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Mazxwell’s equations and the mechanical balance equations for a deformable electro-
magnetic solid are obtained via a strictly variational approach. The Lagrangian (density)
is taken as the sum of the electromagnetic ficld Lagrangian, the matter Lagrangian, and the
interaction Lagrangian. The construction of the interaction Lagrangian is performed by
modeling the solid as a set of charged particles and by defining the macroscopic quantities
through a suitable average procedure: the interaction Lagrangian then takes the form of
a multipole expansion. The Euler-Lagrange equations provide directly Maxwell’s equations,
the equations of motion, and the constitutive equations. The calculations are made explicitly
up to the quadrupole approximation; the agreement with existing theories makes the approach
applicable to multipole expansions of any order.

PACS numbers: 75.80.4q, 77.60.+v, 03.50.De

1. Introduction

In the last two decades much attention has been devoted to the subject of electro-
magnetic interactions in deformable solids. Besides, being conceptually attractive, this
subject is important because of the large extent of applications in technology and applied
physical sciences [1]. However, in spite of this subject being so fundamental in nature, the
literature bears evidence of many coexisting theories and results [2]. On the one hand such
a variety of theories arises from the different mcdels accounting for the involved phenom-
ena occurring in electromagnetic solids: interactions between polarization, magnetiza-
tion, and mechanical deformation. On the other, this paradoxical feature is due to the
conceptual difficulty that electromagnetic fields inside matter are expressed in terms of
field variables which cannot be measured in laboratories. That is why usually electromag-
netic theories cannot be sorted out or proven to be incorrect by appropriate experiments.
Hence, at this stage one can favour a theory merely through the mathematical rigour and
the soundness and generality of the model.

Based on this observation and motivated by the conceptual advantages of variational
procedures, in this paper we attempt to develop a systematic approach to electromagnetic
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interactions in deformable solids by starting from a suitable variational formulation. As
a preliminary step towards the determination of the Lagrangian density we consider a polar-
izable and magnetizable deformable body acted upon by an electromagnetic field; the
body is taken as constituted by charged particles and then ths macroscopic quantities are
defined via suitable averages (Sect. 2). Next, in Section 3, we look for the Lagrangian
(density) as the sum of three contributions, namely the electromagnetic field Lagrangian,
the matter Lagrangian, and the interaction Lagrangian. Whilz the electromagnetic field
Lagrangian and the matter Lagrangian for the model adopted can be written in a direct
way, the crucial point lies in the interaction Lagrangian. By following the average procedure
we construct systematically the interaction Lagrangian which takes the form of a multi-
pole expansion: here, for the sake of definiteness, we content ourselves with the electric
quadrupole and the magnetic dipole terms. Once this is made, Maxwell’s equations, the
equations of motion, and the constitutive equations are just the corresponding set of Euler-
-Lagrange equations; their explicit form is exhibited in Section 4. Thus we are in a position
to make a comparison with the customary theories of electromagnetism in matter (Sect. 5).
The fact that our results agree with the corresponding results derived through different
approaches emphasises the validity of our procedure. Furthermove, this fact gives value
to the main feature of our variational approach, namely that we can obtain theories as
accurate as we please by merely considering the appropriate multipole expansion in the
interaction Lagrangian. This value is strengthened by the derivation of the pertinent
equations being performed in a purely deductive way.

2. A model of electromagnetic solids

We consider a body constituted by charged particles, possibly gathered into stable
groups such as atoms and ions. In order to derive macroscopic laws for the body we have
recourse to averages over a number of particles contained in a mass element which is large
enough so that smooth average fields can be defined but which is still small from a macro-
scopic point of view. So, for any volum: element in the actual configuration of the body
we describe the position of the particles by x, = x+¢&,, x being the position of the center
of mass of the system of particles under consideration which are labeled by the subscript
o. The smooth function x = x(X, f) provides the position x of the center of mass at time
t in terms of the position X of the center of mass in a suitable reference configuration;
the Jacobian J = det F, F = 0x/0X, is taken to be strictly positive. The particle o is endowed
with a charge e, which is supposed to be constant in time. The electromagnetic fields acting
upon the particles are assumed to be smooth functions so that suitable expansions about
any center of mass may be written.

