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A non-conformal, type one solution of Einstein-Maxwell equations for a static charged
fluid sphere is obtained and joined smoothly to the Reissner—Nordstrom solution. The solu-
tion thus obtained is analysed numerically. The solution is reducible to Schwarzschild’s
interior solution in the absence of charge. '

PACS numbers: 04.20.1b

1. Introduction

Certain solution to Einstein—-Maxwell field equations representing charged analogues
of the Schwarzschild’s interior solution were considered by Buchdahl (1979), Banerjee
et al. (1981) and Florides (1983). These solutions share at least one of the properties with
the Schwarzschild’s interior solution such as conformal flatness, constant energy density
and constant non-gravitational energy density (Cooperstoch et al. (1978)), respectively.
Also, all of these are reducible to Schwarzschild’s interior solution in the uncharged case.
In the present article the authors have worked out a non-conformal singularity-free charged
fluid sphere joining smoothly the Reissner--Nordstrom solution at the pressure-free sur-
face. The solution so obtained shares type one property with Schwarzschild’s interior solu-
tion and reduces to the latter, when charge is taken away. Unlike the other cited authors
we have studied the solution numerically as it has been carried out by Junovicus (1976)
for Krori-Barua solution (1975). Consequently, the restrictions to be imposed on the model
radius, mass and charge have been derived in order to accommcdate the reality conditions
such as positivity of pressure, energy density, electrostatic energy density etc.

2. Charged fluid of embedding type one

Karmarker’s conditions (1948) so that a spherically symmetric space-time may be of
embedding type one, can be expressed as

Ry313R2424— Ry224R1334+ Rp323R 434 = 0, @.n
(855)
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provided R,;,; = 0 (1982), (2.1) with reference to static metric in Schwarzschild coordi-
nates

ds* = —a(r)dr?—r?d0*—r? sin? 0dp> + c(r)dt?, 2.2
gives rise to
a 2" ¢ a
e ¢ totg b @3

which on first integration gives
a=((1+KF?, c¢=F? 249

K being non-zero arbitrary constant and dash denoting differentiation with respect to r.
For the said case, Einstein-Maxwell equation is given by

R,—1Ré = —8nT} = —8n[M§-+E§- s (2.5

where M} and E; correspond to matter and electric charge respectively.
The non-vanishing components of the latter can be furnished as

Mi=Mi=M3=—-p and Mj=,p, Tolman (1962), (2.6)
E} = —E% = —E} = E{ = —1g'"g**F?, Eddington (1960), (X))

and also

1 a —
Jt = T_—=g a—r("g“g“Fu J—8),

where p and p are pressure and energy density, while F,, and J* are non-vanishing com-
ponents of electromagnetic field tensor and current vector, respectively. J* as such
is accepted to be charge-density, (J* - g** being proper charge-density).

The field equations (2.5) with reference to (2.2), (2.4), (2.6) and (2.7) give rise to

! 2r

8Ty = ——— | KF'— —— | = 87p+8nEL, 2.8
mh r2(1+KF’2)( F) TP+ OmEs 28)

anr? — g = L KFF'F" ' P e

T2 =0 S FQ+KFY| rA+KF?)  14KF? 7| T TP
2.9)

" 2KF'F" KF"? _ .

8nT¢ = = 8no+8rEL, (2.10)

T rA+KF?? T P(1+KF?)

E(= 8nE}) can be termed as “electrostatic energy deﬁsity”. Therefore (2.8)-(2.10) contain
three equations with four unknowns viz. D(= 8ng), P(= 8np), E and F. In order to have
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a unique solution as a charged analogue of Schwarzschild’s interior solution, let us consider

Fe= A4+\B+Cr}, B>0,C, 4 (£0). 2.1
Owing to (2.7)2.11), we get

KCc* Y

D= 5B -?[Y(Sa-rﬂ)_+a+ﬁ], (2.12)
KC* Y :
P= o5 -7~[Y(ﬂ—a)+3ﬁ-a], (2.13)

KC?y? s
E=-— SF (B—a) (KC+1)r?, (2.14)

—-C*(1+KC0) k r*a®> 2CrY(1+KC)

4 _ . 32, -

J _\/ - (KCY) [3+ SKC 3 ] (2.15)

where
o = KC(B+Cr)""2, B =(A+VB+Cr)!

