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The leptonic sector of an electroweak plasma in an external magnetic field is studied
within the Weinberg-Salam model. Nonvanishing chemical potentials u,, u, related to-
electric charge and leptonic number are introduced and used to establish the set of equations.
describing the chemical equilibrium of the system, which will be taken as electrically neutral.
The partition functional is expressed in terms of an effective Lagrangian dependent on p4, u,
as background fields. Gauge conditions dependent on u;, u, are imposed. By using them
and expanding the charged fields in magnetic eigenfunctions, the functional integration is
performed in the one-loop approximation. The thermodynamic potential is written in terms-
of the spectra of the physical particles, and the equilibrium conditions are discussed. No Bose
condensation in the usual sense occurs at T # 0 in the presence of the magnetic field, but it is
produced in the T = 0 case. By calculating the magnetization it is shown that an increase-
in the lepton density may provoke an increase in the effective magnetic field.

PACS numbers: 12.15.Ii

1. Introduction

This paper is devoted to the study of an electroweak plasma in an external magnetic
field at finite temperature and nonvanishing chemical potentials. It is concerned with
the leptonic electrowacek sector only, i.e. hadrons or quarks may be considered as part of’
the heat bath, in thermal equilibrium with our system. There are at least two reasons for
considering the present study as interesting: first, the recent discovery of W* and Z mesons,
confirming the predictions of the Weinberg-Salam (WS) model, makes electroweak processes
very important in the high energy astrophysical context. In second place, from a methodo-
logical point of view it may be desirable to have a systematic quantum statistical study
of electrowaek systems in magnetic fields — the natural generalization to electroweak
theory of previous works [1]-[4] in quantum statistical electrodynamics.

‘The first part of the paper is devoted to obtain the quantum statistical generating
functional Z (or partition function) of an electroweak plasma by considering as non-
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vanishing only the chemical potentials u,, u, related to electric charge and lepton charge.
The conditions imposed on the chemical potentials by the requirement of equilibrium
under the elementary interactions between the particles are established. The second part
of the paper deals with the case of an external magnetic field. A set of gauge conditions
dependent on the chemical potential p,, is chosen. This particular gauge, together with
the use of magnetic eigenfunctions for the charged fields, makes the functional integra-
tion easily calculable in the one loop approximation. The thermodynamics potential is
written in this approximation in terms of the spectra of the charged particles in the magnetic
field and also in terms of the spectra of the neutral particles. The energy of the vacuum
due to the external field is calculated. Expressions are given for the electric charge and
leptonic pumber in terms of the mean number of particles and the conditions for equilib-
rium are discussed. The problem of the Bose condensation at T = 0 is studied, the magnet-
ization of the system is obtained and its relation with neutrino density is discussed. Finally,
in the appendix the explicit form of the propagators of charged particles in the magnetic
fields is written.

No attempt is made in the present paper to discuss the problem of symmetry restora-
tion. The effect of magnetfc field alone is discussed by Linde in [S] (see also Salam and
Strathdee [22]). The simultaneous effect of temperature and magnetic field was later studied
by Chakrabarti [18], who excluded the unstable mode, and more recently by Reuter and
Dittrich [21] by using the fact that instability is cured when higher approximations are
taken.

2. The electroweak partition functional

a) The WS Lagrangian, currents and charges
We start from the Lagrangian for the WS model [6]

_ 8 i, . 8
¥ = -1G.,G\—5F,F,,—PLy, (6,,—1 it'Wu+z —2—3”) v

’ 2
- .t . g i . g
—&y,(0,+ig'B,)eg — (6,,-—-1 5t W,—i o> B“) é
O 7 At Ay § 2,2
—A(Prder+Ed ) — 'Z(QS ¢—a’), 1
where
G., = 8,Wi—0,W;+ ge*"WiWy Q®)

is the field tensor of the SU(2) non-abelian field and

F,, = d,B,~0,B, A3)

is the abelian gauge field tensor.
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The left-handed spinor doublet is!

v =317 (e) “)
and the singlet right-handed spinor
e =5 (1+7%)e )

In (1) Euclidean metric is used, g,, = (1,1, 1, 1). This means that 8, = —id,, W, = —iW,,
B, = —iBy and y,9,+7,y, = 25,,. The scalar field is defined as

¢=le) ()} ©

I/Jf (g) being the vacuum expectation value of ¢ in the tree approximation, where & % 0

is the symmetry breakdown parameter. By taking ¢ as the minimum value of the potential
scalar term —JA,(¢’p—a?)?/4, ie. & = 2a%, we get the o field as massive (m, = /2,4),
and as a consequence of Higgs mechanism the fields 4!, 42, #* become massless and non-
physical, whereas the charged vector meson fields

wE = i(Wlewz) @)
u ﬁ B B
and the neutral field
1

—_— 3 !
Zu*\/g2+g'2( Wi +¢'B,) ®
become massive, and the electromagnetic field
1 T3
A, = "\m (g'W, +gB,) ®

remains massless.
The Lagrangian (1) is invariant under the set of infinitesimal gauge transformations

Wi — Wi+(3,0" + ge® Whi',

v, - <1+i2§ d—i i; ,1°) i, (10)

8 i, . & 0
= 1+iztAl+i— A 3
@ ( 121' 12 )(P

B, — B,+8,2°, e — (1—ig'A%)es,

! Other lepton doublets may be included. We omit them for simplicity.
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where 1* are the Pauli spin matrices and A}, i = 1,2, 3, 1° are infinitesimal parameters
of the SU(2) and U(1) gauge transformations, S = exp (igz'4/2) and U = exp (—ig'1°/2),
respectively. The Lagrangian (1) is invariant also under the independent U(1) global
transformation

v €'y, e > €% (11)

Due to the invariance of (1) under the global version of the set (10) we get the conserved
Noether currents

i T g g
j* = —gGi, "‘W’—lgtp,_'y,,yzp,‘+ (6 —i TW‘—I—EB)(ﬁ(l?‘L'k) ¢t

’

