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NONMINIMAL DESCRIPTION OF SPIN 2
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The nonminimal description (with the help of 3-rd and 4-th rank Lorentz tensor)
of the spin 2, equivalent to the Pauli-Fierz theory, is given. The variational principle is for-
mulated.
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1. Introduction

To describe a massive boson with the definite spin (and parity) we usé the field with
the transformation property of a Lorentz temsor. Generally, the field has to obey some
supplementary conditions projecting it on the definite value of spin because

(i) the spin spectrum of the Lorentz group representation (k, 1) ® (I, k) is s = k+1,
k+1-1, ..., k=1,

(i) certain number of such representations is needed to construct a field equation
of the second order from which supplementary conditions result [1-4].

We can follow an uneconomical way and obtain an infinite number of descriptions
of the spin s using Lorentz tensors with s,,,, > 5. As an example of such theory we can
regard the Kemmer description of the spin 0 where the field is the Lorentz vector [5].
On the other hand, we usually deal with the :conomical description using Lorentz tensors
With Smax = 5. In this case, the highest representations being contained in tensors are those
with k+4/ = 5. There are s-+1 such representations

s s s—1 s+1 s+1 s—1
('é' s E) s (_2“ > "2_> @ (—“2— B _2'> [IEERE (09 S) @ (S, 0) (1'1)

So, s+1 descriptions of the spin s are possible.
The formalism of Fierz [6] is an example of a realisation of such description. The
Fierz tensors

Au""”', APrBs- 1[“1“1]’ s A["Nl]--'[\'ﬂs_]

(1.2)
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([vig:] denotes antisymmetric pair of indices, the tensors are symmetiic with respect to any
permutation of indices y; and pairs [v;0,]) contain the representations (1.1) (or their linear
combinations) as the highest ones. The description using the symmetric tensor A4, ,,
including the highest representation (s/2, s/2) we call the minimal one. We will 1efer to the
others as to the nonminimai ones.

In the Fierz formalism supplementary conditions do not follow from field equations.
This can be regarded as a defect of the formalism. The theory in which supplementary
conditions are the consequence of the field equation, is more consi.tent. It allows one to
formulate the variational principle and it can form the starting point for studing interac-
tions. As an example of such a theory we can regard the Proca equation for the spin 1:

0 A*—3"0,4"+ m*4* = 0 1.3)

from which there follows the condition 9,4", or the Pauli-Fierz equation for the spin 2 [1].
Both these theories make use of the minimal description. Ogievetsky and Polubarinov
[7] have given the nonminimal theory for the spin 1. Their equation reads

40 F° — 33, F°* + m*F* = 0, 1.4)

where F,, = —F,,. From Eq. (1.4) the condition &,4,,0’F*" = 0 follows. The equivalence
of the Egs. (1.3) and (1.4) has been proved, too.

In the present paper we discuss the nonminimal descriptions of the spin 2, equivalent
to the Pauli-Fierz theory. The Pauli-Fierz equation is favoured in the family of the spin 2
equations, becaus=:
(. it is free of ghosts and tachyons [8, 9],
(ij) in m* - 0O limit it turps into the linearized Einstein equation.

We assume that the field equations in the nonminimal formulation are, as in the Pauli-
-Fierz case, of the second order.

In Section 2 it is shown that the description using tensor containing (1/2, 3/2)
@ (3/2, 1/2) as the highest representation, and the description with the help of tensor con-
taining a combination (0,2) @ (2,0) ® (1,1) as the highest representation, are possible.
The admixture of the (1,1) representation in the last case is necessery, since there exists
no second-order equation based on the (0, 2) @ (2,0) representation only'. In Section 3 the
variational principle is formulated. It is shown that the different equivalent descriptions
are connected by the Legendre transformation..

2. The field equations

Let us start with the Pauli-Fierz equation for the symmetric tensor A* transforming
under the Lorentz group as (1, 1) @ (0, 0) representation

0O - (0°hP + °h*) + gPh— (g O —*¢)h
+m?(h*®—g*h) = 0, (2.1)

1*Equations of higher order have been propdsed by Weinberg [10].



