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FORWARD-BACKWARD CORRELATIONS IN THE MULTIPLE
PRODUCTION
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We discuss the minimal model for the forward-backward correlations in the hadron-
and lepton-induced multiple production. In this model correlations are generated by averaging
over the components corresponding to the independent emission of clusters with different
average multiplicitiecs. We show that the model corrected approximately for phase-space
effects describes reasonably well the high energy hadronic data. On the other hand, the
test of its applicability to the Ih or ete~ data requires higher energies than presently available.

PACS numbers: 13.85.-t

1. Introduction

By “forward-backward” (FB) correlations one means usually the correlations between
the global numbers of particles observed in CM hemispheres in multiple production. With
the advent of colliding beams experiments such correlations became particularly easy
to measure, since they do not require particle identification and momentum measurements.
Even for the fixed target experiments FB correlations are useful if the statistics is too low
to investigate in detail the differential correlation function. On the other hand, measuring
the FB correlations may allow already to discriminate between various models of multiple
production and different hadronization mechanisms. Thus the experimental and theoretical
investigations of FB correlations have been performed recently by many authors. In partic-
ular, the UAS collaboration at SPS collider has presented data and discussed them in
terms of a very simple model {1, 2].

In this model, called further the Minimal Model (MM) the clusters of hadrons are
randomly emitted according to the longitudinal phase space. The multiplicity of cluster
decay is assumed in agreement with earlier short-range correlations analysis and the experi-
mental multiplicity distribution determines the cluster multiplicity distribution. It is possible
to derive the approximate predictions of MM for FB cotrelations without performing the
Monte Carlo generation of events and the results are good.
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In this paper we show the equivalence of MM of Ref. [1] with a similar model construc-
ted earlier to desctibe the ISR data [3, 4, 5]. Then we propose a simple ansatz for phase-
-space corrections allowing for approximate description of FB correlations in the ISR-
-collider energy range. Further, we discuss the possible applicability of MM to the lh or
ete~ data, extending the former analysis of Ref. [6]. We conclude with remarks on the
relation of MM to some more elaborate existing models of multiple production and to the
apparent universality observed recently in data by Wréblewski [7].

2. Approximate predictions of MM
Let us recall here first a simple derivation of a MM formula for the correlation
parameter b piesented in Ref. [1]. Here b is defined by the linear relation
fig(ng) = A+ b(ng— i), (H

where ngp, denotes the number of particles in forward (backward) hemisphere, 7ig(ng)
denotes the average for fixed ny and g, are averages over all events. This relation agrees
quite well with high-energy data and is expected to work always when the multiplicity
distribution in each hemisphere can be approximated reasonably well by a Gaussian curve.
It is easy to check that

ngng—Ffighy  Dgy
nB‘_nB DB
In the following we consider the symmetric case, for which
D?* = DE+DZ+42Dgy = 2D¥1+b). 3)

Thus we can separate the effects of global multiplicity fluctuations and the effects
of fluctuations in one hemisphere for fixed global multiplicity. Denoting by (>, an average
for fixed global multiplicity », and by bar averaging over n we have

D} = (DPu+<{ng)? —iip = (DB, +4 0’ —4 % = (DD, +4 D*. @)
Thus
D? D*—4(D?,
D DKo ®)
2Dg D*+4¢D%y,

In the MM of Ref. [1] one assumes random uniform distribution in rapidity for fixed
n, i.e. the binomial distiibution of ng

1/n
P(ne)ly = 2, (n) ©

(D>, = %n. (M

resulting in
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Thus
D*—7
D +i’

®

In fact, the realistic model should take into account the existence of short-range
correlations. It can be done by assuming random emission of clusters instead of single
particles. If the cluster decay is independent of its formation, we obtain

(D>, = § keeeA, ©®
where
k2
ke = % (10)

parametrizes the cluster decay distribution with average decay multiplicity k. Thus the
final formula of MM as presented in Ref. [1] is

2 —
. (11)
D* + ket
In fact, a similar model has been considered earlier [3-5]. KNO scaling of multiplic-
ity distributions have led many authors to describe the multiparticle production as the
superposition of independent emission processes with various average multiplicities pro-
portional to some physical parameter (related to inelasticity, impact parameter etc.).
Then for the multiplicity distribution we obtain

”,1,,( )

