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A review of the on-shell renormalization scheme is given. We stress the analogy of
this renormalization procedure with the *““usual” one used in QED and discuss the differences.
The calculation of some important parameters in the GWS model is sketched.

PACS numbers: 12.15.-y

1. Introduction

In the calculation of radiative corrections within the framework of the Glashow-
-Weinberg-Salam (GWS) model of electroweak interactions different renormalization
schemes have been adopted by various authors [1-8]. The on-shell renormalization scheme
(ORS) has been studied in detail [2, 5, 6] and has been employed for the calculation of
specific processes by the above authors.

The ORS appears as quite “natural” if one remembers the renormalization of quantum
electrodynamics: the counterterms are usually defined by performing subtractions on the
mass-shell of the physical particles (electron and photon) and the wave function renormaliza-
tion factors are defined as the residues of the propagators of the physical particles. In the
GWS-model the same procedure is applicable, except that due to the complicated mass-
-coupling relations additional counterterms have to be introduced. As a consequence of
S-matrix elements being gauge invariant, in general, all counterterms can be fixed by on-
-shell conditions (therefore ORS) and are thus gauge invariant. The latter is not true, of
course, for the wave function renormalization factors, which are defined due to the LSZ-
-formalism as the residues of the poles of the physical (external) particles [9, 10] and are
thus derivatives of 2-point functions taken on the mass-shell.
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Two further comments should be added:

First, occasionally one finds in the literature comments on renormalization schemes
“with” or “without” wave function renormalization [2], only S-matrix elements being
finite in the latter case. Such statements are in disagreement with the proof of renormaliza-
bility given by 't Hooft and Veltman [9], who explicitly state that in order to make the
S-matrix both gauge invariant and unitary, wave function renormalization has to be applied
and the renormalization factors (Z’s) have to be obtained according to the LSZ-formalism
for the physical particles, which are clearly not the ones which respect the original symmetry.

Secondly, since it is assumed that all subtractions are performed on-shell — also for
the intermediate vector bosons — it is silently assumed that all particle masses are experi-
mentally known. In this sense this scheme is 2 “high energy scheme” and the relation to the
low energy parameters requires some extra consideration.

Since the original works are partially quite involved and mainly concerned with applica-
tions, it seems worth summarizing the main ideas, technicalities and formulae. We also
find it useful to stress the analogy with QED as far as possible. Thus we study at first
in Sect. 2 the renormalization of the electric charge, in Sect. 3 mass- and field-renormaliza-
tion and in Sect. 4 the inclusion of further counterterms. Finally, in Sect. 5 the relation
to other parametrizations is discussed.

2. Renormalization of the electric charge

As one parameter in the GWS-model we use the electric charge e. Therefore we firs
investigate the electromagnetic vertex (Fig. 1)
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Fig. 1. The irreducible bare yee-vertex function. A4; are the form factors from pure vertex contributions
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= nontrivial one-particle irreducible diagrams) while the F;’s also include the contributions

from the self-energies. The equals sign at the end of a line means that this line is on-shell

In QED charge renormalization is performed according to (e, = naked, e, = renormal-
ized charge)

zZ,
=2, (1)
Z,VZ,

where Z, = Z,, Zy = Z, and Z, is defined by the bare vertex function (p = p,+p;,
q = p2—p1):
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P pe
.. = —e()’yﬁe(f"}'?"?s %o+ 2_me %o + E‘m-e’)’s 4?) .
Zi'—1= —eF00s (OS = on-shell).
Due to the Ward identity
4,015(P2, P1) = —[Zp2)—Z(p))] (—o), @

or in differential form (differentiation with respect to p, and g = 0):

0
H#ee(p’ P) = - ?Ze(.p)(_e) (3)
Py
one obtains
Z§% = 73 @

to all orders of perturbation theory: charge is renormalized through vacuum polarization
only, yielding a “shift” of the electric charge

de = eg—e, = —3 (Z,~1). )

How is the situation now in the GWS-model? We must work in a renormalizable
gauge, i.e. have to include Faddeev-Popov ghost fields. These also enter the electromagnetic
Ward-Takahashi identity (Fig. 2)

Fig. 2. The electromagnetic Ward identity in the GWS-model. & is the gauge parameter in the ’t Hooft
gauge (see also [6]). The @ represents differentiation in configuration space. The O at the end of a line
means that this line is not amputated

where a is the FP-ghost corresponding to the photon field A. x stands for a complicated
mixing of ghost fields (including ¢ and #* corresponding to Z and W*) and fermion fields
e~ and v, — as obtained from the BRS-transformation.

