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MOMENTUM DISTRIBUTION AND THE MEAN FREE PATH
OF NUCLEONS IN NUCLEAR MATTER*
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Realistic momentum distribution in nuclear matter is used in calculating the absorptive
potential W and the nucleon mean free path A for nucleon energies e < 200 MeV. W is cal-
culated with a simple expression in terms of free NN cross section, which takes care of Pauli
blocking and binding effects. Whereas previous calculations suggested a sharp increase in
A as e — 0, present results show a much smoother dependence of 4 on e, with A = 5+1fm
in the whole energy range 0 < e < 200 MeV.

PACS numbers: 21.65.+f

1. Introduction

The mean free path A of a nucleon in nuclear matter is one of the fundamental char-
acteristics of nuclear matter. Directly related to 4 is the imaginary part W of the nuclear
optical potential (W ~ 1/4). A simple expiession for A (and W) in terms of the free total
NN cross section was derived in [1] (bereafter referred to asT). Itsapplication led to a reason-
able agreement with the experimental estimates for nucleon energies e ~ 50-200 MeV.,
On the other hand, A calculated in I for e < 50 MeV turned out to be too big as compared
with experimental estimates. One obvious reason for this failure was the use in I for n(ky),
the distribution of nucleon momenta ky in nuclear matter (i.c., the probability that the ky
state is occupied), the step function

n(kn) = no(kn) = 0(ke— k), (1.1)

where kg is the Fermi momentum in nuclear matter (all momenta are measured in units
of h). Namely, if we consider a nucleon moving with momentum k, in nuclear matter with
momentum distribution # = ny, we get

W—-0, A—-o for ky— kF,_ (1.2)
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because of the complete Pauli blocking at k, = ky. As a consequence of (1.2), we get
very small values of |W(k,)| and very big valuss of A(k,) for ko = kg If we replace n, by
a realistic diffused distribution n, W(kg) # 0 and A(kg) is finite, because now the Pauli
blocking is not complete even at ky = kg. Consequently, |W(k,)| increases and A(k,)
decreases for ko = kg,

In the present paper W and A are calculated as in 1, however no(ky) used in I is replaced
by a realistic distribution n(ky) determined by Fantoni and Pandharipande [2]. At low
nucleon energies, results obtained for W and in particular for A change markedly because
of this replacement, and agree with existing experimental estimates better than the
results ot 1.

In Section 2, we outline the derivation of the expiessions for W, 4, and the equivalent
local potential Wy. In Section 3, we present our results for W and 4, and compare them
with experiment. Formulae used in computing W aie presented in Appendix.

2. Expressions for W and A

Replacing the distribution ny by n in the procedure of I, although simple in principle,
requires some care. For this reason, we briefly outline the derivation of the expressions for
W and A, presented in detail in 1, with n, replaced by n.

Our starting expression for the absorptive potential of a nucleon “0” moving with
momentum k, through symmatric (N = Z) nuclear matter ot density g is:

W(ko) = 4(27)"2 § dk n(k,) Im (k| |k, VAY
where k, is the momentum of the nucleon “1” of nuclear matter,
k = (ko—k,)/2 22

is the “0” —“1” relative momentum, The factor 4 takes care of the four spin-isospin states
of a given momentum k, — otherwise spin and isospin is suppressed in our notation.
The reaction matrix % is defined by

o = v+o[Qf(a+in) ], (2.3)
where v is the NN potential,
Q = Q(k}, ko) = [1—n(k})] [1—n(ko)] (2.4)
is the exclusion principle operator,
a = e(k,)+ e(ko)—e(k’})— e(ko), (2.5)

and kp, k' are nucleon momenta in the intermediate states.
The single particle (s.p.) energy e(ky) of a nucleon with momentum ky is assumed
in'the form:

e(ky)/p+D  for kg < kg,

elkn) = {s(kN)/v+C for ky > ke, (2.6)
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where &(ky) = h%kx/2M, and the ratio of the effective to the real nucleon mass, M*/M,
is denoted by u for ky < kg and by v for ky > kg. The constants p, v, D, and C, which
depend on g, are determined as in 1. ‘

Eq. (2.3) implies the optical theorem:

Im (k| kY = —5(2m) 72 [ dK'QIKK'| A (kD[S (w)
= —2(h*|M)k | dk'(de™|dk’) | dk'k'Q5(x)
& —2(h?/M)kG(4n)~* | dk’ | dk'k'Qo(w), (2.7)

where

k' = (ko—ky)/2 (28

is the rclative momentum in the intermediate state.
In the second step in Eq. (2.7), we introduce the differential NN cross section (in the
CM system) in nuclear matter,

da™|dk' = (K'[k) (M[4nh?)|CK' | (k)i2, (2.9)

in which &’ is determined by the energy conservation equation, « = 0.
In the last step in Eq. (2.7), we make the crucial approximation:

do"V|dk' = G/An = L (0on+0,,)/4m, (2.10)

1.e., we approximate the NN cross section in nuclear matter by the average total NN cross
section for free NN scattering (g, and o, are total cross sections for nn and np scattering).
The appioximate treatment of the &’ integration in the last step in Eq. (2.7) means that we
replace Q¢ by its angle average.