4 .8 ;.. .8
_ (, Tk)qs(aﬁl £ i EB") o, (12)

o (.g\ ., 8 . . & . g
Ju = Py, (1 E) YL+ ery,(ig)er + (@,—t?r W,—i _EB")(I)(I E) Y

—(ii)qs(a +17‘5Wl+l—— )qS* (13)

The electromagnetic current is obtained from the linear combination
B \/ T = (gYa+8i)- (14)

From the invariance of (1) under (11) we get also the conserved leptonic current

Ju = Py, P+ i en. (15)

The fourth components of (14) and (15) are the electric charge density Q° (the electro-
magnetic coupling constant is e = gg'/(g2+g'2)"/?) and the lepton charge density Q'. From
(12) and (13) we may get also the charged and neutral weak currents. However, in the present
paper we do not consider their fourth components charge densities in order to write the
partition functional. In other words, their associated chemical potentials will be taken
as zero.

b) The Hamiltonian

In order to write the Hamiltonian of our system, we obtain at first the momenta
conjugated to the set of fields

ph =Gy, pb=iF,, (16)

plpL = iwL}’O’ pGL = 09 peg = ieR?O’ p;g = 0’ (17)
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Py =i (a4+i g TWi+ z%— 84) ¢, (18)
pst =i (a4- i g TWi—i -i— B4> ¢. (19)

In terms of these momenta we give the explicit expressions for the electric and lepton
charges

i l .
Q°=e [pve’3"Wv"+ 5 Pe(ts = DY = iPenn

— i [2 (& + Dt +[& (2 + D] (ip.,,)], 20)

Ql = Plpx.'pl.“l'penek‘ (21)

Note that as soon as x, is taken as a real variable, i.e. 0, = 8/0x, and W/, B, as real
- fields, the momenta ip, and ip,+ are Hermitean conjugated. From (16)~(19) we get easily
the Hamiltonian

H = 1 pipl+1 GGl —ipl(0,Wi— g WiWh) + 1 pPpl + 1 F,F

. g . & _ 8 i, .8
- IPf(avBat)_PwL (‘2“ TWs— 5 34) YL+ P (ak"l 5 fiWk'H “2— Bk) YL

+ Pec(igBs)er +2x71(0, +ig'Byyeg + poPyt

8 i, . & 8 i . 8
+(8k+z—2—rW,f+178,‘)¢f(ak—:?1W,f-x—2—3,,)4)

, .8 i . 8 . .8 4
—1P¢(—177iW4—l*2—B4)¢—1p4,f(l-2—tWi+17B4>¢1‘

. - A
+h(Tudent @bty + 2 (#19—a’). 22
Due to the constraints (17), 5 is independent of the momenta p,,., p5,, Peg> Doy If adequate
four divergencies were added to s# we would get the terms
iWa(Ouph— e pIW)) +iB4(0.PF) (23)

instead of the third and sixth term in (22), the quantities in parenthesis being the constraints
of the gauge vector fields, and W,, B, playing the role of Lagrange multipliers. We shall
use the Hamiltonian in terms of the Euclidean variables x,, Wy, B, in order to write the
partition functional.
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c¢) The partition functional and the equilibrium conditions

Following Bernard [7], Kapusta [8] and Tyutin [9] we may write
Z = N(B) § Dp,Dp,Dps, DPy PP DPerDPyDPot
x | DW,DB, DDy D Dex DD S(p})5(p%)

3 .
X 5(p w;,)é(P v " iV_’Jo)é(PZg)a(P er iéRyO) rIO 5(61) Det M
j=

ﬁ . . - .:_ _'
exp [g dxy | @x{i(P,Wi+ PEB,+ Py YL+ Dy Lt Paglr + Peb + Pytdh)

—# + Ny +pN, 1], 24

N(p) being a temperature dependent constant. In (24) the momenta-dependent delta
functions account for the constraints (17) and also p§ = 0, p§ = 0 among (16), G’ = 0
stands for the set of gauge conditions and

8G’

Det/l=DetEk—, j k=0,1,2,3 (25)
is the Fadeev-Popov determinant. In (24) dots mean x, derivatives (not time derivatives),
N, = Q°/e is the density of charged pacticles and N, = Q' the density of leptons. The
boson fields are periodic in the variable x, with period f whereas th: fermion fields are
antiperiodic. This is 1eflected in the p, Fourier components of these fields, which are respec-
tively 2nn/p and (2n+1)n/f, n being any arbitrary positive or negative integer. It must be
pointed out also that when performing the functional integratiop the Fermi fields must
be taken as Grassman functions. If products of the fields by adequate external currents
were added to the exponential in (24), we would obtain a functional Z dependent on these
currents from which the Green functions and the set of coupled equations which they
satisfy may be obtained by the standard methods of functional differentiation. We do not
proceed in this way and shall concentrate later in the calculation of the thermodynamic
potential. Before doing that we shall establish some relations among the chemical poten-
tials. By calling Ny, N,, N, and N, the number of particles densities (particles minus anti-
particles) for the W mesons, electrons?, neutrinos and charged Goldstone boson fields,
the term p,N,+u,N, in the exponential in (24) can be written as

N +pNy = Ny +(p + )N+ pp N+ 1y Ny, (26)

and calling p, the chemical potential for the electrons we get from (26) that it is equal to
the sum of the electric and leptonic chemical potentials

He = Hy+ pha. 27

2 Due to the fact that the chemical potential for neutral weak charge was put equal to zero, the chemi-
cal potential for left and right electrons is the same.
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Equation (27) may be better understood from the following reasoning: thermodynamical
equilibrium requires that the Gibbs free energy G should be a minimum. We may write
G as a sum formed by the products of the number of particles of each kind by their chemical
potential, and we shall consider the chemical potentials of particles and antiparticles as
different in principle (the chemical potentials of the neutral fields 4, Z, k; and ¢ will be
taken as zero)