Y = B[B+(1+KC)Cr?}-.

The constants 4, B, C, and K can be utilized to join the model to the Reissner—Nordstrom
metric

2M 4me®\7! 2M  4ne’
ds? = - (1— = -’?) dr®—r2d0* —+? sin® Bd¢? + (1— ~ 4 Lf) de3.
r r r r

(2.16)

In this process, the continuity of g, ;, 244, F14 and vanishing of pressure p at the surface
r = R yield the following values of the constants:

3 R*(1 —m)—4né?
_ x[R*(1—m)—4ne’]?
B = (2.18)
_ [R*(1—m)—4=e’)?
C = R @.19)
K = ARA—m) (2.20)

[R*(1—m)—4ne* ]’
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where e = 1 or —1 according to (m—x) >0 or <0 and

8xe? 2M  4ng?
m=1——+

x=1- > T e
MR R R

It is very easy to observe that the vanishing of charge £ makes the model reducible
to Schwarzschild’s interior solution.

The regularity conditions, viz. p, = ¢, = g;,, = 0 and ¢ > 3p > 0 are satisfied at
r = 0, provided '

4c JB

MR > 8 2and3>—————_~>
e KC*(A+/B)

(2:21)

Still, the behaviour of g, p, E and J* is not known in the required region 0<{r<C R. To
study it, the analytical methods are not that handy. Therefore, the said physical quantities

have been computed numerically and thereafter the limitations on R, M and ¢ have been
fixed.

3. Numerical values of the physical quantities

A careful survey of the expressions (2.12)~(2.15) along with (2.17)-(2.20) reveals
that the expressions for PYR?, DXR?, EXR? and J*XR* are functions of three dimensionless
quantities, viz. S = (4ne?)/MR, Y = 2M/R and X = r/R. Now, let us investigate the limita-
tions on S, Y and X:

() It is very clear that from the origin r = 0 to the surface r = R, X occupies the
interval 0 < X <1,

(if) The reality of g,, at the origin requires B > 0 and hence from (2.18) we get x > 0
and therefore 0 << S < .5.

(iif) To ensure the reality of m in (2.17) and knowing that S cannot exceed the value
0.5, we immediately get 0 < ¥ < 1.

Now, the values of PXR2, DXR?, EXR? and J*XR? (= J) have been computed numeri-
cally for the set cross product SXY by taking S = 0 (0.05).45 and ¥ = 0(0.06)1. for the
interval X = 0.(0.1)1. Besides this, some other values of Sand Y have also been considered
to get a better insight. Consequently, g, p, E{ and ¢—3p were found positive and J*regular
(reality conditions) in the following regions of the S-Y plane.

Behaviour of some physical quantities in the S-Y plane

S 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Y 0-0.54 |0.12-0.6 |0.24-0.63 | 0.36-0.66 | 0.48-0.72 | 0.6-0.78 | 0.72-0.84 0.9

