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Following the general principles of both Newton’s mechanics and quantum mechanics
a new formulation of wave mechanics is proposed. The new basic equations do not contain
physical parameters and admit a different interpretation of the Planck constant.

PACS numbers: 03.65.Bz

1. Introduction

It is well-known that the Newtonian form of classical mechanics provides the most
general theoretical framework for the description of mechanical phenomena [1]. At its
base lie such fundamental notions as the positions of bodies, their velocities, their moments
and forces acting on them [2]. Although all these notions are usually represented in the
formalism by some functions of time, they have different geometrical and physical meaning
[3]. The laws of mechanics partially relate the functions representing the fundamental
notions in the form of universal equations of motion

-

dX, o

= = B, (1.1a)
P _ B s 1.1b
5 = Falts X(0; 0(0) (1.1b)

{(x = 1,2, ... N = number of bodies) which do not contain any particular parameters
of the considered bodies. In order to obtain a well defined system of differential equations
for the trajectories x,(z) we must specify the explicit form of the force functions in (1.1b)
and use the constitutive material equations

;a = .ma‘l;a' (1‘2)
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In quantum mechanics the situation is slightly different. The basic equations of motion
in the algebraic formulation of quantum mechanics [4] have the form

i

7; [ﬁ9 ia] = Am (1.33.)
i _a oa .
5 [H. p.] = Fo, (1.3b)

where X,, 9, D, and F, are the quantum {nechanical observables of position, velocity,
momentum and force, respectively, while H is the Hamiltonian of the system. In spite
of the fact that equations (1.3) were obtained from the classical equations (1.1) through
the correspondence principle the domain of applicability of (1.3) is narrower than that
of (1.1) since the time evolution of all quantum mechanical observables must be determined
by the Hamiltonian. Quantum m=chanics deals therefore only with Hamiltonian systems.

A similar situation exists in the Schrddinger wave mechanics. Here the basic equation

ih — = Hy (1.4)

also uses the Hamiltonian and again describes only Hamiltonian systems.

Of course, all that is perfectly well known and is caused by quantum mechanics gem-
mating from the caponical formalism of classical mechanics.

Apart from the narrower generality of all known formulations of quantum mechanics
with respect to Newton’s mechanics there is another difference between the two, which
at first sight may seem to be of minor importance: we have already pointed out that in
classical mechanics all parameters characterizing particular bodies are introduced into
the theory by means of the constitutive equations and specification of the force, and not
by the equations of motion (1.1). Looking at (1.3) or (1.4) we see that in quantum mechanics
all basic equations from the outset do contain the parameters of particular bodies in the
explicit form of the Hamiltonian. In our opinion this is foreign to the spirit of Newton’s
mechanics. The presence of particular parameters in the basic equations of Newton’s
mechanics shows that we have already used the constitutive equations and therefore
restricted the theory to a particular case.

The basic quantum mechanical equations (1.3) or (1.4) always contain the fundamental
Planck constant h. Although this is commonly understood just as a manifestation of quan-
tum character of the theory, we regard it as being an indication that we have to do with
a special case of some more general formalism. Here, of course, we cannot appeal to classical
mechanics because it does not deal with the phenomena characterized by some funda-
mental constant. Since our problem is of methodological nature, we may freely appeal
to another perfect theory where such kind of problems arises. The obvious candidate is
classical electrodynamics, which describes all possible electrodynamical phenomena and
for which the velocity of light in vacuum is the fundamental constant. But the basic Maxwell
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equations

-

. OB -
rotE+E=0; divB =0

(11

0

rot H— =j;/divD = (1.5)

»

t

with an appropriate choice of units do not contain this constant at all. It appears in the
theory by means of the constitutive equations of the vacuum medium

D= soE, B= poﬁ (1.6)
provided we consider the wave solutions of the equations (1.5) and then
¢ = (oko) 2. (L.7)

For static solutions of (1.5) we shall never see any fundamental constant of the dimension
of velocity!

Enlightened by these arguments we may formulate our problem as follows: We
treat all existing formulations of basic equations of quantum mechanics as particular
cases of some more general formulations of mechanics which we want to find. The new
basic equations should reflect the basic laws of classical and quantum mechanics and be
free from any physical constants. The necessary constants may appear only through some
kind of constitutive relations and by considering some special solutions. Finally, the new
equations should admit that solutions which satisfy the known equations of quantum
mechanics (with the Planck constant 2 # 0) and those which satisfy the Newton’s equations
(for 1 # 0). For obvious reasons we may call such formalism to be the Newton’s form
of wave mechanics.