Amputating the full electron lines in the Slavnov-Taylor (ST)-identity (Fig. 2) vields
a relation of similar structure as Eq.(2), more complicated, however, due to the appearance.
of the ghost loops in the second and third contribution. Thus we cannot obtain Eq. (3) and
we now have

Z7% # Z5V (6)

Therefore we rather take the point of view of introducing a shift or “counterterm™
for the electric charg: like in (5), i.e.

Iy, = i[—(e+de)y*+1I}..].
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“The renormalized vertex then reads:

r!:ee,r = \/Z Yo \/z—e YOF“;ee \/Z
- se %
= i{—e’y" |_1+ ~ +%(Z,—1)+(Z,—-1):| +H¢e,}.

Since the fermion singlets and the doublets are renormalized independently we have

1+ 1-
Zi =2 2?5 +Z, 275 = 142z,42,7s.

-0e is finally fixed by the electron charge form factor (Fso = 434, see also Fig. 1):

e
F, = —e[l +Fo+Fs0+3(Z,~1)+z,+ :] = —e[1+F,+A43], O

namely
lim  Fy(pl, p}, a* = 0) = —e,

pll,pZZ-)meZ

from which we obtain
de = —e{F o+ F30+3 (Z,—1)+2.}0s.

This is in fact the same as (1) only that we cannot make wuse of Z, = Z,. We obtain
(for details sece below) in the dimensional regularization scheme:

1
oe = e —~ 72 {14 sin® O[3 M3 + Ao(Mw)] —3 (ev)’ Z gil1+mp24¢mp)],  (8)

167
Q (21:) —m?+i0 161 o Aot

|
!
i

‘with

where
Ao(m) = m*(Reg+1—Inm?) and

2
Reg = — +Inp’~y+Indn (e =4—~d —» +0),
p ;

the sum running over single fermions. We see that de is gauge invariant and flavour inde-
pendent (charge universality).

3. Mass- and field-renormalization

As next we choose the physical particle masses (m;, My, M, and My) as “natural”
parameters in the GWS-model. As usual in QED, M? and m are the poles of the propa-
gators: we generate counterterms by the shifts

M2 = M24+86M2,  my = m +6m.
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From the bare negative inverse (scalar) propagator (e.g. (THH))

I = i[p* ~ M~ M} +11,(p)]
we thus obtain
SM? = I(MZ,

and correspondingly for the vector meson and fermion propagators.
The mass counterterms are defined for the naked fields (without Z’s) and are gauge
invariant for the following reasons:
() M% and M? are gauge invariant, and so is the difference.
(i) II(M?) is the on-shell two-point function which is gauge invariant.
An additive renormalization of v,

vy = v+ 0y,
is necessary for the physical Higgs field to satisfy the gauge-invariant condition.
(H) = 0.

This condition fixes dv,. It has been proved [6] that taking into account the proper
value of v, this condition amounts to an inclusion of the appropriate tadpole terms in the
amplitude, e.g. i

My = -

Gauge invariance of the mass-counterterms is achieved in fact only after the inclusion
of these tadpole terms, a property which has also been verified explicitly in Ref. [6].
Introducing multiplicative renormalizations for the physical fields, we write

AL =z, 4" Wt =Z W, 28 =z, 2%,
H, = \/ZH H and yo = ‘/Z—f Y-

The Z-factors are determined as residues of the corresponding propagator poles, e.g.

oI (MZYT ! (M2
Z, =|1+4 2= Z,~1=—-
s [ -+ 6p2 or 6p2

Similarly with the definition

LGB = i(en) (8" ATo(@) +4"0°45(a)

Vv ) . v
~ATEDA = IMA(E AT(@D) + 4" AN (§))

we have for the photon

and

dAY,
Z,~1 = (ev)? dqlz (0)



902

and for the vector bosons

da™
Z,—1 = M? -d?(Mf).