G = pe-Ne-+ptes Nes +iw-Ny- + fw+ Ny+ + 4N+ i5N3
+Up-Ny-+ py+ Ny,
(h* = (k' £in*)[/2). (28)

By equating the variation of G to zero, under the condition that the number of particles
changes independently under each of the processes depicted in Fig. 1, we get a set of rela-

- >
€ n W »
Z. Zu Zu
b e\ d w e
+ wo oW Ze Wi Z. bt
+ 4
Wau /
\\
y W W Zu Wo Zn KO
g h i j

Fig. 1. Some of the elementary processes in the electroweak plasma are illustrated here. An equilibrium

equation among the chemical potentials may be associated to each of them. As the chemical potential

related to weak neutral charge was taken as zero, the same chemical equilibrium equation is valid for b in the
cases of left and right electrons

tions among the chemical potentials. In particular, for variations in the number of particles
under the diagrams a, b, ¢, d as the number of particles and antiparticles must be equal,
we get

Be+tHe- =0, pys++pw- =0, p+p;=0
(He- = Her  Bw- = My, By = }) (29)

i.e., the chemical potentials of each particle-antiparticle pair are equal and opposite in
sign. Under processes like f, taking 6 N =0 N; = —oNy,., we get

He-+ 15 = pw- (30)
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in a similar way we get
HBe++py = ey Hp- = Py-. 3D

The set of chemical equilibrium. equations (29)«(31) are nothing but expressions of the
general laws of electric and leptonic charge conservation. It is seen in particular that (27)
is a consequence of (30) and (29), and it expresses the equilibrium under beta disintegration
{and recombination) of W mesons.

By integrating (24) over the momenta we get finally

B
Z = N(B) [ exp [— [ dx, [ d*xZ 4 ]DW.DB,D§DyDeDeg DD *
4]

3
x [] 6(G’) Det .#, (32)
j=0

where

Lett = Llwa-rWai+i(u/gst

Bs~>Ba+ins/g’

Do habven (33)
If we replace iy, by pi, and ip, by pj in & with pj and p) real the generating functional
(32) is formally equivalent to that of quantum field theory except for the following facts:
i) Space-time variables have been substituted by Euclidean ones where 0<Cx,< 8.
Fields four vectors are taken also as Euclidean by taking their four components as real.
ii) Lorentz invariance is replaced by covariance under a real orthogonal trans-
formation.
i) The W} and B, fields are shifted by the addition of the background fields (i,/2)d,4
and (iu,/g')0,4 Tespectively.
iv) Fermion operators have been substituted by their gauge transformed y; — v exp
(inhxs), ex — egexp (inyxy). For the functional  Z we may take as valid all the facts
already established for quantum field theory (keeping in mind that in order to obtain
good statistical quantities and equations of motion, the fourth components of the fields
W., B, and p}, p) must be continued to their imaginary values). In particular, we may
accept then as a fact the gauge invariance of (32) under the new transformations for the
vector fields®

an + i(ﬂl/g)5v4 - an + l(“l/g)av:d- + av)'3 + ig(Wv-'.)'_ - Wv—)'+):
n’v:F e WV:F + (av :F#15v4))'; ¢ lg)“3 VVV:F i lg)"q: sta
AF > (A' 22 /2,
B, +i(p1/8")8ya = Bu+i(pt1/8')8,4+0,4°. (34

3 We shali adopt the viewpoint in the following, that the background field is fixed and that the gauge
transformations involve only the fields to which it is added. This means that in (34) and (35) W3, B, and
o (and not (#1/2)0vs, (#1/g")0ys or & are transformed. (See De Witt [10]).
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We also write the infinitesimal gauge transformations for the scalar fields A%, 42, {+¢

hE o> b+ 2i(gz3+ g 20k + % AE(E+oTFikd),
B o B =1 (AT A 43 (8- 81°) (4 0),

S Y ‘g‘ (h* 37 +h" A7)~ 3 (gA°— g 2. (35)

It is not difficult to see that the gauge transformations (34) and (35) commute with the
abovementioned U(1) gauge transformation associated to lepton charge invariance.

We call the attention of the reader about the fact that although our calculations will
be made in the context of quantum statistics (four components of momenta are discrete
variables, as pointed before) we have in mind the natural extension of the theory derived
from Z to the time dependent quantum kinetical case. In this case analytic continuation
k4 — iw of the four component of momentum must be made according to Fradkin prescrip-
tions [11], and the condition of unitarity must be satisfied by the new time-dependent
theory (see [2] for the case of quantum electrodynamics in a medium).,

As the functional Z satisfies the requirements of gauge invariance (the ficlds £, p are
to be considered as background fields which satisfy the classical equations of motion),
we may choos: A** '3 = 0 among the set of gauge conditions, which is the analog of the
unitary gauge in quantum field theory. This means that 27* 73 play the role of Goldstone
bosons which may be excluded from the theory. Physical quantities like the thermo-
dynamic potential Q would then be obtained in terms of the spectra of real particles.
Neverthelzss, the resulting statistical thecory would not appear to be renormalizable. For
that reason, other gauges are preferable, and according to the gauge ipvariance of Z,
must provide the same results, say, for Q. We shall confirm it in the first order of perturba-
tion theory in a special gauge which will be used in the next Section.

As a consequence of our reasoning the only permissible direction of the symmetry
breakdown parameter is the one already chosen, i.e., along the 3rd isotopic axis. This
may be easily seen by writing the classical equations of motion for the effective fields,
from the Lagrangian (33). If we start by considering two possible isotopic directions for &,

Esin a

by Kapusta [8], where an external compensating charge is considered to be present in the
vacuum and consequently the Higgs condensate is charged too, a = 0. Our present study
is concerned with a neutral vacuum, where the electric charge is carried by the bosons and
fermions excited in the medium. (The strict validity of our assumptions requires, neverthe-
less, that the mean charge of the system ( Q) = —edQ[0yu, be equal to zero). One of our
motivations is in that considering the charged vacuum would require according to Ferrer
and de la Incera [12}, a drastic rearrangement of quantization and the change in the number
of degrees of freedom.