889

where h = K, h* = 9,/*°, h = 0,0,h™. From Eq. (2.1) the supplementary conditions result
h =0, 2.2)
h* = 0. 2.3)
Putting these conditions into Eq. (2.1) we get
@O+mHr*? = 0.

So, the field 4% has the mass m. The supplementary conditions restrict the number of spin
variables to 5. Indeed, in the momentum space in the rest system (p = (m, 0, 0, 0)), the
field A*(p) has only 5 independent components: 47 = A", B =0 (i,j = 1,2,3). So, the
field 4%, obeying Eq. (2.1), carries the spin 2.

Let us describe the Pauli-Fierz equation in the form of a set of the two first-order
equations

1
—m{h® —gPh) = NG (S?"+ 5" 1+ 9°S" + 0°S* - 2gP'S) (2.42)

1 ,
mS* = 7 (6°h» — ™), (2.4b)

where S#° = —§P*, §* = §%%;, §# = 9,8, It follows from Eq. (2.4b) that €,,,,5*" = 0,
i.e. S transforms as (1/2, 3/2) @ (3/2, 1/2) ® (1/2, 1/2). The set (2.4) is unique up to the
point transformation

Saﬁv - Saﬂv+a(g¢vsﬁ_gﬁvsa), a # __%_

and to the scaling
S o 48%F,

Excluding /4%, we get from the set (2.4) the second-order equation for the field S*”
% [aa(sﬂv+svﬂ)_aﬂ(sav+sva)
+0"(0*S? - 5% + 2 (g% — gP0%)S]+ m S = 0, (2.5)

where S = 9,5". From Eq. (2.5), the following supplementary conditions result

uapS? = 0, (2.6)
S =0, @7
Bﬂaﬂalsaﬂv = 0. (2-8)

Inserting these conditions to Eq. (2.5), one gets

(O+mHs* = 0.
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The tensor S” obeying the conditions (2.6) and (2.7) transforms as (1/2, 3/2) @ (3/2, 1,2).
So, it has 16 components. The condition (2.8) gives 11 restrictions (15 equations minus
4 identities of Bianchi type). Therefore, only 5 components are independent. In the mo-
mentum space in the rest system these independent components are: $%/ = §°%, §% = 0
(i,j = 1,2, 3). So, the field obeying Eq. (2.5), carries the spin-2.

Eq. (2.5) can be described in alternative way as the set

_ mSaﬁv \/_ (aaRﬂv apR(zV) 4+ — gavaﬁ gﬂv ~ (2.93)

6 ¢2 ¢
1
R = J2 ("S- 3"S™* + °SHP — gPSHey, (2.9b)

where R = R}, R = R%, or as the set
~mS* = /2[200,B"* +(1-0) (°B" - *B)

+0(¢"B" — 8B +§ (2—30) (¢ — g 0")B], (2.10)

mBuvaﬁ — [guV(Svﬁ+Sﬂv+ avsﬁ+apSV)

4 J
+g"%(S** + 5% + 0" +°S*) — g*¥(S™* + 8™ + 0"S% + 8°S")
— 2" (5" + SP* 4-9*SP + 3% S™)], (2.10b)

where B?” = B¥, B= B°, B* = 3,8’ and 0 is a parameter.
The set (2.9) is unique up to the point transformation

Ruvaﬁ - R;waﬂ + A( gua Rvﬁ + gvﬂ Rua__ guﬁsz_ gva Ry.p) + B( gua gvﬂ_ guﬂ gva) R
with 1+24 # 0 and 1+64+12B £ 0, and to the scaling
R¥** - JR™,

The same is valid for the set_ (2.10)
(9) Let us discuss the set (12.9). From thé definition of R*"* (Eq. (2.9b)) we see that
it has the symmetry of the curvature tensor

anaﬁ = _ Rwuﬂ = Raﬂuv’ Eapv cRuWﬁ = 0’

ie. it transforms as (2,0) ®(0,2) & (1,1) & (0, 0).
From the set of Egs. (2.9) we get the second-order equation for the field R*"*

PR + 0" R* — 0*0°R™— 0°R

—1 (g"0"0" + " 0" 0" — g0 0" — g"0* " )R+ m*R* = 0. @.11)
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From Eq. (2.11) we obtain the supplementary conditions

g R =0, (2.12)
R=0, (2.13)
8,R** = 0, (214
100 R*F = 0. (2.15)