P(n) = Idl (e (12)
where
fdiyp(d) = [ Adap(d) = 1 (13)
resulting in
D* = A+[f 2dAp(A)—1]2A* = i+o% (14)
Obviously, for fixed A4 there are no FB correlations and
D>z = (DM = 3 Afi. (15)
Thus
DE = (DZ,+1 A*[[ dap(A)—1] = L A+3 62 (16)
and
2 2 =
po O _D-m an

8%+2r D*+i
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Assuming again independent emission of clusters and not single particles we obtain

D2 = keﬁ'ﬁ‘*‘&z, (18)
Dg‘ = '% keff.ﬁ_}_%(sza (19)
and
62 D* — ki

b= 0% +2kyefi D kg (20)

Thus the two models are equivalent. However, now we see that the model can be
justified by the idea of superposing components only for positive correlations, b > 0.
Indeed, it is not reasonable to assume random emission of clusters for fixed global multi-
plicity, if the negative correlations (resulting e.g. from energy-momentum conservation)
make the global multiplicity distribution of clusters narrower than Poissonian. In fact,
we expect that the model will work well only if D* > k7, since one shall apply energy-
-momentum conservation for each 4, which may modify significantly formulae (18) and
(19) even at quite high energies. This suspicion is supported by data. Whereas at collider
energy formula (20) agrees with data for k. = 2.5-3 (as used to describe short-range
correlations), we obtain too low values even in ISR range, as shown in Fig. 1. On the other
hand, the Monte Carlo calculations of MM with phase-space effects built in have described
ISR data very well [5]. Thus in the following we consider a simple ansatz for such effects
modifying formula (20). Nevertheless, we restrict ourselves to the ISR—collider energy
range, as for lower energy our approximations are unreliable.
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Fig. 1. Correlation parameter & in pp [5] and pp [1] collisions at high energies (black points). Brackets show
the limits of MM predictions (11) for kegg = 2.5-3

3. Phase-space corrections to MM

The modifications of random emission resulting from the energy-momentum conser-
vation are in general quite complicated [8] and it is customary to use Monte Carlo genera-
tion of events according to the cylindrical phase-space instead of analytical approximations.
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However, for our purposes it is enough to note that for large 7 the dispersion of multiplic-

ity distribution is reduced (relative to Poisson distribution) by an approximately constant
term

2 - 1

p? - n—c+0(-ﬁ—). @1

Now, in MM we have assumed for fixed 4 the Po'sson shape for the cluster multiplic-

ity distributions both globally and in a single hemispheie, which reflects the absence of

FB correlations. It seems reasonable to assume that energy-momentum conservation does

not introduce FB correlations, as the energy in cach hemisphere may be distributed inde-
pendently between different numbers of particles. Thus we can replace (15) by

¢
(D> =5 (D»; = Fin— 2 (22)
and averaging over . we obtain analogous result
(DEy, = 5<D*, = tA—-je (23)
If this is assumed for cluster preduction, we get for hadrons
(DB, = £, = L ki = k2 (24)
and the correlation parameter is given by
D?— kit +c
b= o (25)
D +ke“n—'c
where
c = ck2. (26)

We treat ¢ as a free parameter. Nevertheless, one may estimate that for standard
phase-space parametrization ¢ is of the order of few units, and since k is about 2, c is of the
order of ten.

Obviously, in analogy to formula (20) we can expect that formula (25) will work only
for high energies when b is definitely positive. We do not perfoim a detailed fit to the ISR
and collider data, as the two experiments differ significantly in event selection and contain
certainly different admixture of diffractive events (obviously not described by MM).
However, we show in Fig. 2 the belt of predictions resulting from formula (25) with
ke = 2.5-3 and ¢ = 10. Curves for e.g. kg = 2.5, ¢ = 6-10 and kg = 3, ¢ = 10-14
lie also inside this belt. We use here the phenomenological relation of Wréblewski [9]

