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RELATIVISTIC TWO-BODY EQUATION FOR ONE DIRAC AND
ONE DUFFIN-KEMMER-PETIAU PARTICLE, CONSISTENT WITH
THE HOLE THEORY
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An equal-time two-body wave equation consistent with the hole theory is found for
one Dirac particle and one Duffin-Kemmer-Petiau particle (of spin 0 or 1) interacting through
static potentials. A natural field of application of this work is the quark + diquark model
of the nucleon.

PACS numbers: 11.10.Qr

1. Introduction

A couple of years ago an equal-time relativistic two-body wave equation was intro-
duced for one spin-1/2 particle and one spin-0 or spin-1 particle which, if isolated from each
other, could be described by the Dirac equation and the Dufﬁn Kemmer-Petlau equatlon,

respectively [1]. In the centre-of-mass frame (where pp = — ppxp = p and rp— Fpgp = 1)
such an equation has the form
{BLE~V —d- 5~ B(m+3 )]+F - p—(M+3 SH¥( =0, m

if the interaction is given by a vector potential ¥(r) and a scalar potential S(r). Here,
(B*) = (B°, B) are Duffin-Kemmer-Petiau matrices [2] which can be formally represented as

B =3 (i +y%) 2

with (%) = (B;, fix;) (i = 1, 2) denoting two mutually commuting sets of Dirac matrices.
The formula (2) enables us to interpret the Duffin-Kemmer-Petiau particle as a formal limit
of a tight system of two Dirac particles carrying equal momenta p, = p, = —1 pand equal
effective masses m, = m, = 7 M. We ascribe to an interacting Duffin-Kemmer-Petiau
particle spin O or 1, it its “large-large” wave-function components correspond to such
a spin.
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Recently, one of us (A.T.) derived from Eq. (1) with static potentials ¥{(r) and S(r)
(thus depending only on r = [F]) the equivalent set of radial equations, and then discovered
that for any potential ¥(r) singular at r = 0 like r~° with b > 0 (so even less singular than
r-1) there are too few solutions regular at r = 0 to describe the system of a Dirac particle
and a Duffin-Kemmer-Petiau particle, if the latter has spin 1 [3]. In fact, instead of some
expected regular solutions there appear in this case singular solutions displaying for
r — 0 rapid oscillations with infinitely rising phases. This phenomenon occurring in our
system can be considered as a counterpait of the well known instability effect (the “contin-
uum dissolution’) observed previously in the system of three (or more) Dirac particles
if the hole theory is not taken into account [4] (note that in both cases there are formally
at least three spins 1/2). Thus, we meet here a drastic form of the Klein paradox which,
as always, is a signal coming from the negative-energy virtual states as they appear in the
one-particle version of Dirac theory, inconsistent with the hole theory. Recall that in the
case of one or two Dirac particles with static interactions the Klein paradox at r = 0
appears only for too strong vector potentials, if the hole theory is not taken into
account [5].

2. New wave equation

In the present paper we find a modified form of Eq. (1), consistent with the hole theory.
To this end we replace in Eq. (1) the static vector potential ¥(r) by its projection i la Salpeter
[6]. In the case of realistic interactions of Dirac particles such a projection follows from
the quantum field theory when the instantaneous static approximation is considered [6, 7].
In our case, when treating the Duffin-Kemmer-Petiau particle as a limit of a tight system
of two Dirac particles (cf. Eq. (2)), we would substitute in Eq. (1):
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Thus, the modified form of wave equation (1), consistent with the hole theory, should be

{30[E—(&-E+ﬁm)<1+ > —pi s]
\/p +m?

. 1 -
+(B - p )( PWy > } @ )

Here, we can write [8]

V(n¥(r) =

2V +m? p+m? (@2n)?

with K,(x) = — (r/2)H{"(ix). Note that K,(x) ~ 1/xat x — 0 and K,(x) ~ /7/2x exp(~—x)

at x - . So, the interaction in Eq. (5) related to the static vector potential ¥(r) is nonlocal

with the nonlocality extended over the Compton wave lengths 1/m and 1/M of two particles.
In the nonrelativistic limit, both our Egs. (1) and (5) take the Schridinger form

Ve Q)

J~d3" 1(|m|r r |)