. cosay. . . .
le. (5 >1t is easy to see that in our case « = =/2, contrary to the case discussed
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It must be pointed out that the gauge conditions G' = 0 in (32) depend explicitly
on the chemical potential y,. Once they are fixed, we may use (34) and (35) to obtain
Det #. From this we may proceed to evaluate Z. In the next section we shall obtain Z in
the one-loop approximation for the case of an external magnetic field. Before it, we shall
write the term dependent on the SU(2) gauge field in %, in terms of the fields W*.

We have

:vff = _% (Fﬁleiv'*'F;sz;lw'*'szsz): (36)
where
FL, = o, W5 —o, W, +ig(W,” W, — W} W5,
F2, = 0y W, =0, W, —ig(W, W, —WW,"),
a;t = avi.ulévd.’

G2, = oW} —o, W —ig(W} W, —~W, W>. 37

3. The case of a constant external magnetic field
a) The Lagrangian

We shall specialize now in the case of a constant external magnetic field by taking
3_ ¢ 3 €
Wu = EA“'I‘W”, Bll == ?A”'l'bu, (38)

where A, = Bx,8 ,,, B being the magnetic field intensity. The form (38) excludes the possibil-
ity of an external neutral quasimagnetic field Z, i.e., only the classical magnetic field
would result. This means that our system is far from the condition of restoration of the
broken symmetry (see Linde [5]).

The gauge transformations (34) may be written now in the form (the background field
(ied,~ p1,9,4)/g is considered as fixed, see footnote 2):

WF — WF +(3,F 10,4 1A AT igl WF +igw®AT,
w2 > wl+a A +igW, AT —w, AN, 39

If the effective Lagrangian (33) is expanded up to terms of second order in the fields W,,*, wi,

we may eliminate the terms linear in these fields which appear in the expansion, once their
coefficients are the classical equations of motion for the fields. We shall take then the terms
linear in these fields in (37)

Fp, = (0, +ied )W, —(8; +ied)W,",

FL, = (0, —ied )W, —(0; —ieA )W, . (40)
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We also have
G, = 8,w)— 0wy +ig(W, W, —W, W, )+G), (41)
where va = 0,A4,~0,A,; we shall use also
Loy = O,wy— 0w, (42)

By calling v* = OF Fied, we get finally for the first term of the effective Lagrangian in the
quadratic approximation

2
[4
Fr =1 7 GG+ 3 W,H(V28,,—V V) —2ieGo YW,
+EWo(VET26,,—V, V] +2ieGoW," —L g8, (43)

In the same way we get for the second term of the Lagrangian in the same approximation

2
e
gfﬂ‘ = _7417 g_,fz vacgv‘%f;tvf;w’ (44)

where f,, = 0,b,—08,b,. From (44) and the last term in (43) we get the term

’—% guvguv_%.f;n w = —'% huvhyv_% zuvzuv (45)

here h,, = 0,a,~0,a, is the linear part of the electromagnetic radiation field tensor and
Z,, = 0,Z,~0,Z, is the linear part of the neutral Z, field tensor, where

i
a, = —=——=(g'w; +gb,),
B »\/g2+g'2 B 3

1
Z, = ——— (—g'w+g'b). 46
" \/g2+g,2 B |3 ( )

The third and fourth terms in %, contribute with the three bilinear-in-the-fields terms
Ll = —Vir0y— 20,6 )VL — €.7,(8, — Hebya + €A ey
—eg¥W(0y — Hedya+ 164, )eg. 47
The fifth and seventh scalar terms can be approximated to the same order as
Ll = — VIRV BT ~My(V hOW, ~Mu(V hOW, + MW, W,
+3mlo®+10,00,0+% 8,h°8,h> + M,Z,8,h°+1 M2Z2], (48)

where My, = g¢/2, m, = VA/2& My =3 Vg7 +87 &
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Due to the Higgs mechanism the fields £+* 73 are massless Goldstone bosons whereas the
vector fields Z,, WX acquire mass. The scalar field also becomss massive, m, = JA2[2¢.
Finally, we have the contribution from the interaction Yukawa term

ZLe = —m(Eer+8rer) (49)
which supplies the mass m = 1, to left and right electrons.

b) The gauge conditions

We shall adopt the following set of gauge conditions, dependent on the chemical
potential u, and of the masses of the vector fields*

G'=V WS —Myh* =0,
G* =V, W, —Muyh™ =0,
G =0,Z,+Mzh* =0,
* = d,a, = 0. (50)

These gauge conditions may be incorporated to the Lagrangian in the form of the additive
terms.

—(Vy W, —Myh™) (Vi W, —Myh*) =% (0,Z,+ Mh®) (0,2, + M k%)

_';— (avav) (aaau)' (51)
This may be accomplished by following the usual trick. The gauge conditions are sub-
stituted by 3(G'—d'(x)) where a'(x) are a set of arbitrary functions. Then Z is multiplied
by an adequate a'(x) dependent Gaussian functional and integration over these arbitrary
functions is finally performed.

One may wonder to what extent the choice of the u,-dependent gauge conditions
introduces, through 8(G”) in (50) an additional dependence of Z on 4, (apart from the
one coming from the term — p, N, in (24)), which fact would ban the use of the chemical
potential for producing the average charge density through differentiation 9 1n Z/dy,
= (Ny>. The answer is negative and comes from the fact that Z does not depend on the
choice of the gauge conditions (50) nor on the a‘(x) dependent gaussian functional which
is used to obtain the gauge conditions in the form (51). A change oG caused7 by a variation
of u, in Eq. (50) is equivalent to a gauge change in the field functional integration variables
W;, B,, ¢%, ¢ which do not chang: the functional integral due to the gauge invariance of

P o (cf. De Witt [10]).

