the fact that {’s are Grassman variables.
One can simply solve the usual differential equation with the boundary conditions a(t’) = 1,
a(t) =0, or b(t") =0, b(t) =1 and put { (1) = {' - a(r)+{ - b(r). We expand the path
{(¢) according to the formula

(@) = L+ ¥ pldb v
Using Eqgs. (5) and (7) we get
nAL = (n, AL) = no(po, AL+ k; A el ®)

Our definition of the integral is given by the equation

oo o0
b.‘ D{DnexpnAl = N™\(t', 1) § kUldedﬂkd'lo exp [no(po, AL+ kzlllt/zﬂka] )]
or, after integration over Grassman variables
§ DtDn exp nAL = N™\(', £) (o, AL.) (Det AT - 4)'/2%, (10)
b.c.

Here N is the normalization factor which serves to cancel the infinities contained in
Det (4t « A) (4 is unbounded). N should not depend on the choice of F(r). We show below
that this is the case.

To calculate (o, 4(.) we find first ¢,. Recall that it fulfils the equation

d
(3—1 +F(z)> Po() = 0

! Note that in general the functions @, and Ap, do not satisfy the boundary conditions (4).
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together with the condition

(®0> Po) = 1.

The solution reads

#o(®) = Coxp (= [ &P,

C?*= Jtd‘c exp (— 2’§tdr'F(7:')). (1)

Using the Eq. (11) we calculate (go, A(.)

14

9}
(‘)vOs ACL‘) = jder(‘[) [_ 5_;_ +F(’C)J Cv(‘c)

s
= —=C{{ exp(—tflthF(T))—C'}- (12)
Inserting the above expression into Eq. (10) we obtain finally
[ D{Dy exp nAL = —N~(t', t) (Det AT - 4)"/*C exp (—%:f drF(7))
b.c. , , t
x {C exp (—%ts diF(1)) (' exp (%tj dtF())}. a3
Let us now consider the expression

t
(Det AY - A)12C exp (=% | dtF(z)) = (Det A - 4)'?
2

t T t
x{ Jdrexp (-2 [ di'F(z'))} " /* exp (—5 | deF(2)). (14)
t t t
32
Recall the following theorem [10]. Let W = — Py +f(%) be the operator defined by the
T

boundary condition ¢(') = 0, ¢(¢) = 0 and let y(7) be the solution of the following initial-
-value problem

Wy=0, 9t)=0 9)=1

Then the ratio Det W/y(t) does not depend on f. The solution to the initial-value problem
+ 0 0
At Ay =|— +F@) )| — — +F@) ) yp(r) =0,
ot Jt

wt) =0, y(@)=1
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reads
p(t) = CXpt;'d'tF(‘t)’fd‘t exp (—Z’fdr'F(t')). (15)
By comparing Eqs. (14) and (15) we conclude that the gxpression
—(Det At - 4)'2Cexp (-%t f dzF(t)) = N(t', t) (16)

does not depend on F(z). Eq. (16) serves as the definition of the normalization factor. In
this way we obtain our final result

bj DLDry exp nAL = { exp (3 [ deF())—{' exp (3 | diF(z)). )

Note that the inclusion of the normalisation factor here is completely analogous to the
procedure used for bosonic Feynman integral. To make such integral convergent it is

N=w
. . o m .
sufficient to include the normalisation factor ( \/ ﬁ) corresponding to the case
i

of free particle.
The formal expression for N is easily obtained by putting F = 0

«©

NGES 1) = — i (18)
N(t, t) = — —
t'—t t—t'

n=1

3. Conclusions

We conclude with some remarks. It follows from Eq. (17) that by taking the trace
we obtain the usual partition function. Indeed, taking the trace means for fermions putting
{' = —{ and integrating over {. To obtain the regularised Witten index we have to put
{’ = { instead.

Taking into account that the expression for the normalisation factor contains the
determinant Det (— 5,2) we see the coincidence between the formula for the trace following
from our approach and the one given by Eq. (2).

One of us (P. K.) would like to thank the ICTP in Trieste for kind hospitality and
financial support during the Summer Workshop in Particle Physics and Cosmology 1984.
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