The aim of the present paper is to show that such a formulation of generalized mechan-
ics exists and has a firm physical foundation, because it is based on general principles
of both Newton’s mechanics and quantum physics. Guided by those principles we construet
a special case of Galilean field theory for which the basic equations possess a structure
similar to that of Newton’s equations of motions. The classical Newton’s equations and
the quantum Schrédinger equation are particular cases of our general field equations.
In this way we get a new and non-trivial unification of classical and quantum mechanics.

2. Basic equations for the generalized wave mechanics

It is well known that for low energy phenomena we may replace, with a sufficient
degree of accuracy, the true relativity group — the Lorentz-Poincaré group — by the
approximate relativity group — the Galilei group. The quantum physics may then be
constructed either on the basis of unitary projective representations of the Galilei group
or on the basis of unitary representations of the one-parameter extension of the group [5].
For our purpose we must exclude the first possibility, since from the outset it contains in the
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phase factors some physical parameters of the particular systems considered. We must
work therefore with the one-parameter extension of the Galilei group. This group acts
in a five-dimensional extended space-time with an additional fifth coordinate 6, the meaning
of which was clarified in Ref. [6].

Under the change of the inertial frame of reference the five space-time coordinates
transform according to the Galilean rules

9 >0 =0+0- Rx+1v*t+o, 2.1

where R denotes the rotation of axes, » — the relative velocity and a, b, w — the transla-
tions of origins of the inertial frames considered. Below, for shortpess, we shall use the
five-dimensional notation x* (u = 1, 2, 3, 4, 5) with X = (x!, x2, x3), t = x* and 0 = x>.
Using this notation the transformations (2.1) may be written as

x# = A x"+a¥, (2.1a)

where the matrix elements A*, of the matrix A can be read from (2.1). The covariant
coordinates x, are defined as

X, = guX", (2.2)

where g,, are the components of the covariant metric tensor, which for the Galilei group
has the non-zero components

8k = —0u> 8Gas = 8sa = L. (2.3)
The contravariant metric tensor g"’ defined by the relation
88w = 6" (24)

has the non-zero components equal to
g% = =6, g =g"=1 (2.5)

In accordance with the general principles of quantum physics we shall describe each physical
system by some collection of fields defined over the five-dimensional Galilean space-time.
The Galilean invariance of the theory requires that all the fields used should carry some
representation of the Galilei relativity group but apart from economical reasons there is no
general argument for restricting the number of fields needed. In the usual approach to
quantum physics the unitary representations of the Galilei group are used as wave func-
tions of physical objects. In spite of the fact that the wave functions contain all the informa-
tion on the system, we treat them as a quantum mechanical counterpart of the classical
trajectory only and following general principles of Newton’s mechanics we enlarge the
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number of fields in order to have from the beginning the field theoretical counterparts of
velocity, momentum and force functions. As a matter of fact, our procedure constitutes.
a new correspondence principle formulated between the Newtonian mechanics and the
wave mechanics while the usual correspondence principle operates between the Newtonian
mechanics and the algebra of quantum mechanical observables. In our formalism all basic
fields are treated as independent, unless the equations of motion or the constitutive equations.
link them.

Our main steps are as follows:

For each physical system we implement the notion of its localization in space-time
by means of some collection of fields ¢ (x) (@ = 1, 2, ..., N), which under the Galilean
transformations (2.1) behave according to the rule

N
Yo%) = “plx) = ﬂ; Di(R, 0)yp(x)+R,(G; %), (2.6)

where G denotes the set of all parameters which specify the Galilean transformation, It is
clear that the formula (2.6) defines the representation of the Galilean group if the matrix
D(R, ?) and the N-tuple R(G; x) satisfy the following composition laws

D(R;, EI)D(RZ, v;) = D(RyR,, 01+ Ry0,) 2.7

and
R(G,; G,x)+D(R;, v;)R(G,, x) = R(G, o G,; x), (2.8)

where G, o G, denotes the composition of two Galilei transformations G, and G,, while
Gx denotes the transformed coordinates under the transformation specified by G.
In the case of the usual quantum mechanics we have always

Ra(G; x) =0, (2'9)

but the more general formula (2.6) is needed mainly for Newton’s classical mechanics.
The principle of Galilean relativity admits the presence of R, in (2.6) and we cannot exclude
it on the ground of any general argument.

The physical meaning of the fields v, depends on the adopted interpretation of the
formalism. Here, as usual, we must distinguish between two cases: the classical and the
quantum one.