After simple transformations it will be seen that the mixed scalar and vector terms in
(48) as well as the mixed derivative terms y; vy and 9,0, in (43) and (45) disappear due to
the gauge terms (51). Such simplification means to play the price of giving back formalIy

4 The first two are the analog of the ones used by Mc Keon in quantum field theory to obtain the
radiative corrections to the neutrino propagator in a magnetic field [13].
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—MZh*h™ -1 Mi(h®2
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(52)

However, the contribution of these fictitious massive fields #* and 4® will be completely
cancelled by the Fadeev-Popov determinant. For the latter we have, in the zero field limit

(Vi2_ME 0 0 o
0 Vi2-My 0 0
Det .# = Det Mg’
“lo 0 -8 My MBS
\/ g+g? 2
L0 0 0 2
g -
= Det 55—y [(Vi."% = MR) (V% = M3) (0~ MD)P}]. (53)
g +§g

As will be seen later, each of the terms in (53) cancel superfluous degrees of freedom in
the functional Z. The first three contribute with a sign opposite to the one of the fictitious
fields h*, k3 plus similar terms coming from extra degrees of freedom of each of the gauge
fields W7, Z,. The'ast term 82 cancels the contribution of two of the nonphysical degrees
of freedom of the photon field term. Itis very important to stress here that when the function-
al representation of Det .# will be given the fourth components of momentum in (53)
must be taken as summed ovzr even values, p, = 27n/f (see [7] and [9]). This means that
the propagators of fictitious particles (ghosts) would contain Bose and not Fermi distribu-

tions.
c) Expansion in terms of magnetic eigenfunctions

To obtain Q it is required to perform the functional integration in Z. To that end we
shall expand all the charged fields in terms of magnetic eigenfunctions

F e d(Xa %) = XTI g () (54)
where @,(¢) are the Hermite functions multiplied by (eB)"/*
(&) = [(B)*[n"/*2"*(n!)!*]e™ ¥I2H, (&) (55)
and
¢ =./eB(i,—pyfeB), n=0,1,2...
We have the orthogonality relations
§ St s D) g psnpeXas X)dxed>x = (20) By, o0(p3—P5) 5Pz~ P)onwe  (56)

Calling

V,=8,, V,=0,—ieBx;, V? =V24V2432+(0,+pu,)*
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we have
(V2= frspspe = — i v 2eBRSiE 1 poppes 7
(Va+ iV firpsps = — i /26BO+D) i 1 paspsipes G8)
VR ne = [T i) + 3+ 2eBr] L 0 (59)

Using now the expansion

1 ) -
Wui(x) = (21:—)27 Z z J‘ dp2 J‘dPSWui('h D2s D3» p4)ﬁ:?;z,p3,p4(x4, x)
n pa

we shall evaluate the contribution of the fields W* to the partition functional. The set
n, p,, P3, Pa Whenever possible in the following will be symbolized by g. We must bear
in mind that p, = 2rnJ/B, ] being any positive or negative integer.

We have

: 8 ‘
Zy = [ DW,}DW, exp[— [ dx, | d’xL ] = | DW,' DW,”
0

B

1 i ’ t - ’ -

ol g[S T3 o o o
pa’ P4 n 0

x [(VE2—M3)0,,+2ieGoIwy (@) f," + h.c.]}

_ H J D D™ exp {_ = y Z j d, f dps[w; (D A@, W (@)

n

+w (DA (@pwy (q)]} = H [Det (4,,4,,)]” "2, (60)

where
Auv = [(p4 + iﬂl)z + pg + M%V + zeB(n + %)]6[“ - 2ieG2v'

d) The thermodynamic potential
We get easily from (60)

1 eB +
Qy = — Flnzw =~ Z z j dp,[In Det 4,+1n Det 4,7]. (61)
Pa n -o
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In (61) we have called 4, to the determinant of A4,, with respect to u, v indices
Ay = [M3+(pa+in)+p3+2eB(n+ T
X [Mg+(pa+ing)+p3+2eB(n—1] [My+(a+ip,)* +p3+2eB(n+3)].  (62)

In the Appendix we shall see that the second and third brackets are related to the left and
right handed circularly polarized eigenmodes of the Wi propagator in the magnetic field,
whereas one of the factors in the first bracket is related to the longijtudinal eigenmode
(the other factor is cancelled by Det .#). The zeros of Det A v as a function of the variable
ips— 1 give the energy spectra corresponding to these states of polarization. The ground

state occurs in the left-handed mode, for n = 0, giving the energy sg =Vpi+MZ—eB.
It corresponds to the case of spin opposite to the magnetic field. For My < eB it would
give a tachyonic unstable state [14]. Here such situation is avoided whenever My >./eB.

We must make an important remark concerning (61). The integral in p, is absent
due to the fact that Q is the thermodynamic potential per unit volume. The double integral
in p,, p; gives quantities per unit area, once we may consider that integral as the limit (if
the system is enclosed in a box Ly xL, xL;):

Z Z(--.) = (2 = J Pz'fdpa( y) (63)
2] P3

if we use p, = eBx,, we have —L;[2< x,< L,/2 and the quantity per unit volume is

Ly le,ll:f:l;*coL L2L3 Z Z( )_ (2 ) j p3( ) (64)

But this is seen directly by the fact that as 4, is degenerate with respect to p, we must take

B
lnDetQ=Span=6;)—2ﬁZ Zjdpg,an, (65)
n P4

where Q is any of the brackets in (62), i.e. the Sp operator acts only on the variables
DPa> D3, .