(s—ziiz—v—s> ¥Y(r) = 0, 7
H

where ¢ = E—m—M and u = mM(m+ M),

3. Absence of Klein paradox at r = 0

Since Eq. (5), in contrast to Eq. (1), is consistent with the hole theory, one can expect
that it is free of the Klein paradox at r = 0 which is troubling so much Eq. (1).
In order to demonstrate this statement we insert into Eq. (6) with lI’(?) = ll’,,,u('r:) the

expansion
1 - x2k+1 x  pk+D+pk+2)
Ki(x)=— + " jmZ - , 8
) == E \,22"“k!(k+1)![ln 2 2 ] ®)
k=0
where
-C for k=20
: 9
p(k+1) = 1 ©)
—Cc+ ) — for k>0
n
n=1

with C = 0.5772... . Then the term 1/x in Eq. (8) gives

\/'_ V(r)llllm'(r) (2 ) de’ V(r )qllmx(r )
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where ¥,,(r) = Y)Y, ("), & =r'/r and

1

0x) =1 j dcos 0

-1

P/(cos 6)
x—cos 6’

(11)

In the proof of Eq. (10) it is convenient to put # = (0,0, 1) and # - # = cos 0. In particular,

1+¢2 ]
QO( Z; ) In {1+§ - In our forthcoming argument we shall assume that V(r)

~r%at r— 0 with 0 <b <1 and then use the ansatz ¥,(r) ~ '~ at r —» 0 with
~b < a, < 1 (such a behaviour of ¥(r) will be verified a posteriori). In this case it is not
difficult to show that the rest of terms in Eq. (8), when inserted into Eq. (6) with
Y(r) = ¥ (7), gives at r — 0 the leading contribution A,r'Y,, (), where 4, is a constant
depending on m. So, we obtain

WWMw )

2\/ J

+ A Yy (1) + O ) Vi (). (12)

Further, in an analogical way as in Eq. (10) we get
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and then from Egs. (12) and (13) we calculate

% Jp = VO)¥in) = VO ¥+ 24VF rYin(®)
+VB O Yy () = V()i (F)+ O Y (P), (14

where p2Y,, () = Y, (P)p} and
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we can introduce the limit » — O under the integral in Eq. (13) if ¥(r) ~ ' ™ at r > O
with —1 < a@; < 2I+1 (the physical condition r¥,(r) — 0 at r — 0 imposes on ¥,(r) the
more severe restriction g; < /41, while in our argument we operate with the even more
restrictive ansatz —b < g, <1 with 0 <b <1, so that certainly —1 < q; < 2/+1).
Then

2VP Wimy = D ¥ (D), 7).
r—=0
where
2 1+ 52 l~1-a
Dl = del f ! (18)}
n 2¢
(]

. na
is a constant. In particular, we calculate D, = 2 tan —?‘1 / do.

Now, we multiply our wave equation (5) from the left by the operator 2V ;E and.
consider the limit r — 0, assuming that S(r) — 0 at r — 0. Then, making use of Eq. (14)
we get the following asymptotic form of this equation at r — O:

ofp_y B o - r UV R
[ﬁ (E V2\/1T2+V a-p ﬁm)+ﬁ p M]x(r)—O, 19
where
1) = QVPP+V¥E). (20)

Here, we took into account singular potentials V(r) ~ r "*at r - 0 with 0 < b < 1, omitting:
the mass-dependent terms O(r)Y,, () in Eq. (14) where ¥,(r) ~ F*™® at r —» 0 with
—b < a; < 1. The effective potential VE(Z\/ p2+ V)1 in Eq. (19) is nonsingular at r — ¢
giving effectively for r — 0 a constant E, which is zero if 0 < & < 1 and nonzero if & = 1.
In both cases Eq. (19) becomes for r — 0 a free wave equation of the type (1) and so we
can deduce that at r — 0

P’x(®) =0, 21

implying y,(r) ~ ¥ at r —» 0. Thus, omitting consequently in Eq. (20) the terms x,,,,l(?).
= O(r’)Y,,,,,(?) we obtain the following asymptotic equation at r — 0:

CVPP+V¥E) = 0. 22

For 0 < b < 1, the ansatz ¥(r) ~ '~ applied to Eq. (22) gives N Y@ =0atr—0
so that ¥, ~ r' at r — 0 and hence g, = 0, in consistency with our hypothesis —b < a, < 1.
For b = 1, i.e. for asymptotically Coulombic potentials V(r) ~ Fo/r at r — 0, we can
also solve Eq. (22) by the ansatz ¥,(r) ~ ¥ ~®. In fact, with this ansatz Egs. (17) and (22)
give