In the classical case we consider only real valued ficlds and we compare directly the
values of these fields with the values of some physical quantities. In particular, in the
case of Newton’s mechanics we identify the values of the fields with the components of the
radius vectors of the considered system of mass points.

In the case of quantum mechanics we work with complex valued ficlds for which the
matrix D in (2.6) defines unitary representations of the Galilei group, and as usual, we shall
interpret the real function

N
Y v @10)

as the probability density of finding the object at the position with coordinate x.
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Apart from the classical Newtonian mechanics and ordinary quantum mechanics
-our formalism has many other realizations where the fields v, may have more general
meaning with possible still unknown interpretations. In particular, we may treat our forma-
lism as the basis for a second quantized theory of fields. In this case we should interpret
‘the fields y, in accordance with the principles of quantum field theory.

In addition to the fields y,(x) we shall define fields @, (x) ( = 1...5; 0 = 1 ... N),
‘which under Galilean transformations (2.1) change like

5 N
Pus®) > “0a) = T 5 AR DDUR, D g+ WG 0, 21D

‘where Z,,"(R, ?) is the matrix describing the transformation rules for a covariant five-
~vector. Of course, we have the relation

A*(R,0) = g"4,°(R, D)g0y- (2.12y

The new fields ¢, , determine the space-time evolution of the fields y, in exactly the
same way as the classical velocity field 7,(f) determines the time evolution of the trajectory
X,(?). This means that we should have the equations

0ya(x)

o = Pual¥) (2.13)

as our field theoretical counterpart of (1.1a). Obviously, these 5N equations may be consid-
ered as the definition of the fields ¢, ,in terms of the fields y, just like in classical mechanics
the equations (1.1a) may be considered as the definition of the velocity. The knowledge
of the fields y, at different space-time points allows one to calculate the fields @,.(x).
‘Conceptually, however, the game is the opposite, just as it is in classical mechanics. They
are the fields ¢, , that determine the fields v, through the equations (2.13).

Now we pass to the most essential part of our considerations by which we mean the
formulation of the field theoretical counterpart of the Newton’s second law of mechanics.
For this purpose we need the field theoretical counterparts of the classical momentum
and force. Again, guided by the classical relation of velocity to momentum as well as by
the geometrical meaning of momentum as a covector field, we introduce into our theory
further new fields 7,”(x) with the following transformation rules under Galilean transforma-
tions:

- 5 N .
mHx) > ‘ntx) = Y ¥ A*(R, D)DYR, p)ms'(x) + PH(G; x). (2.14)
v=1pg=1 '
For each dynamical problem the fields n,* are responsible for the description of the
dynamics. This means that for the free motion we should have

onfi(x)
oxt

(2.15)
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while for any other motion there should exist fields g.(x; ¥, ¢, ,) implementing the notion
of force such that

om,'(x)

ox*

= 0u(%; ¥> Pu.a) (2.16)

and which under the Galilean transformations always behave in the homogeneous way

N
0:(%; ¥, @0 = %euxs %y, %9, = Y DUR, D)gp(%; v, 9,.0)- (2.17)

This formulation of dynamics should be regarded as an exact field theoretical analogue
of Newton’s second law of mechanics [1]. Observe that the Galilean covariance uniquely
fixes the shape of the left-hand sides in (2.15) and (2.16). This basic equations (2.16) here
also do not contain any physical parameter.

~ To make the above formulation more precise we must specify two things: the notion
of a free motion and the relation of the momentum field #*, to the velocity field @,
‘Obviously, by free motion we shall mean such cases for which the ficlds carry the energy-
~momentum relation

E=— (2.18)

characteristic for free motion. Observe that we did not include in (2.18) the rest energy
£ because in our formulation it is of dynamical origin.

The relation of momentum field 7*, to the velocity field ¢, , is taken from the direct
analogue of the classical constitutive equations (1.2) in the form

5 N
) = 5 3 M), @19)

where M** #(x) are arbitrary functions with the dimension of mass. As a matter of fact the
relation (2.19) is a part of our correspondence principle. This relation together with (2.15)
uvniquely determines the physiéal meaning of the fields n*,. In particular, the relation (2.19)
determines the dimension of n”, and by means of the matrix M it introduces into the theory
the masses of considered objects. At this point we would like to turn the reader’s attention
to the fact that in general the mass matrix M in (2.19) may be nondiagonal and its matrix
elements may be arbitrary functions of space-time variables. This enables us to describe
objects with masses not well defined [7] and objects with variable masses. In this way we
get a very important generalization of quantum mechanics for quantal description of such
systems. This is a valuable result of our work, since no other known formulation of quantum
mechanics can deal with such cases.