It can be verified that taking into account these conditions one gets from the field equation
.11):
@O +mHR" = 0. (2.16)
In the momentum space in the rest system, the 5 independent components are: R%%/ = R%/%!
R%, =0 (i,j=1,2,3). So, Eq. (2.11) describes the spin 2.
Let us discuss in some detail the supplementary conditions. The standard decomposi-
tion of the tensor R** is (see Appendix):

Rﬂwﬂ — Cﬂwﬂ + Eﬂwﬂ + Gn\'ﬁﬂ’

where C** is “the Weyl tensor” transforming as (2, 0) @ (0, 2), E*"** is constructed from
the traceless part of “the Ricci tensor” transforming as (1, 1), G*** describes “the scalar
curvature” transforming as (0, 0).

Eq. (2.16) (using the condition (2.13) and the dual properties of C*** and E*™, see
Appendix) reads:

2 C"”’
(D +m )(Euvap) = 0.
The condition (2.15) can be rewritten as

B2y 0,C*" = 0 .17)
and
8,C°** = L (9*R™—3"R™). (2.18)

Eq. (2.17) restricts the number of independent components of C**** to 5. The supplementary
condition (2.18) connects these components to the ones of “the Ricci tensor”. In the rest
frame C%%/ = 1 RY, R}, = 0. We see that it is impossible to describe the spin 2 with
“the Weyl tensor” only. This result is general and invariant under the point transformations
So, the representation (2, 0) @ (0, 2) can be used as the highest one only in the combination
with (1, 1).

(i) Let us study the system (2.10). Eleminating the variable S’ we obtain the equation
for the field B"* = — B = B**;

8(g"*B" + g B — g"* B" — g™ ")
+3(1-0)(¢"B” + g B**— g B~ g"B")
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-1(1-6)[g" (@B +&B")+¢"(¢"B* + 8"B*)
— g"%(0"B* +&"B") — g*%(é"B* +- 0’ B*)]
—0(g"g"” - g™ B~§ (2-30) (¢ ~ 2™ OB
+75 (5-130) (g0°5" + g0 "

— g5 — g"0*0)B+ m*B"™ = 0, @.19)
where B" = 0,0,8”*, B = B,. From Eq. (2.19) we get the supplementary conditions:
&uaB = 0, (2.20)
B =0, (2.21)
B =0, 2.22)
B™* = 1 ("B 4 g B _ g" g™ _ g"BM)
-5 (g"g’—¢"¢"B (2.23)

independently of the value of the parameter 6. It follows from Eq. (2.23) that the field
variable is actually the symmetric tensor B*. The equation for B reads:

[OB" —(0’B* +*B")—g""B+35 "0’ B+ L g’ (0B+m*B” = 0. (2.24)
It turns into the Pauli-Fierz equation after the point transformation
B* - B +2g"B.

Let us make the final remark about the field equation (2.11). It can be obtained directly
from the Pauli-Fierz equation written as the set:

—(h"*—g"h) = 2(R”~3 g"R),
m*R** = 1 (**h"? + o n*

— "™ — 0" 0% h*).

3. The variational principle
We start with the action

1 * v ay

I= fdx {— 7 mS 5, ["h** — & h
—(g"h* - gk + (870" — g7 °)h]

+1 m¥(h, ¥~k +1 mz(S,,vS“""—ZS,S’)} . 3.)
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From 61 = 0 we obtain the set (2.4) which is equivalent to Eq. (2.1) and to Eq. (2.5). To
obtain the action in term of #* only, we aliminate the field S** (§*" is a Lagrange multip-
lier) from the action (3.1) using Eq. (2.4b). We get the action for the Pauli-Fierz theory:

I = [ dx{—3 [(O*h*")" +2h,@"h—2(h")’ = (3"h)*] + 5 m*[(W")*— W*]}. (32)

Performing integration by parts in the action (3.1) we convert A into Lagrange multiplier
that can be removed using Eq. (2.4a). The action in term of the field S*" reads