Letting dv be the volume element in the actual configuration, as usual we define the
charge density g, the polarization density vector P, the electric quadrupole moment tensor
Q, and the magnetic moment vector M as

qdv = Z.e,, 2.1
Pdy = 3 ek, (2.2)
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Qdv = 5 Z.e.8, ® &, 2.3)
Mdv = } Ze.8, % &, (2.4)

a superposed dot denoting the material time derivative.

At any time ¢ we may describe the fields under consideration in terms of the spatlal
position x (Eulerian — E for short — description) or in terms of the reference posmon
X (Lagrangian — L for short — description). When dealing with external fields, as, for
example, the electric field E and the magnetic induction B, it is natural to apply the
E-description. On the other hand, especially when treating deformable solids, the material
properties are conveniently investigated in the L-description. The transformation between
the E-description of any field and the corresponding L-description is accomplished via the
function x = x(X, ). Within a variational formulation, the equivalence of E- and L-descrip-
tions is made operative through a theorem formally proved in Ref. [3] although vety often
employed in previous papers by Lax and Nelson [4, 5]. Specifically, the theorem asserts
that letting the Lagrangian density in the E-description equal to J times the Lagrangian
density in the L-description makes the associated Euler-Lagrange equations equivalent.

3. The Lagrangian density

When dealing with physical systems which may be viewed as consisting of two separate
subsystems it is customary to look at the Lagrangian of the system as the sum of the Lagran-
gians of the two subsystems and the interaction Lagrangian. In connection with the dynam-
ical behavior of a set of particles of an electromagnetic solid, according to the scheme
outlined in Section 2, we take the Lagrangian L as the sum of a field Lagrangian Lg, a matter
Lagrangian Ly, and an electromagnetic field-matter interaction Lagrangian L;, namely

L = Lg+Ly+L, (3.1)

The field Lagrangian Ly is usually written in the E-description and its form is well-
-known; explicitly, on adopting rationalized MKS units we have

. .

Le = (% goE*— — B2> dv, (3.2)
210

where &, o are the dielectric constant and the magnetic permeability of the free space.

With a view to the variational approach we have in mind, it is worth emphasizing that the

fields E and B satisfy the homogeneous Maxwell’s equations

oB .
VxE+— =0, V-B=0, (3.3)

the symbol V denoting the gradient operator (relative to E-description). Then we may
regard as unknown functions, for the electromagnetic field, the vector potential 4 and the
scalar potential @ providing E and B through the relations

04

E=—-V&——, B=VxA
ot
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The matter Lagrangian L, is more easily expressed in the L-description. Letting
V. be the potential energy of the particle o« we may write
LM = % zzma'éazz—zaVa
-or, rather,
LM = '%' mx':2 +% Eamaéi—zan (34)
m = X m, being the total mass.
Owing to the well-known form of the Lagrangian for a charged particle in an electro-
magnetic field we are led to say that the interaction Lagrangian for a charge e with velocity

vis e(v - A—®). It is then natural to assume that the interaction Lagrangian for the system
of particles (in the E-description) is

Ly = Zpe,v, * A(x, 1) — B(x,, D)]. ’ (3.5)

As it stands, the Lagrangian (3.5) would lead to cumbersome contributions to the Euler-
-Lagrange equations due essentially to the appearance of the unknown functions x, which
reflect the microscopic behaviour of the body. Then, taking advantage of the smoothness
of the fields 4, &, we consider suitable expansions involving terms which depend on the
space variables through the position x of the center of mass only. Specifically, let

A(x,, 1) = A(x, D+, - VA(x, O+ [E - (G- VIVIA(x, D)+0(ED),
D(x,, 1) = O(x, 1)+ &, - VO(x, ) +% &, - (&, - VIVO(x, 1) +0(£D).