For complex-valued fields which satisfy (2.9) we may construct a five-vector field

N
Jix) = ; (2 ()pa(x) = P2 (I (%)) (2.20)
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which is conserved if the mass matrix M in (2.19) is Hermitian and if

N N
Zl Vit = Y 0i¥e 221y
a= a

=1
In particular, the above condition is satisfied if

(X ¥, ) = F(x; v, p)yx), (2.22)

where F is a scalar real valued function of its arguments. The systems for which the current
j* is conserved will be called conservative.

A physical interpretation of the current (2.20) depends on the adopted interpretation
of the formalism. In the case of usual quantum mechanics (2.20) represents the usual
probability current. For other cases the meaning of (2.20) must be investigated separately.

Finally we would like to indicate ope obvious generalization of our formalism. In the
case of complex-valued fields all our equations are ipvariant under phase transfoimations
of the considered fields. It is not difficult to generalize the formalism to the case of gauge
transformations of the second kind with arbitrary variable phase factors, since it is sufficient
everywhere to replace the usual space-time derivatives by the “covariant” ones given by

D, = 8,—i4,(), (2.23)

where the five gauge fields 4, form a five-vector field. The complete Galilean field theory
may then be obtained by the method described in Ref. [8].

3. The reduction of the general scheme to the case of classical mechanics and to the usual
Sormulation of wave mechanics

In order to shed some light on the physical content of the general formalism developed
till now we shall discuss three particular examples.

As the first example let us consider the real valued fields which depend on the time
variable only. In particular, let us consider three-component fields . (¢) (¢ = 1, 2, 3)
which transform according to the following representation of the Galilei group:

3
D) = 3 Ryl =vat+a (3.1)
From equations (2.13) the velocity fields have components

dy,(t)
dt

0ie=0; Qo= %o = 0. 3.2

The constitutive relation (2.19) with diagonal mass matrix M*"f = md4s? gives the
following components of the momentum fields:

dy(1) 0
dt ¢

7, =0; 7#,=m

=0 (3.3)
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and the-equations (2.16) take the form

d’y,
m dtz = Q“' (3‘4)

Needless to say, the considered example is just the classical mechanics of the mass
point. The components of the field y,(¢) are interpreted as Cartesian components of the
radius vector, the non-zero components of the velocity field are the components of the
usual velocity and, similarly, the non-zero components of the momentum field are the com-
ponents of the usual momentum. The three components of the force field are the compo-
nents of the mechanical force and equation (3.4) is just the Newtonian equation of motion.

It is easy to generalize the above example to the case of #-particle systems. It is sufficient
to choose the y-field compossd of triplets 3, () (k = 1, ..., n; o = 1, 2, 3) each of them
behaving according to (3.1) under Galilean transformations. The mass matrix we take
in the form

M = m8,508], (3.5)

where m; is the mass of the j-th particle and instead of (3.4) we end up with the equations

dzzpa
my dtzk = Qaka (3.6)

where the right-hand sides depend in general on all y,,. These are exactly Newton’s equa-
tions of motion for the n-particle system.

In the second example we shall consider fields 1, which realize the passage from unitary
representations of the extended Galilei group to projective unitary representations of the
non-cxtended Galilei group used in the Schrédinger wave mechanics. According to the
general group theoretical prascription {5] these ficlds have the form

imf

%"a(i, t, 6) = SXp (T) ¢z(5za t)a (3'7)

where m is th: mass of the particle described by the wave function ¢,(x, #). The presence
of the Planck constant in (3.7) is caused by dimensional reasons and the de Broglie con-
nection between the characteristics of the plane wave and the mechanical characteristics
of the particle [9].

Putting in (2.6) R, = 0 we see that the wave functions d)a(;, t) have the following
Galilean transformation properties

N
Shx', 1) = exp {'me (@ Rx+% 52t+w)} Z DA(R; D)%, 1) (3.8)
=1

well-known from the Schrddinger theory.



932

For fields of the form (3.7), using the constitutive equation (219) with M**,# = mg*'s¢
as mass matrix and the force fields of the type (2.22), we-end up with the equation

hZ
(_ EA'Flh )¢a(x’ t) = ’—V(x L ¢)¢a(x t)’ (3'9)

where we have denoted

2

h
VX, t;¢) = — —-F(x,t ?). (3.10)

Obviously, equation (3.9) coincides with the Schrédinger equation. This, of course; is an
expected result because we have used projective unitary representations of the Galilei
group. The non-trivial part of our result is that we have derived in a consistent way the non-
linear Schrodinger equation. This is in sharp contrast to the usual quantization procedure
where we first get the linear Schrodinger equation and then we add to it some non-linear
terms.