Special attention requires the y-Z mixing propagator (TA*Z") (“mixagator’)

LS bin = (e)Mo(g" AT +4*" ATh

Owing to mixing effects the proper fields 4 and Z appear rotated relatively to the bare

fields 4, and Z,:
A\ _[cos3 -—sind) (A4,
Z) \sin® cosd/\Z,/"

Perturbatively this can be seen as follows [2, 6]: the bare y-Z Lagrangian

LOyZ = _%7 (BuvBuv+ W3qu;v) +% vz(g’B_ gW3)2

6)-bls D))

Loz = ~% (A, A" +Z,,7")++ M3Z2.

is diagonalized by

yielding

We denote by g, and g, the couplings and by (4,, Z,) the fields to lowest order. With
the next order couplings: g’ = g5-+0g’, g€ = go+0g we obtain

gB—gW; =g +g°Z

(8040—80Zo)

4 L 1 ¢
= goB—goW;+0g :/——'-z—-z(gvo+goZo)—5g\/

g6 + 86 o +g3
= Ve + g2 [(1+0)Zo+bA,], ©y
5 I_ 15 15 /+ 5
where b=g°—§2—g%—g and c=§0—i———g2g.
o + 8¢ 80 *+ 80

Finally, the fields which diagonalize L,,, in second order are related to (Ao, Zo)
by the orthogonal transformation

<2> ) C» _If>(§;’) +0(),

b = sin in this approximation.
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According to (9) the mass term has the form
Luass.nz = 3 [(Maz+8M3)Z3+2440Z,]1+0(5%),
which shows that the photon mass remains zero and the counterterms are
oM2 =2cM2, and 4 = bM3,.

The latter can be fixed on the photon mass-shell:

i4
7 2 :
:/\N\l\®.’v\/z\/- . =W@z\z~ =0
yielding
bMZ = —(ev)MAY5(0).

This counterterm is gauge dependent. Calculated in the U-gauge (see also [11]),
however, we have

¥
Afe =

such that no mixing mass counterterm is present.
Due to the mixing effects, the field renormalization must be of the form

(2)-C*72)%)
z 0 JZ,/\Z,
such that the photon mass remains zero:
0-A>+M2Z* = M22,Z}
and
F ,WF‘"-G-%W%‘” = Z,F ., Ft'+2XF ,méf”+ZOZ,mZ‘,”+ higher order terms, 10)

where the index © means that only bilinear terms are taken into account. X appears now
as further counterterm and to one-loop order can be fixed by the condition

il
i - ~th - .
( ATpEn s Ton@nin s L@an )

M2

yielding for the wavefunction renormalization of the mixagator
ev yZ 2 yZ
X = —M_ (ATo(M7z)— AT6(0)).
z

Thus the mixagator is finally diagonalized on the photon- and the Z-mass shell.
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Due to the mixing effects, we now write the y—Z propagator as a 2x2 symmetric.
matrix G. In the ’t Hooft gauge the free propagator G, is diagonal and the negative inverse
propagator I’ has finally the form

A A A1 LA —Go —ill,, —ill
[=-G1'=~-Gy'—ill = S A
0 —iHyZ-GOZI_iHZZ '
Restricting ourselves to the transversal part, we obtain
él 1 ("r1zz F1yz)
Flyyrlzz ( Z) rlyz—rlyy

and one easily sees, that Gy,, and G,;; have the proper poles at p? = 0 and p? = M2,
while G,,; has no pole.
Given now the “renormalized” photon self-energy and mixagator:

d A’YY
AL = AT —g? 120 (0) and
dq
"
AY A0 - M2 (AT5(M3)— AT5(0)),
Z

the electron charge form factor (7) can be written in terms of renormalized quantities as
(4740) = A77(0) = 0):
F, = —e(F,+F,),
with
2

Mz

Fl = 1+Ayee_2a qz —(ev) _Alrs

where
ee 5@ Z
Ay = AS+z,+5(Z,— 1)+ +2aA{0(0)

is the renormalized yee vertex, and F, = F3y = A;o. For ¢ = 0 this determines de as
given by (8).

As next we consider the relation of the above scheme to the “symmetric field renormal-
izatlon”. The on-shell wave function renormalizations are not compatible with the canonical
(bare) form of the ST-identities. The latter would require to choose them according to the
unbroken theory which means that not the individual particle fields but the “field multi-
plets” B, and W,, become multiplicatively renormalized with as maller number of independ-
ent counterterms. The ultraviolet-singular terms of the Z-factors in the different schemes
must coincide, however, since the symmetuy is broken in such a way that in the high energy
limit the theory is SU(2) x U(1) symmetric.
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The kinetic term in the original form reads
—'}i B;wB‘"—'} W3qu;v_';— W;;W-'",
with WT = (W;,F W,,)//2. Introducing field repormalizations for B, and W,, we write:
B,=ZyB, Wy, =VZW,, and WE =+ VZWE

For the renormalized ficlds we have
B, \ _[cosBy —sinby\/[ A,
Wi,/ \sinfy  cosfy/\ Z,