D~ —l:: (n—1). 27

V3
As we see, for this range of parameteis MM describes the FB correlations quite well.
As an example of a particular choice of parameters we show also points obtained for
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k¢ = 3, ¢ = 13 using measured values of D? and # (and not Wréblewski’s relation),
which agree with experimental values of b within errors. Let us note here that we are
using the values of D? and 7 from Ref. [5] instead of more recent ones [10] to ensure the
same choice of events used for determination of b and multiplicity distributions. We do not
show the predictions of formula (25) for # < 8, where the results become very sensitive
to the choice of ¢ and k. and where our simple ansatz for phase-space corrections in
MM is no longer reliable.
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Fig. 2. Correlation parameter & in pp [5] and pp {1] collisions (black points) as a function of average multipli-
city n. Broken lines show the limits of MM predictions corrected for phase space (25) with ¢ = 10,
kegt = 2.5-3 and crossed points correspond to the values of ¢ = 13, kere = 3

4. MM and lepton-induced multiple production

Kiihn and Schneider [6] have pointed out that FB correlations may help to answer
the basic question concerning multiple production in the 1h or e*e” collisions: are the two
jets related to the g—q or q-qq separation fragmenting independently, or is there a colour
tube or string connecting the original partons and fragmenting (uniformly?) into final
hadrons ?

The hadronization models currently used answer this question differently. In the Feyn-
man-Field approach [11] independent fragmentation is assumed explicitly, and this idea
persists in more modern models based on perturbative QCD [12]. The non-perturbative
models [13] assume uniform particle creation within colour tube. The Lund model of
hadronization [14], where string picture is assumed, seems closer to this approach. In
general, however, the model predictions depend on many details and it is difficult to check
by comparison with data which assumption works better. FB correlations provide us in
principle with a unique opportunity to test this directly. Indeed, if the two jets fragment
independently, the correlation parameter b should vanish at large 7. On the other hand,
if we assume the “colour tube” picture and take into account the experimentally observed
approximate KNO scaling, we expect that in this limit b approaches the value of 1 and
that MM should work.

Kiihn and Schneider [6] have elaborated such predictions basing on the non-perturba-
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tive models [12] and using MM analogous to the one described earlier [3, 4]. They do not
present explicitly the obtained dependence of b vs i1, but using their approximate formula
for b with k., = 2.5-3 and A/D = 2.6-3.2 (quoted value is 2.6, which seems rather low)
we find

n

b~—m, (28)

where ¢ = 33-60. Since at PETRA energies 7 (as measured recently by JADE collabora-
tion [15]) varies from 8.4 to 13.6, we expect at highest energy b = 0.18-0.29, and in principle
experiment should be able to distinguish such value easily from zero. Unfortunately,
the multiplicity distribution used in [6] does not really correspond to the data; the value
of parameter (4?)—1 which they use corresponds to the quoted 7/D ratio only asymptoti-
cally, when

AN = (-1 (29)

f_l2

n

(D)’ _ D48

mlcn
~ [ )

and at available energies this approximation is unreliable. In fact, using ks = 2.5 we
find within PETRA energy range [15]

(D*>; = k.4 > D*. (30)

Extrapolating the existing data one can expect the reversion of inequality (30) at 7 around
25. This means that formuia (18) cannot describe data until much higher energies are achiev-
ed. Cluster multiplicity distribution is presently narrower than Poissonian and cannot
be described as a superposition of Poisson distributions. This inapplicability of MM may
be again attributed to the phase-space effects, which make the assumption of random emis-
sion at fixed 4 unreliable, as in lower energy hadron data. Note that for the ete- case we
may expect from phase-space even stronger negative correlations than in hadron-hadron
collisions at the same 7, since there are no leading particles, and consequently no distribu-
tion of inelasticity weakening the effect of energy conservation on the multiplicity distribu-
tion. In any case, if we use the original formula (20) instead of approximation (28) we see
that MM cannot be used to describe PETRA data.

Let us check if using the ansatz of Section 3 to describe the phase-space effects we will
be able to extend the applicability range of MM down to available energies. Using
ke = 2.5 ¢ =10 and A/D = 3.2 (as seen at highest PETRA energies) we find

i2 —257+100

b ™~ ;’f—“"_—"""_ .
n-+251-—100

3D
Unfortunately, this expression is again negative, until 7 reaches the values about 20,
expected at energies of the order of 100 GeV. Varying parameters within the limits compat-
ible with other data we find the lower limit of 1 for which b is positive changing between
12 and 24. In any case, however, within the present energy range our ansatz is unreliable
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and we can neither support, nor disprove MM. Consequently, it seems that we have to
wait till LEP energies to distinguish definitely between the two pictures of multiple produc-
tion using FB correlation data (obviously, for 1h processes the encrgies will be also too
low till HERA).