The sum over p, may be carried out by the usual trick of differentiating at first with
respect to charge, summing over p, the resulting expression, and then integrating over
the charge. To obtain the final expression for Qy we must take into account the contribu-
tions from the terms A*(v. ™% — M2k~ due to the Goldstone bosons and the first two terms
in the brackets (53), to the total thermodynamics potential (remember that A2 acquire
formally a mass due to the gauge conditions). Their whole effect is to cancel the factor
two in the exponent of the first bracket in (62), once A* contribute with the term

In [Det (V{7 ~ M3)]™ V2[Det (V{2 - M3)]~ /2 (66)
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and Det .# with
In [Det (V{2 —M3)] [Det (V{2 — M3 (67)

We have finally for the charged vector boson sector of Qy°

o0
eB )
Qw _ 4_.;IZ_ﬁ J‘ dpg[ln (1 _e—(aqo—ul)ﬂ) (1 _ e—(¢q°+ﬂl)ﬂ)+ﬁgg]

eB
* 45 z 2 f dpy[in (1= 0% (1—e™ 1) 1 fe,];

By =3—60 & =VpI+Mi—eB, ¢, =+pi+Mi+2eB(n+y).  (68)

The &, ¢, terms added to the logarithms in the brackets in (68) account for the vacuum
energy due to the external field. Later we shall give their separate expressions together with
the analog term due to the electron-positron contribution.

By performing the integration over the fields Z,, 4, we get the thermodynamic po-
tential terms due to the neutral vector boson and the electromagnetic fields

z = (211‘—3)35,[[111 (1—e ")+ pe,1d%p, &, = \/P2+M% (69)
and
Q, = —23— f [In(1—e %) +pwld’p, o =/p% (70)
(2n)°p

It must be pointed out that the functional integrations are performed in (69) and (70)
after the linear transformations (8) and (9) or (46) are made in (32). Its Jacobian is equal
to unity. The extra degrees of freedom have been cancelled in the following way: for the
Z,, field, by a procedure similar to the W* fields, as a result of the combination of the third
term in the bracket in (53) with the contribution of the Goldstone boson A3, giving the
term

In Det [82 — M3]"/. 71
For the photon field, the last factor in the brackets (53) gives the term
In Det [2]. (72)

After the functional integration in (32), the expression (71) cancels one degree of freedom
to the Z, field and (72) two degrees of freedom to the photon field.

5 Expressions close to (68) were obtained by Cabo, Kalashnikov and Shabad for a gluonic plasma
in a magnetic field [15] and by Chakrabarti (18] in the u; = 0 case.
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By using the expansion of the electron-positron field in terms of the magnetic eigen-
functions (54), and using the standard procedure for the functional integration of Fermi
fields [16], we get

Q= —3 252 J dps[In(1—e a7ty (14 Batrhy L BE T = Q. = 3 Q,,
71
(73)
0, =2—00s E, = pi+m>+2eBn.
The neutrinos contribution is also easily obtained as
iy )3 3 f d®p[ln (1+e~ @742y 1+ 2P 4 e 1. (74)
Finally, the Higgs scalar term is given by
Q = d®p[In (1—e ")+ Be,], (5
a5 - )
g, = Vp*+mZ.

The total thermodynamic potential of our system in the one-loop approximation is accord-
ing to (68), (69), (70) and (73)(75)

Q= Qu+2,+02, +2, +02,+2,+2,. (76

If the logarithms in (68) are expanded in series and use is made of the integral representa~
tions

exp (—B/5) = B2 ? (mt®) Y2 exp (— /4t —st)dt, a7
0
a~V? = g1 ? e” Py 12dy, (77a)

we may write the term Qy, in another form (remember that we suppose Mg > eB so that
no imaginary energies would be implied). We have

Qy = O3 +0%, (78)

where

-]

1
oy = - 82 cosh u,If f ~Mwi- 4: eBcsheBt(1+2 cosh 2eBt) ey (78a)
T : :

=1
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is the pure statistical term, which vanishes for g, , = ! = 0, and

a0

3 dt
I e MwH [eBcsheBt(l +2 cosh 2eBf)— . -% eszt] 7z (78b)

0

o _ 1
16n®

v

is the contribution of the charged vector bosons to the energy of the vacuum in the magnetic
field. Expressions close to (78) were obtained by Magpantay, Mukku and Sayed [17]
in the case of p, = O for the effective potential of the Georgi-Glashow SU(2) model in an
external magnetic field.

For the electron-positron contribution

Q =+° 79

we may expand the logarithms of (73) in Taylor series in powers of the exponential only
if p, < m. In that case we get with the help of (77)

.1 . - BB dt
Q= yes (=) coshilupf e 4 (eB coth eBt)? (792)
T
=1 0
which also vanishes for the limit y, , = p~! = 0, and for the pure vacuum term we get
. 1 e*B*\ dt
Q0 = _— | e ™| eBcotheBt— — — t)—- 7
0

which is the well-known Euler-Heisenberg contribution to vacuum energy.

We must point out here that expressions (78a, b) (as well as (79a, b)) are even with
respect to the magnetic field.

4. Thermodynamic properties

a) Electric charge and leptonic number
By taking the derivative of (76) with respect to u, we get the mean lepton number

(N = —8Q|op, = N.+N,, (80)
where
1 ~ )
NV = (21[)3 Jvdsp(nv—n; » - By = {1+3Xp (SV'T'"‘Z)ﬁ] 15 (81)
eB B .
Ne=,= | dps ) olne=myp),  ne, = [L+exp (B, Fp)f] 82)
—w =0

and from (73), N, = N, = N2

¢R
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For the mean electric charge density {Q) = eN,, we may differentiate (76) with
respect to y,, bearing in mind that y, = p, + y,, and according to our previous statement
about the neutrality of the system we must put finally {Q> = 0. We have

{@> = &{Ny> = —edQ[op, = ¢(N.,+Ny) =0, (83)
where
Ny = :’% [ J‘ dps(now- —how+) + Z Bn f dps(nw- —”w*)] (84)
Zw n=0 -
and
nows = [exp (&g Fu)B—11"",  nw. = [exp (s, p)p—1]"". (85)