[ o 0
B, B*" = cos® OwF ,, F*" +sin® 0yZ,,.Z*" —2 sin By cos OwZ,, . F:,

and thus

o o ]
Wi WL = c0s® OyZ, 2" +sin’ Oy F ,, F** +2 sin Oy, cos OyZ,,, F2",
yielding for the kinetic term
2 . 2 [\ o
—% (Zg cos® Oy +Z sin? O4)F,, F** — % (Zp sin® Oy + Z cos? 0y)Z,,,. 2"
o
— 3 ZW W, " +2Z — Zy) sin Oy cos Oy F,, Zt"

0

-+Z,F, F—% zoz,,v,z'" 3 ZW W " +2XF,,Z"

ii

the last relation according to (10). Eliminating Z; yields for the ultraviolet singular parts
of the “physical” field renormalization factors the two relations

(cos? OywZy—sin® OwZ,)yy

v =
(Do cos? Oy —sin? Oy

and

sin Oy cos Oy

X = e (Lo = Z Yy
( )UV COSZ Bw—SiIlz ew( (] y)UV

which have been verified explicitly.

Even since by the use of the on-shell wave functlon renormalization factors, the bare
form of the ST-identities is changed, in practice there is no problem because all Z-factors
associated with internal lines drop out from the amplitudes, which on a formal level may
be seen using the functional integral representation for the Green functions.

It is important to stress, however, that for the exrernal lines we have to use the wave
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function renormalization factors according to the LSZ formalism, i.e. for the physical
fields in order to make the S-matrix both gauge invariant and unitary. This has been proven
by ’t Hooft and Veltman [9] and earlier by Bialynicki-Birula for QED [10].

As a final remark we want to point out that for the calculation of S-matrix elements
the renormalization of the gauge parameter is superfluous since S-matrix elements are
gauge invariant and furthermore ghost amplitudes drop out due to ST-identities as shown
in a special example in Ref. {7].

4. Further counterterms

All other counterterms are obtained using the mass-coupling relations

M 2M2_M2 172 mz 2-
g= M g HMEMOT ey =¥ gy
v v 2v v

where g and g’ are the SU(2); ® U(1)y gauge couplings, 4 the Higgs self coupling and G
the Higgs-fermion coupling.
The weak mixing angle 6y, and the electric charge are given by

2 2

g w g'%g? 1

.2 2 2 .

sin“ fy = ———5 = 1— and e’ = 53— = 4My sin® @y, — . 2
g12+gz M% g z+gz v? (12)

We consider the latter relations as the definitions of the dependent parameters sin? 0
and v~2, the latter being the loop expansion paramcter for fixed values of the masses [6].
According to (11) this is equivalent to an expansion in a.

From the mass-coupling relations we obtain the dependeant counterterms

5 cos? @ & sin? 0 M2 M}
o = g Gy ¥ = — (S - D), 1)
cos” Oy sin” Oy M3z My

bv™h e | oMy | bsin® by

v e P ML % osin6y

For the dimensionless couplings we have

o4 vt omd 8G, v ' omy
+ — J—
A vt my’ G o' m

which must exhibit the same UV-singularities as in the unbroken theory.
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From these we obtain the counterterms for trilinear and quadrilinear vertices, e.g. [6].

Vik om2 M2 Spt
L s g (141 6Zy+0Zy+ —5 + —
vy v M3 v

V=W,Z

7‘/“' g w;.Q 2 2 -1
My oM} oM de v
26— T* (141 0Z,+1 0Zg+0Z+ —5 —3—% + — + —1
_ oM, M3 My e v
Z,v W, 6

with 6Z = Z—1, TF"* = (2g"g®—gh%""— g"g"9,

5. Relation to other parametrizations

In the above scheme the parameters (o, My, M;) were chosen in a “natural” way,
i.e. in close analogy to QED. The main features of this scheme are the gauge invariant
determination of the mass-counterterms and the wave function renormalization for the
physical (external) fields in the LSZ sense.

If we use different parametrizations of the GWS-model we maintain the above cha-
racteristic features except that the additional counterterms (see Sect. 4) will in general be
chosen in a different manner. Of particular interest are the “low-energy” parametrization
(@, G, sin? 6), the “high-energy” parametrization (G,, My, M) and finally also (&, G, M).