By inserting expression (2.7) into Eq. (2.1), we get our final result for Wiko):

W(ko) = —8(h*|M)Y*(2m)~> | dk,n(k,)ka(4m)™* | dk’ | dk'k'Qd(a). .11

Let us denote by W, the value of W in the case of n = n,. Only states with ky > kg,
ki > kg contribute to W,,. For these states o = —#i2k'%/Mv + terms independent of k', and
the integration over k’ and &’ in (2.11) can be performed analytically with the result

<kp

Wolko) = —4h*v(2m)™® | dk,Q&k/M, (2.12)

where Q is the angle average of Q (expressions for § are given in Egs. (B.5a-b) of 1).
In the case of n # n,, an analytical integration over k' is impossible even for the states
with ko > kg, k; > kg. Furthermore, when n # n, there are other states that contribute
to W, e.g., those with ky < kg, kg > ky. For those states a depends not only on &’ but also
on x', the cosine of the angle between k' and the total conserved momentum of the two
nucleons “0” and “17,

K = ko+k, = kj+k}, (2.13)

and this complicates further the calculation of W.
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As the equilibrium density of nuclear matter we use tne value g, = 0.160 fm-3
(kgo = 1.33fm-1), used in [2]. 1t differs slightly from the value of g, = 0.166 fm—3
(ko = 1.35fm™1) used in 1. Consequently, values of the parameters of the s.p. potentiel,
Eq. (2.6), differ slightly from those used in I. The present values, determined as described
in I (with the volume energy of nuclear matter &, = —15.8 MeV), are: D(g,)
= —110 MeV, C(go) = —68 MeV, v(go) = 0.7, p(go) = 0.4, and D(go/2) = —66 MeV,
C(00/2) = —48 MeV, v(go/2) = 0.8, u(0o/2) = 0.5.

0 100 e (MeV)
Fig. 2. Wi(e) and Woy(e) calculated at o = go and g = 0o/2

For ¢ we use the same parametrization as in I, fitted to the np and nn experimental
cross sections.

Results obtained for Wy and A are presented as functions of the energy e, connected
with ko by Eq. (2.6). This enables us to compare our results directly with experiment.

The equivalent local absorptive potential as a function of the nucleon (neutron)
energy, Wi(e), calculated with the distribution n at ¢ = ¢, and ¢ = @¢/2 is shown in Fig. 2.
For comparison, we also show in Fig. 2 the equivalent potential Wy, calculated with the
distribution n,. Replacing n, by the realistic distribution n increases |Wy|, especially at
low energies. This increase, more pronounced at g, than at go/2, is caused by the weakening
of the Pauli blocking. Comparing the results for g, and go/2, we notice that at low energies
[Wi(00)| < |Wi(0of2)] and at high energies [Wyi(0o)| > |Wi(00/2)|, which reflects the
decreasing role of the Pauli blocking with the increasing energy. This explains the observed
surface peaking of the absorptive optical potential at low energies, and the volume type
absorption at higher energies. Since the effect is the result of the Pauli blocking, it is more
pronounced in the case of the distribution n, than in the case of n.

The space of k,, k, ko may be divided into the following six regions: (Ai) k] < kg,
ko < kg; B Ky > ke, ko > kg3 (C) kY > kg, ko < kpor k' < kg, ko > kg, where k; < kg
for i = 1, and k, > kg for i = 2. The contiibutions of these regions to Wy, and their sum
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WL(TOT) are shown in Fig. 3. Energy and momentum conservation does not allow real
scattering kok, — kokj to occur in region A2, and consequently W;(A2) = 0. Similarly
Wi (A1) = 0 for e 2 15 MeV, and |W(Al)| for r S 15MeV is too small to be visible
in Fig. 3. Most important at higher energies is the region B1 (the only region which contri-
butes to Wy). As ko — kg (¢ » —15.8 MeV), the number of states in this region, compa-
tible with energy and momentum conservation, shrinks to zero. Consequently, at suffi-
ciently low energies |W(B1)| becomes small compared to other contributions, especially

W (B1)
Wi
(MeV) ¥ ]
W (B2)
\_
W, (C2) ‘
0 100 e (MeV)

Fig. 3. Different contributions to WL at ¢ = g,

[WL(C1)|. Of course, the actual magnitude of the contributions depends also on the cross
section o which increases sharply with decreasing relative momentum k.