It is not difficult to see from (82) and (84) that the neutrality condition (83) requires that
p, and p, would have opposite signs. The condition (My—eB)/2> |u,] is required lest
the mean occupation number of the magnetic ground state of W* mesons should become
negative. The first term in (84) is the part of the total density Ny which may be attributed
to particles two dimensionally “condensed” in the plane perpendicular to the magnetic
field B, once these particles, although free to move parallel to B, lie in the magnetic ground
state. Nevertheless, it must be stressed here that as distinct from the zero field case, no phase
transition to a true condensate occurs at T # 0 in the presence of the magnetic field. At
fixed Ny, if temperature is lowered we may get from (84) that u, increases, (i.e. u, /0T < 0)
but for finite Ny, and T # O the threshold value (M3 —eB)!/2 is never reached by Uy, and
nows remains finite (the first term in (84) becomes infinite for u, = (MZ%—eB)!/2. On the
other hand, a finite fraction of the vector boson gas lies at any temperature in the
magnetic ground state n = 0. This fraction increases continuously at fixed Ny when the
temperature is decreased.

It is also easy to see (i.e., by calculating ONy/ON,) that at fixed T = -* # 0, Ny is an
increasing function of y,, so that if the density Ny grows enough, |u,| may approach the
threshold value (Mg — eB)'/? and the fraction of particles in the ground state p; =0, n =0
increases also, but an infinite density in that state would be achieved only if Ny —
orT=0.

We may think in the opposite situation when ther: is no magnetic field and some part
of the gas is in a condensate. If the magnetic field is then switched on, according to our
previous reasoning, thermodynamic equilibrium requires that the usual condensate would
be destroyed (unless T = 0), although some sort of two-dimensional condensate (in the
plane of momentum space is orthogonal to §) would remain, having the property that the
fraction of the gas in that state will diminish continuously if temperature is raised (or will
increase by lowering temperature).

The set (27), (80) and (83) is to be considered as a system of three equations with six
parameters p,, Uy, U, B, B and (Np. For given values of 8, B and (N,>, we may obtain
Hes Hys M2 in terms of them. If we consider that initially p, = u, = p, = {N;) =0,
we would have an equal distribution of particles and antiparticles of each kind (hot electro-
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weak vacuum in an external magnetic field). It is interesting to study what happens in that
case if keeping fixed both the magnetic field and the temperature, the lepton density is
allowed to be increased, say by adding neutrinos to the system, or equivalently, by making
pa > O (it is not difficult to guess what happens in the case of addition of antineutrinos,
where the lepton number decreases). The equilibrium conditions (27) would demand an
immediate increase of the electron density, or equivalently, to make, y, > 0 also. As
U3 = — H, is a negative quantity, the neutrality condition (83) demands for p; = uy-~
a negative value, to permit an adequate excess of W* over W- mesons. As will be
shown in the next section, a net magnetization would appear also.

b) The limit T—0

The behavior of Ny in the limi' T»0 may be discussed from (84). The second integral
may be done arbitrarily large by an appropriate choicz of the chemical potential. This
term div:rges in the infrared region p ~ 0 when g, = N M} —eB (this is not the case when
the magnetic field is absent, as the p?dp factor in the integrand cancels the divergency and
keeps the expression for Ny, finite). To pick up the divergency of (84) we expand the inte-
grand of the first term (which is the leading term) near p; = 0

@x
eBT dp3
Nwv=oq| o
T 6\/p3+Mw—eB—u;
pPo
eBT dp, 1 eBT

T — 86
Br 28 21— pyfm) 9

’

= 2n2m' 2
_.pi, 41—
2m
[4]
where p, is some characteristic value and m'> = My—eB > 0. From this, the chemical
potential 1, may be expressed in terms of N, to be yu,/m' = 1—(1/8n?) (eBT|Ny,)>.
Now as the temperature decreases the most part of the particles fall to the lowest
Landau level and are distributed there as

nows(p3) = ———— - M onya(py) @)
p:  m' (eBT\?r.; B 7
i+ 1 ()
and
Ny = f-l—; j‘ now+(P3)dps. (83)
4r

o

We see that for T = 0 the condensate appears and it is described by the statistical distribu-
tion. The equilibrium equations require then that the condition

By = pet+m’ CH))
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will be satisfied. If (89) is expressed in terms of the density of neutrinos, it can be written as
(67°N ) = p+m'. (90)

The critical neutrino density for condensation is then
| S 3
Nv:g;ti(ﬂe'*'m) . (91)

The reader may compare our results with those obtained by Linde [19], who studied the
W-boson condepsation in the 7 = 0, B = 0 case induced by a high lepton density. There
is a parallelism between our and his method if we understand g,/g as the classical expecta-
tion ‘value of the A, component of the eleciromagnetic field (the quantity which would
correspond to his Z,, the chemical potential for neutral charge, has been taken as zero in
our present approximation). In Linde’s work a net charge is included through the statisti-
cal average of the leptonic number at 7 = 0 and this fact results in the nonzero expecta~-
tion value of the W* meson fields.

Without the charge being included explicitly into the classical equations of motion
(either as an external charge or as the statistical average), no solution for the vacuum expec-
tation value of a charged field might be obtained and thus the theory might be treated
consistently only for temperatures (densities) above (below) the critical value, i.e. before
the charged W mesons start falling into the condensate [12]. For lower temperatures
(higher densities) the Bose distribution is no longer able to include the whole charge of
the system and one needs to be able to describe the excess of the charge by a vacuum
expectation value {W¥*). This is the reason why the charge must be included into the
equations of motion as is the case in Linde’s work [19].