The low-energy parametrization is of particular interest since it makes use of the para-
metrization of the effective Fermi current-current interaction:

4
—= (G T+ GoJ 2 I D) + €j, cmA”,

Leff,im = - \/2

which is obtained as low-energy limit of

g trn— g .
Ly =—7=U, W +hec)+ —— J 72" +e A¥,
int \/2( B + C)+ cos ew f'v4 + ]pem
with
2 g g’
I ; -2
Cos 0W= ,2+g2: e=gsln0wand(\/§Gc=m—%’—=v »
2 2
~ g +g -2
2G, = ———5— = ggv" “.
V26 az %
The g-parameter is
G,
06 = G = 14+0(x)

[

to lowest order in the standard model.
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.The low-energy parameters are thus defined as (they are characterized by an index 0):-
2

. e

1. The fine structure constant a = 4—0 = 1/137.035963(5), obtained e.g. from (pc)-Comp-
T

ton scattering at g2 = 0.

2. The Fermi constant G, = G, = = (1.16638 +-0.00002) + 105 GeV-% from

1

V25
p-decay.

3. The neutral current parameter sin? Ow,o is for the time being predominantly obtained
from deep inelastic neutrino-hadron scattering. The cleanest determination of sin? 6y,
would come, of course, from neutrino-electron scattering, but here the error is still
of the order of 15%;,. The presently accepted value is [12] sin? Oy = 0.217+£0.014.
Due to the unsatisfactory experimental situation [13], however, we choose for the
purpose of this presentation sin? Oy, = 0. 22.

From the mass-coupling relations (11), (12) one obtains as low-energy effective

parameters ,

vo = (v/2 G,)™'/* ~ 246.224+0.003 GeV,
€olp My,

2 sin 0,

and M, = —:—0—7 .
zo ™ Joc, cos 0,

My, =

For numerical values of the latter see Table I
In perturbation theory the low-energy parameters are defined by the following on-shell
conditions:

= —iey(&y’e) (14

G

>< +em. = — \/5 vy (L=75)n) (8.1~ ys)v.) +em. (15)

¥,

& >< — V2 Goy(n¥*(1 = 75)7,) (€v(@o + boys)e)+em. (16)
=0 e

e’ q?
with (a,, bo) = (sin? Oy o—1,

By definition the Born dlagrams are exact at q = 0 while the evaluation of the one-
-loop diagrams on the Lh.s. at g2 = 0 yields the low-energy counterterms in this scheme:

ll

dey = Se, OG,, = and & sin? @,
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The first important result we obtain, is that the neutral coupling G,, is renormalized.
relatively to G, by a finite and gauge invariant correction (in the notation of Marciano-
and Sirlin [3]):

Gpy = QoncG, = G, (1+eyc) Wwith  enc = AV (0)—A%%(0)+Rg,

where Rg includes the contribution from form factors and box diagrams.

On the other hand it is possible to evaluate the relations (14)—(16) on the Lh.s. by the-
use of the (o, My, M;)-parametrization (including, of course, the corresponding counter-
terms), yielding thus relations between the low energy parameters in the two schemes:.

Gy = —oy = o (1= dr),
L 2

again in the notation of Ref. [3].
From the parameter relations (12) we finally obtain the mass-shifts:

sin® Oy, o = sin® Oy(1—4)

a7

M}, = Mi(1+6Xy), M3E = M}(1+46Xy),
with 6Xy = —A4r+4 and 6X, = 6Xy—1tg® Oyd —énc.

Given the Iow-energy parameters «, G, and sin? 6y, o, the physical vector-boson masses:
are finally predicted to be

171 vz g
My ={—
v (\/2 G, (1 +5Xw)> sin Oy, o
and

_ My i
T (1+4)"2 cos Oy

My

Finally we present in Table I some numerical results for the most relevant quantities
in the GWS-model, These were calculated in the above mentioned four schemes keeping
sin? fy,o = 0.22. The errors in Table I correspond to hadronic uncertainties [14] and the
scheme dependence. The errors from the different schemes were added up quadratically.
The computations were done for m, = 35 GeV and My = 100 GeV.

TABLE I
Numgrical results obtained for the parameters gonc, 47 and the physical vector-meson masses
"goNc Ar My My sin? By My, Mz,
1.00535 0.67120 82.3596 93.2906 0.22060 79.4831 89.7567
(£0.00041) | (£0.00145) | (£0.0283) | (£0.0384) | (£0.00035) | (£0.0007) (£0.0181)
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The experimental values of the vector-boson masses are [15]

U4, U4,
My = 93.0+14432 925413415
My = 8357 +28 81.2+1.1%1.3

:and there is agreement of the theoretical predictions and these values within the experi-
mental uncertainties — much more precise data are needed, however, and are to be expected
from LEP and SLC.
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