Fig. 4 shows the results for the mean free path 1 as a function of e, obtained with the
realistic distribution n at ¢ = g, and ¢ = @o/2. Results for the mean free path A,, obtained
with the distribution n,, are also shown in Fig. 4. At high energies, A is only slightly smaller
than Ao. As the energy e diminishes, 2 does not change very much whereas A,, especially
at ¢ = o, increases rapidly as e — 0. Notice also that at low energies the density depend-
ence of A is much weaker than that of A4: A(g,) is only slightly bigger than A(go/2) whereas
Ao(00) > Ao(00/2). In short, our results indicate that the mean free path does not depend on
encigy and density so drastically as the n = n, results suggest.

In Fig. 5, our results for W and W, are compared with a sample of empirical estimat s
of the central depth of the imaginary part of the phenomenological local optical potential.
Full circles are neutron-heavy nuclei data from the early compilation of Hodgsen (p. 87
of [7]), open circles are from the compilation of Bohr and Mottelson (p. 237 of [8]), and
crosses are from recent proton scattering on 2°8Pb and 4°Ca (Nadasen et al. [9]; to obtain
the corresponding neutron energy e from the proton energy e, the Coulomb and symmetry
correction was used as in I). The comparison of our results with empirical estimates is in-
conclusive. Especially at low energy, where the effect of a realistic momentum distribution
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Fig. 4. A(e) and Ay(e ) calculated at ¢ = g, and ¢ = 0o/2
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Fig. 5. Wi(e) and Wor(e) calculated at ¢ = po compared with empirical estimates

is biggest, the depth of the phenomenological absorptive potential in the central part of
heavy nuclei is not well determined because of the strong surface absorption, and also the
presence of compound-elastic scattering. But also at higher energics, there are problems
with the phenomenological depth of Wi, 1ecently pointed out by Meyer and Schwandt [10]
(noticed already by Elton [11]). There are theoretical reasons (see, e.g., [12]) to belicve
that at higher energies the real part of the optical potential acquires a wine-bottle shape
which, in turn, affects the depth of Wy. For example, the analysis of 4°Ca(p, p)*°Ca elastic
scattering at e, = 180 MeV (e = 170 MeV) suggests the value of Wy = 25MeV [10],
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‘which is much bigger than all the values (obtained with a standard shape of the real poten-
tial) shown in Fig. 5.

In Fig. 6, our results for 4 and A, ate compared with empirical estimates. The results
-of Ref. [8] and the Ca, Pb results of Ref. [9] were obtained from the corresponding results
for W, in Fig. 5 by applying Eq. (2.6). In the same way, the horizontally shaded band is
obtained from the results for Wy of Ref. [10] (based on a real potential of a wine-bottle
'shape). The vertically shaded band denotes the range of A values determined in Ref. [9]
from p — 4°C reaction cross section. The result of Ref. [13] is an cstimated upper limit
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Fig. 6. Ae) and Ao(e) calculated at p = po compared with empirical estimates

of A inferred from inclusive proton-induced spectra. The estimate of [14] was obtained
by fitting A to angle integrated proton singles spectrum in (p, X) experiments. (The lower
energy limits of the estimates of [10], [13], and [14] shown in Fig. 6 stem from subtracting
‘Coulomb and symmetry energy from experimental energics e, to gat e.) The estimate [15]
is the result of adjusting the collision term in describing heavy ion collisions.

The agreement (or disagreement) of our results for the mean free path with the experi-
mental results obtained from the empirical imaginary optical potential, via relation (2.6),
simply reflects the situation with Wy in Fig. 5. In general, our results for 4 agree better
with the other expzrimental estimatas (obtained not from empirical values of Wyi). The
best agreement is achieved with the results of the recent proton reaction cross section
measurement by Nadasen et al. [9] (and also with the less direct estimate of [14]). Inspite
of the considerable spread of the empirical points in Fig. 6, none of them for e < 50 MeV
is compatible with our results for 1, which increases rapidly with decreasing energy. ln
this respect, all the experimental results favour the mean free path 4 calculated with the
realistic momentum distribution. Our results suggest that A = 541 fm in the whole energy
range considered, 0 < e < 200 MeV.

All the numerical computations were parformed on the Olivetti M21 Personal
Computer, and the author thanks Dr. Jacek Rozynek for his expert help in subduing the
computer.
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APPENDIX

Computation of W(k,)

Here, as in actual computations, we introduce ky = ky/kp. However, to simplify
our formulae, we drop the tilde in our notation. This means, that in the Appendix (and
only here) ky denotes the momentum measured in units of the Fermi momentum.