The situation is completely different when the magnetic field is present. In this case
the Bose distribution is able to hold as large a charge as is wanted. No problem appears
to be cured by the introduction of {W*) # 0 because all the charge remains in a gaseous
state above the condensate down to zero temperature. Consequently, we may and already
did work without the charge in the equations of motion and without shifting to any charged
vacuum (W=*) 3 0, and we have just seen that for T = 0 the condensate is inside the
statistical average, not the vacuum average.

¢) The magnetization
We shall write now the expression for the magnetization. We have

(MY = —0Q|0B = M+ A, (92)

where #y and .#, are the contributions from the charged mesons and electron-positron
subsystems, respectively, and

O @

Q, e eBn
My = — 3 a2 a, dp, e—q (me+ny) |, 93

n=0 -
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Mo = — 02 _ —~Zﬁ,. f [eB("”") ("w-+nw+)]

&’B dp3
i o —= (now+ +now-). %4

Expressions (93) and (94) contain both the paramagnetic and diamagnetic effects, which
contribute with opposite signs to the total magnetization.

For lepton densities high enough (or temperatures low enough) that g, 1, uf> 1,
the fermion sector may be considered as degenerate, and in such case €, takes the form

[20], [1]

Py

eB e g Sy
Q=-:5) o [ue VT 2B — (4 2eBny In P E Y ZeB”] ©5)
2n =3 vm*+2eBn

where n, is an integer given by

n, =1 yf-—mz 96
# 2¢B J° (96)

For magnetic fields strong enough for the condition
2eB > pZ—m? 7N

to be fulfilled, we would have all the electron subsystem in the magnetic ground staten = 0
and it would behave as paramagnetic

e —_— AV —m?
M, = Z?(”‘ JiE=m?—m*In ’i—:;—-—-) > 0. (98)

The chemical potential may be related to the clectron density as [20]

212N, \?
He = : 2
\/ ( B ) +m 99)
and we get

e {/2n°N\T[/27’N, 2+ S 2 27%N, N 1 ((27*N\? o 1/2
My = — m -—m"mj—— + —
¢ 2 eB eB eBm m eB " ’

(100)

In what concerns to (94), it is easy to see that the first and third terms are positive and the
second negative. The third term is the magnetic ground-state contribution which for the
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conditions discussed previously for the T - 0 limit, takes the form

e’B ; dps e
—= (Now+ +How-) & ——x—
471:2 '[ 8q ( ow oW ) \/M%I—eB

Ny (101)

i.e., for large densities and T'— 0, as all the W+ system falls in the lowest Landau level
n = 0, all the spins tend to become aligned along B. As B grows, this magnetization
increases, and by comparing (101) and (100) we may get that if the condition

e’B? > 2n°Ny VM2 —eB (102)

is satisfied, then (101) pravails over (100), i.e., the main contribution to the magnetization.
comes from the W+ Bose condensate.

We conclude that for strong magnetic fields and high lepton densities (so that (97),.
(100) and (102) are satisfied) an increase in the neutrino density may provoke an increase
of the net magnetization, and consequently, an increase in the effective magnetic field:

intensity. We must point out also that as eB grows, m’ = N M3 —eB diminishes, and the
critical neutrino density for the W+ condensation (91) will be also diminished. (The case:
of instability eB > Mg, as stated before, is outside the range of our present work).

The author is indebted to his colleagues from the theoretical group of IMACC for
several discussions, to Dr. A. E. Shabad for many enlightening discussions and suggestions
(particularly in what concerns the limit T — 0), and to Dr. A. D. Linde for a discussion.

APPENDIX

The propagators for charged particles

From (60) we may casily get for the W- propagator the expression

1 !
X
(VE2—M2)5,,+2ieG2)| >

1 - " o
= 2-('2";)5/—3 Z Z J‘dl’z jdps[(R +R )'/’ﬁt)+R+Wﬁ)+l(R —R+)'/’f$)]
n pa
X Pu(E)Pu(E’) exp [ipa(xs —X3) +ips(x3 — X5) +ipy(x2 — x5)]
= (W ()W H(x)), (a)

KWW (x)> = <x

where
R* = [M%+(ps—ip,)*+pi+2eB(n+5)] ™"

and yi,) = B2G,, vy = 8,,—B*G,; are symmetric tensors whereas y(3 = B-1G9,
is antisymmetric.
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{a) can be easily diagonalized and we obtain the eigenvalues
1 )
A= —— d dp;R’, i=.1,23,4
= OIDY AL ®
n Pa

R! = [M%+(py—in)*+pi+2eB(n+ ],
R*=R", R¥>* =R"

-where

“Their eigenvectors are

L2 _ ;2 3 _ 3 4 _ 4
a,* = e, tiel, a,=e¢, a,=e¢, (c)
ay? are respectively right and left-handed circularly polarized unit vectors (e"*** are

unit vectors along the coordinate axes). We see that the eigenvalues related to the modes
1, 2 (respectively X'1, o#"?) contain the quantities R*, R2 In particular, for n = 0, one
of the poles of R? give the ground state energy 82 =+ M3 + p%—eB to which corresponds
a W~ particle with the spin opposite to the external field B. These conclusions become
reversed for thz charge-conjugated propagator { W-(x)W*(x’)>. The longitudinal and
time-like eigenvalues are respectively o >**. In a similar way we may obtain for the electron-
-positron propagator

1 1 .
<x VuVu—ml x> T % E , § f ap; j dps[(pa+in.)
" pPa -0 —w

+Eg]™ " M(p4, 4) €xp [ipy(x2 — x3)+ips(x3 —x3) +ipa(xa—x3)], (d)
‘where
FHn-l,n—l(—ip4+ﬂe) 0 —Dp_yn-1 E, 1 )
Me ) = Y H,p(—ipatite) Epn—y D,,
Dy in-1 Ey 1 H,_yn-1(ipa—p) O
—Epn-1 —D,,, 0 H, (ips—He) J
.and

Hyg(ips—e) = (m+ips— p) (o (&),
Dix = papx(O)oxAE),  Exx = i(2eBn) (&) (E).
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