I =[dx[—%Ss(SP+S"%)~% (8,8, +£ S*~8,;,0'S*
| +1 m*(8,5,5%" —25,59]. (3.3)
This action is equivalent to
I = § dx[—/2 m(Byyep0"S™" — 4 BS)
—J2 m(% R,;S” +5% R,;0°S* — 1 RS)
+4 m*(S 4,8 —2S,S“)+% m*(R,,esB""* — % RB)], 3.4

where B*** and R** are Lagrange multipliers. The field equations are given by Egs. (2.9b),
(2.10b) and

_msaﬁv = \/i [aaBa'vaﬁ +% (gaVBﬁ__gﬂvBa)
2 @ PP OB L R PR+ (P~ PRL (B5)

Eliminating B*** and R*"* from the action (3.4) (using Eqgs. (2.9b) and (2.10b)) we obtain
the action (3.3). Performing integration by parts in the action (3.4) and eliminating S**,
we get

I = | dx{—[(0,B°**)* +2 B,0"B—(B%)*
—47 (0°B)* +% ("R”)* -3 (R’
+% R°0,R— % (0°R)*+9,B”"8,R,,
—~% 0,RB*+% R%0,B—+% 8,R¥’B]
+1 m*(R,4,,B** — 2 RB)}. (3.6)

From this action we obtain the system of the second-order equations, from which the rela-
tions

Buvaﬂ — _;_ ( guu B"p + gVﬂ BHE guﬂ B g"* Buﬂ)
-%(g"g"-¢"¢"™B (3.7
and

B?_1R¥1+1g"R =0 (3.8)
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result. With the help of these relations one can reduce the system to two independent
equations: (2.11) and (2.24). We note that owing to Eq. (3.8) the action (3.6) describes
only one spin 2.

From the construction of the actions (3.1) and (3.4), it follows that the different but
equivalent descriptions are connected by the Legendre transformation.

4. Final remarks

We have obtained two nonminimal descriptions equivalent to the minimal one of
Pauli and Fierz. It is well known that theories equivalent for m # 0 need not be equivalent
in the m = 0 limit {7, 11, 12]. The analysis of the zero mass limit of the equations obtained
in the present paper will be given elsewhere,

I am very grateful to Professor V. Ogievetsky and Drs P. Kosifiski, M. Majewski and
J. Rembielinski for illuminating discussions.

APPENDIX

The decomposition of the tensor R*** in the irreducible parts is:

anuﬁ Cuvuli + Euvaﬂ + Guvzﬂ
where
Cnvaﬂ RFWﬂ 1 ( g““ Rvﬁ + gvﬁ RH*

—gYR"~g"R")+1 (¢"g” - 2""¢")R,
Euvad = %_ (gwavﬁ + gw RM . g“‘BR"— g"R“’)
~4 ("~ g”¢"R,
@ = 1 (8¢ — "R
The dual properties of these parts are:
~CPvR — C~unﬂ’
~EReR . E~nvaﬁ’
~GuWﬁ = G~nvaﬁ’
where left-handed and right-handed dual tensors are respectively:
~APP = Ly goial

A~,uva3 = %_ eaﬂc). Auvc)..



895

REFERENCES

{t] M. Fierz, W. Pauli, Proc. Roy. Soc. 173A, 211 (1939).

[2] R. Rivers, Nuovo Cimento 34, 386 (1964).

[3] V. Ogievetsky, I. Polubarinov, Am. Phys. (USA) 35, 167 (1965).
{41 J. Rembielifiski, J. Phys. 4 13, 3619 (1980).

[5] N. Kemmer, Helv. Phys. Acta 33, 829 (1960).

[6] M. Fierz, Helv. Phys, Acta 12, 1 (1939).

[7} V. Ogievetsky, 1. Polubarinov, Yad. Fiz. 4, 216 (1966).

[8] P. van Nieuwenhuizen, Nucl. Phys. B60, 478 (1973).

9] P. van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).

[10] S. Weinberg, Phys. Rev. 133B, 1318 (1964).
[11} T. Cukierda, J. Lukierski, Preprint 192, Inst. Theor. Phys., University of Wroclaw 1969.
{12] S. Deser, P. K. Townsend, W. Siegel, Nucl. Phys. B184, 333 (1981).