In the new notation, Eq. (2.11) (with the help of formula (3.16) of I) takes the form:

<] (+) 1 =3
W(ko) = —(N/ko) % dkn(k,) (j dkk*a(k)y 1 jl dx' { dk'k'Q(kY, k)o(@),, (A1)
y(—) -
where N = (32/n2)eiks, &p = h2%KZ2M, () = lko+k,|/2, x = k'K’. The momenta
ko and k) are determined by K, k’, and x':
z?} = [(K[2)* +k'?+ KK'x']"/2. (A2)
i
Furthermore,
K = 2[(K2 +kd)[2—K*]V2 (A.3)

The contributions W(Yi) of each of the k,, ki, ko regions Yi(Y = A, B,Candi = 1, 2)
defined in Section 3, are calculated separately. Notice that we always have ko, > 1. '
To simplify computations, we introduce the following quantities:

n(ky) 1 for ky<1,

ny(ky) = n(kN)ﬁ = (A4)
1 n(ky) for ky>1,
0,.(K, k', x') = [1=n, (k)] [L—n.(ko)], (A.5)

where y and z stand for « or 8, and where the connection between ki, ko and K, k', x’ is
given in (A.2).
We outline our procedure in the case of region Al. We have:
1 yW+) 1 <]
W(A1) = —(Njko) | dkikyn(k,) § dkk*a(k) L { dx' | dk'k'Quu(K, k', x")o(otay)s
o B (St -1 0
(A.6)
where a,, is the value of o, Eq. (2.5), in region Al:
Uasfee = Kofv+ki/p—k[n—k?lp+(C—D)fer
= ~(1/p=1/y) (ko= D+(2/w) (K> —K"?). (A7)

In the last step in Eq. (A.7), we use Eqs (A.2-3) and the relation (C— D)fep = Hu—1/fv
which follows from the continuity of e(ky) at ky = 1.
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To perform the k' integration in (A.6), we use the formula:
g dk,k’Qaaé(aAl) = Z {k,Qaa(K9 k,’ x’)/[daAl/dkll}k'=k'A1’ (AS)

where the sum extends over all positive solutions k}, of the energy conservation equation,,
aa; = 0. As is seen from Eq. (A.7), there is only one such solution,

kiy = [K2—(1—p/v) (kg —1D/2]"7, (A.9)

and we get
1 y(+) 2 _
W(AL)/er = —(8kip[n’ko) | dkikin(ky) | dkk*G(K)Qu(K, Kka1)s (A.10)
0 ()
where
1
QM(K kAl = —;‘ 5 X Q:xa(Ka klAl: x,)' (A.ll)

Following the same procedurs in region A2 we find that W(A2) = 0, and the results
in the remaining regions are (we use the notation: a(1) = 0, b(1) = 1, a(2) = 1, b(2) = o0):
y(+)

W(Bi)jer = —(8kEv/n*ko) j dkikyn(ky) | dkk*6(k)0ps(K, ki), (A.12)

=)

where
1
QﬁB(K kBl = % _j x Qﬂﬁ(K’ k,Bia xl), (A‘13)
ky = [K*=@/p—1) A—kDI'?,  kpy =k, (A.14)
and
W(Ci)fer = —(16k2{2uv/[v+p]}/n*ko)
(3} y(+) .
x bj dic,n(k;) | dkk*&(k)0,,(K, ke, (A.15)
a(i) ¥(—)
where
1
Qaﬂ(K’ ké.‘i) = % _,fl dleaﬁ(Ka kéi)k::i/‘kICi_% [(V—ﬂ)/(v‘l'ﬂ)]KX'L (A.16)
ke = 2 0+ w7 v —WKx'+{[(v— WKxP +4(v+ &} %], (A.17)
where

&, = u[k3—(K/2*]+v[k}—(K/2)],
&, = plkE+K2—(K[2)* — 1]+ [1-(K/2)*]. (A.18)

Whenever it happens that for a certain rangs of ky, k, x’ the expression for ky, contains
a square root of a nsgative quantity, it means that the corresponding energy conservation
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equation ay; = 0 bas no real solution, i.e., a real scatteiing is not possible. Consequently
this range of k,, k, x’ gives zero contribution to W(Yi). (For this reason the lower limit
—1in the x’ integration in (A.16) may be replaced by 0. This is also the reason for which
W(A2) = 0)

To get the total W, one has to add all the contributions,

W = W(Al1)+ i {W(Bi)+W(Ci)}. (A.19)
i=1

Inthe case of n = ny, W = W(Bl)and Qy(K, k') = Q(K, k') (expressions for oK, k)
are given in Eqs (B.5a-b)). The resulting expression for W coincides with the one used in 1.
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