Dlid+D)—(U+1—ap(l—a)] Fa=0 (23)
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and hence for [ = 0

&  mag o 2
agt -~cot— =1 or ago=+* — +0(x"), (24)

-2 2 T

where we used the explicit form of D,. Also this result is consistent with our hypothesis
—b < a; < 1. As can be shown from Eqs. (18) and (23), analogical solutions exist also
for > 0, satisfying the hypothesis —b < a; < 1 (¢f. Eq. (26)). Thus, our original ansatz
is fully verified. So, we can conclude that Eq. (5) is free of the Klein paradox at r = 0
for singular potentials ¥(r) ~ r~® at r —» 0 with 0 < b < 1. Of course, in the case of b = 1
the strength of ¥(r) at r — 0 must not be too great in order to keep a, real and lying in the
range —1 < g, < 1 which is required for the integral D, to be convergent.

Note that Eq. (22) is formally identical with the asymptotic form at r -» O of the
Schrodinger relativistic two-body wave equation [9-12],

(E—Vp2+m?=/p*+ M2 = V)¥() = 0, (25)

describing two spinless particles whose spectral content is restricted to positive-energy
virtual states. In particular, for V(r) ~ —«/r at r — 0 the asymptotic behaviour of the
partial waves ¥,(r) corresponding to Eq. (25) was found in Refs. [10] and [11}:

«  @2hN

= T Qi+l 0(): (26)

I—
Yr) > T “ o a

This form is consistent with our resuit (24).

4. Outlook

A natural and actually interesting field of application for the relativistic wave equations
described in this note is the quark + diquark model of the nucleon (and its excited states)
where, previously, the relativistic two-body wave equations involving two Klein-Gordon
particles were used [13] as an approximation. Note that in the case of a quark + diquark
system the effective two-body potentials V(7) and S(7) are not singular at r = 0, if the finite
spatial extension of the diquark is taken into account. So, in this case, Eq. (1) does not
suffer from the Klein paradox at r = 0 and, therefore, it is (a priori) an open question which
equation is more adequate: Eq. (1) with basic interactions smeared out by the finite diquark
extension or, rather, Eq. (5) with Salpeter nonlocal interactions (additionally smeared
out by this finite diquark extension). The latter equation is evidently consistent with the
hole theory, but as far as the instantaneous nonstatic effects are concerned it is approxi-
mate in a different way than the former equation. For instance, if formally m/M — 0,
Eq. (5) in contrast to Eq. (1) does not approach the Dirac equation [14]. On the other hand,
aquark + diquark wave equation might be expected to do it, since for m < M the quark +
diquark system could be compared (mutatis mutandis) with an electron moving in the
Coulomb field of a nucleus of a finite size [15].
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Finally, one may remark that the equal-time relativistic two-body wave equation
for two Klein-Gordon particles of masses m and M [13, 16],

E-V\* ., (m++SP+M+L1S)Y [(m+1iS’—M+L8)*) .
{ — ) —pi- - 2 .l,‘,-_(*ﬁ¥,2 ) O I )( _.r_z ,,), Yy =0,
2 2 2E-V)

(27)
can be considered as a spinless approximation both to the Breit equation for two Dirac
particles as well as to our Eq. (1).

Unlike Eq. (27), the Breit equation and our Eq. (1) are many-component and so more
difficult to solve (none the less, two sets of eight radial equations [17], equivalent to the
Breit equation, have been solved numerically in the case of quark + antiquark system with
“realistic”” QCD-suggested potentials, cf. Ref. [3] and references therein). This difficulty
in handling increases considerably in the case of the Salpeter equation for two
Dirac particles [6, 7],

. - 1 i S
{:E—(al 'P+.Blm1)(j+ WEe V> — By ’Y

Vpi+m? 2

=2 2

. o l S -
+(&y - p—Bamy) (l b V) ~ B, f~] ¥ = 0, (28)
\/p + 2

and of our Eq. (5) because of their nonlocality [8]. We hope to turn back in future to the
task of solving Eqgs. (1) andfor (5) in the case of quark + diquark system.

A part of this work was done while one of us (W.K.) stayed in the TII Physikalisches
Institut, RWTH, Aachen.
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