To test MM one can also go beyond the crude approximation of our ansatz (21) and
to perform Monte Carlo analysis of phase-space effects. However, such an analysis at
PETRA energies is seriously influenced also by effects of various flavours of quarks,
three-jet events, experimental biases and inefficiences. The only measurement of FB correla-
tions in e*e~ collisions performed at 34 GeV by TASSO [16] yielded the results incompatible
with linear relation (1) and suggesting for “nearly linear”” range of ny the value of b around
0.2. However, these data are compatible with » = 0 when corrected for acceptance, trigger
conditions, and referred to definite flavour two-jet events. This shows that details of analysis
produce effects larger than deviations from b = 0 predicted by MM, and the two pictures
are unfortunately indistinguishable at available energies within the experimental and
theoretical uncertainties. At higher energies this distinction should be more clear.

5. Discussion and summary

We have shown that MM allows for correct description of the FB correlations in the
high energy hadron-hadron collisions even with very simple parametrization of phase-
-space effects. This suggests that MM can be used as the reliable model to be contrasted
with the assumption of independent fragmentation for eve~ and lh collisions. Unfortu-
nately, the energies available are too low to test MM there.

Nevertheless, we may wonder why such a primitive model works so well.

The answer is very simple: as far as we are investigating only FB correlation, MM
is equivalent to many more elaborate models of multiple production. Indeed, the only
relevant assumption is here the possibility to decompose multiple production into compo-
nents, for which there are no long-range correlations (i.e. the multiplicity distribution of
clusters is close to Poissonian and FB correlations are asymptotically negligible). In fact,
at high energies when D? 3 k.7, even quite significant deviations from Poisson distribu-
tion are irrelevant as long as their contributions to dispersion do not grow with energy.
Such moderate assumption is present in the broad class of models, as the Lund model
[14] or the dual parton model [17, 18], although the predictions of these models for more
sophisticated experiments may differ significantly [18]. In any case, we do not regard as
justified claims that all the FB correlations results follow just from the KNO scaling of
multiplicity distributions [1]. One can construct as well independent fragmentation models
with b = 0 and KNO scaling. The success of MM for hadronic collisions shows that the
fluctuations of average density of particles in rapidity between events are here much stronger
than the relative fluctuations in various intervals of rapidity (e.g. hemispheres). In the e*e~
and lh collisions this effect may appear or not, and a test of this hypothesis is very inter-
esting.

Finally, let us comment on the recently observed universality of the FB correlation
data. Wroblewski [7] has compiled existing measurements of correlation parameter b for
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hadron-hadron collisions supplementing them with estimate for ete~ collisions based on
formula (3). The results, when plotted versus (i7)~'/2 lie not far from a single straight line,
suggesting the universal behaviour

b=1——=, c=~24 (32)
n

As we can see from formulae (20) or (25), MM predicts different asymptotic behaviour
for hadron-hadron collisions (only integer powers of 7 occur). Nevertheless, for the ISR
and collider data, where our MM calculations are reliable, the results of formulae (25)
and (32) are practically indistinguishable, as shown in Fig. 3. The discrepancies at higher
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Fig. 3. Correlation parameter 1—5 in pp [5] and pp [1] collisions (black points) as a function of 1/x. Solid
straight line represents the universal fit [7] and broken lines show the limits of MM predictions corrected
for phase space (25) with ¢ = 10, kegt = 2.5-3

energies will be also hard to find. It would be perhaps interesting to test if Monte Carlo
estimates of phase-space effects at lower energy can be also approximated by formula (32).
The low energy vN data are subject to biases and certainly not accurate enough to draw
any serious conclusions from their rough agreement with this formula. One can hope that
new data (e.g. from EMC) will show if the universality of formula (32) is the real fact,
or just a numerical accident for the limited set of inaccurate data. From Section 4 we could
see that MM, if applicable at all for 1h data, would predict the b versus 77 dependence differ-
ent from that in hadronic collisions, as the D vs n dependence is not the same. For inde-
pendent fragmentation models obviously b is asymptotically zero. Thus the universality
would contradict practically all the existing models for multiple production in e*e~ and lh
collisions and it is an extremely interesting subject for further investigations.
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