On account of numerical computation of the values of various physical quantities such
as p, o, E and J* we come across the following observations:
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TABLE [
Actual values of D, P, E and J for some values of S and Y
§=00 Y=054 §$=005 Y=024
DXR* | PXR* | EXR* | FJ*XR*| DXR* | PXR* | EXR? FJXR?
0.0 1.620 0.594 0.000 0.000 0.780. | 0.036 0.000 0.085
0.2 1.620 0.482 0.000 0.000 0.774 0.034 0.0002 0.083
0.4 1.620 0.417 0.000 0.000 0.757 0.029 0.001 0.079
0.6 1.620 0.312 0.000 0.000 0.729 0.022 0.002 0.072
0.8 1.620 0.173 0.000 0.000 0.692 0.012 0.004 0.063
1.0 1.620 | 0.000 0.000 0.000 0.649 0.000 0.006 0.054
=0.1 Y =042 =0.15 Y =048
0 1496 | 0.139 0.000 0.207 1.903 0.156 0.000 0.314
0.2 1471 0.132 0.0009 | 0.200 1.848 0.147 | 0.002 0.298
0.4 1.398 0.110 0.004 0.179 1.697 0.119 0.008 0.255
0.6 1.289 0.782 0.008 0.149 1.485 0.813 0.016 0.199
0.8 . 1157 0.399 0.014 0.116 1.253 0.396 0.026 0.144
1.0 1.016 0.000 0.021 0.083 1.030 0.000 0.036 0.968
=02 Y =06 =0.25 =0.72
0 2.700 0.308 | 0.000 0.530 3.780 | 0.635 0.000 0.918
0.2 2.580 0.284 0.004 0.490 3.535 0.573 | 0.006 0.819
0.4 2268 | 0.222 0.015 0.392 2935 | 0.423 0.024 0.595
0.6 1.867 0.143 | 0.029 0.277 2.241 0.250 0.048 0.369
0.8 1.469 0.650 0.046 0.177 1.633 0.105 0.072 0.205
1.0 1.128 0.000 0.060 0.104 1.170 0.000 0.090 0.104
$=03 Y =0.78 S =035 Y =09
0 4.973 0.771 0.000 1.355 7.425 2.164 0.000 2.901
0.2 4.501 0.679 0.013 1.159 6394 | 1.790 0.010 2.275
0.4 3.444 0.469 0.044 0.759 4.373 1.066 0.054 1.217
0.6 2.395 0.256 0.079 0.419, | 2.697 0.490 0.110 0.539
0.8 1.604 0.986 0.104 0.213 1.643 0.162 0.146 0.228
1.0 1.076 0.000 0.117 0.105 1.030 0.000 0.158 0.098

1. Pressure p has maximum value at the centre and then decreases continunously to zero
value at the surface.
2. Energy density ¢ has maximum value at the centre and decreases to a non-zero
positive value at the surface. It is observed that, once o—3p > 0 at the centre, it continues

to be so up to the surface.

3. Electrostatic energy density E has zero value at the centre and then increases
continuously to a finite value at the surface. It is worth pointing out here that pressure
equals electrostatic energy density only once in the region 0 <r < R.
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4. Charge density J* decreases continuously from a non-zero value to another non-
-zero value at the surface. Numerically, the charge density dominates pressure as well
as electrostatic energy density throughout the region 0 <r << R.

Besides the above observations, a better insight is achieved if one reads through the
table of actual values of pressure, energy density etc. (Table I).

4. Concluding remarks

The authors have derived first ever charged analogue of Schwarzschild’s interior
solution, joining smoothly Reissner—-Nordstrom solution. Moreover, the limitations on
model radius, mass and charge have also been established successfully.

REFERENCES

Banerjee, A., Santos, N. O., J. Math. Phys. 22, 824 (1981).

Buchdahl, H. A., Acta Phys. Pol. B8, 673 (1979).

Cooperstock, F. L., V. De, La Cruz, Gen. Relativ. Gravitation 9, 835 (1978).

Eddington, A. S., The Mathematical Theory of Relativity, Cambridge University Press, London 1960,
p. 185.

Florides, P. S., J. Phys. A 16, 1419 (1983).

Junevicus, G. J. G., J. Phys. A 9, 2069 (1976).

Karmarker, Proc. of Ind. Ac. Sc. 27, 56 (1948).

Krori, K. D., Barua, J., J. Phys. A 8, 508 (1975).

Pandey, S. N., Sharma, S. P., Gen. Relativ. Gravitation 14, 113 (1982).

Tolman, R. C., Relativity Thermodynamics and Cosmology, Clarendon Press, Oxford 1962, pp. 243, 264.