The non-linear Schrédinger equations are widely used for practical calculations [10]
and our general approach supplies a firm foundation to such kind of quantum mechanics.
Our approach shows tbat the non-linearities in the Schrédinger equation do not violate
the principle of superposition because the basic equations (2.13) and (2.16) are linear.
The force ficlds may non-linearly depend on the wave functions, just as in classical mechanics
the force may be a non-linear function of the position.

The fact that our general field theoretical formulation of mechanics contains as partic-
ular cases both the classical mechanics (as solutions of basic equations without Planck
constant) and the usual quantum mechanics (as solutions of the same basic equations for
which the Planck copstant is needed) is a sufficient justification for taking it seriously and
for investigating all possible other solutions. We shall follow this extensive research program
in future papers. At present we are satisfied having unified classical and quantum
mechanics in a non-trivial and new way.

In order to show what prospects for new applications are opened by our formahsm
let us consider a third example in which we take the basic fields vy, in the form of (3.7)
but with the Planck constant replaced by tunction #(X). Physically this corresponds to
gquantum mechanics with a variable Planck constant. The fact that we may consistently
discuss such problems is the second big advantage from our work. For example, we may
look what kind of effects we get if we take

a _ Yhe for x| < ro
h(x) = {hl for = |x| > r; >.1o G.11)

and in the intermediate region ro, < |X| < r;, A(x) smoothly joins the values %, and h,.
Recently [11] it was argued that this kind of quantum mechanics is desirable in astro-
physics.
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A smmple calculation shows that in the considered example instead of the Schrédinger
equation (3.9) we now get the equation

7112
2(") Ap+i h(x)jf +10[ (V::) v ]
;nhﬂz (VhY'¢ = —V(X, 1, 6; )4, (3.12)

where we have restricted ourselves to the case of conservative systems. Obviously, this
equation can be solved only if

V(% 1,05 9) = V(X, 13 $)+0Vi(%, 1; ) +67V(X, 15 §) (3-13)

and then it splits into three equations

(") Y e VG0, (3.14)
SGEN2
LAh-¢— va) ¢+Vh-Vo = iV,9, (3.15)
2
(Vi) = — 247 V,. (3.16)
m

Equation (3.14) formally coincides with the usual Schrédinger equation but in the place
of the Planck constant we have here the function h(x) The full 001nc1dence is to be obtained
in spatial regions, where the function #(x) is constant. In these regions, obviously,
V, = V, = 0and (3.15) and (3.16) are tautologies. But in'the regions where (x) is variable
a qualitatively new situation arises. First, for the description of the particle we need three
potentials ¥, ¥, and V,. Second, for given potentials we must simultaneously solve three
equations for two unknown functions #(x) and ¢(X, ) and a non-trivial solution may
exist only for some special triplets ¥, ¥, and V,. A full discussion of this problem and the
numerical calculations will be presented elsewhere. Here we just wanted to convince the
reader that our formalism enables us to treat problems of this kind. This has far-reaching:
consequences because we thus get a chance for a new interpretation of the Planck constant.
Tt is not merely a constant but a property of the systems. There are some systems for which
#(x) may be taken as a constant but there may also be systems for which the variability
of #(X) may phenomenologically describe new effects. This resembles the situation in electro-
magnetics, where the passage from constant € and y to variable &(x) and u(X) allows one to
describe electromagnetic properties of non-homogeneous media. The variable #(X) means
that we are dealing with quantally non-homogeneous media for which the quantum effects
are stronger in some regions and possibly weaker in others.
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4. Conclusions

The main purpose of our paper was to describe a specific Galilzan invariant field
theory which we called a Newtonian wave mechanics. For each physical object we have
introduced four types of fields and following Newton’s concept of mechanics we have
obtained some basic field equations. Our equations are universal and do not contain any
particular physical parameters. ;

We have shown that the general formalism contains as particular casss both classical
and, separately, quantum mechanics. To our best knowledge this is the first case of such
anification of these two theories.

Our formalism provides a quantum mechanics for general systems. We do not need
to restrict the theory to hamiltonian systems, we get the foundation for non-linear theories
without violating the quantum mechanical superposition principle and can describe systems
with variable masses and variable Planck constant. The last property seems less heretical
if we compare it with the situation of the velocity of light in electromagnetics. Only for
homogeneous media it is constant and the nonhomogeneous media play so important
a role in our life. Is it so with non-homogeneous quantum systems?
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