Henceforth, let us consider A and ¢ to within o(¢2). Then, since v, = v+&, v = x, we
have

L= (Ze)v A+Z,e8,  A+Z,e0 (& VA+ZeE, (& V)4
+% zueav : [éa * (éa : V)V]A _(zaea)¢-2aea€a : V¢_—;' zaeaga * (éa ‘ V)V¢’

the potentials 4, ¢ and their derivatives being evaluated at the center of mass x. The
interpretation of some terms in L; is obvious. For example, in view of (2.2) we have

20 (&, VA =v-(P-V)Adv.

The meaning of the terms involving &, is not clear and some comments are in order. Consid-
er, for instance, the fourth term; an integration by parts gives

ety (€ VA = (% Zede (6 VIA-Zel, (& V)4

d
—Eaemgz : (éa ' ‘E V) A
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which implies that

) d .
Telely (& VA = % {E [Z.e.8s - (8o VAT +Z 648, QE,

- 9
_§a®€a) VA —zaea(§u®§‘1) ° (a—t +v- V) VA} .

Now, because
(ga®éa—ém®§a) VA = (cax éa) "V x Aa

in view of (2.3) and (2.4) we obtain

. d
Eueaéu : (éa . V)A = ';_ ‘5 [zaeaéa ' (éa ' V)A]

3]
+M - (VxA)dv—-Q - <0_t +v- V) VAdy.

Similar procedures apply to the remaining terms. Then, by observing that additive (total)
time derivatives are ineffective in a variational approach, we arrive at the expression

oA
L= [qv +A—q@~P - VO—P- — +(Px1): (Vx4)=Q- (VV®)

-Q-%VA+(Q®v—v®Q)-(VVA)+M-(V><A)] dv. (3.6)

A more compact form is gained by introducing suitable new fields. First observe that,
upon letting

& =E+vxB
and recalling the relations (3.3), we can write
Li=[qv - A—q®+P - 6+Q  VE+(Q®v—v®Q) (YVA)+M - (VX A)]dv.
Now, it can easily be shown that
(Q®v—v®Q) - (VVA) = Q- [V(vx B)]-[Bx(2V)] - v;

in component form
[Bx(QV)] v = &BiQ;,np
Finally, letting
M =M—(QV)xv 3.7
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we arrive at the Lagrangian
Li=[qv-A—q®+P- &+ Q- (V&) + .4 - Bldv
to which corresponds the Lagrangian density
Fr=qv-A—qP+P-E+0 - (VE)Y+# - B. 3.8y

As to the Lagrangian density corresponding to (3.4) we observe that the kinetic energy
contribution of the internal variables &, is usually disregarded in connection both with
the electromagnetic properties and with the mechanical behaviour of the solid. More
specifically, the inertial effects of the internal variables are negligible as far as acoustic
waves are concerned. Accordingly, in order to get a fully macroscopic theory we disregard
Z,m,E2 in (3.4). Then, letting o be the mass density and ¥ the potential energy density, viz.

edv=%Xm, Vdv=2L)YV,
we can write

Py =10V, 3.9

Coherently with the macroscopic viewpoint, in next Section we let ¥ depend on F and g, P,
Q, 4. Indeed, for the sake of formal simplicity we set

4. Maxwell’s equations, equations of motion, and constitutive equations

The total Lagrangian density % of the system (solid and electromagnetic field) is the
sum of the Lagrangian densities %5, %y, £ As we are dealing with contributions to the
Lagrangian density both in the L-d=sciiption and in the E-description, we need having
recourse to the invariance axiom for the action of a system in different descriptions. This
axiom amounts to saying that the Lagrangian density in the B-desciiption, %, and the
corresponding one in the L-description, #™, ate related by

R4 4.1)

Furthermore, as proved in a recent paper [3], in spite of the dependence on x(X, 7) intro-
duced by J, there is no additional contribution to the Euler-Lagrange equations in passing
from the E-description to the L-description. Henceforth this feature will be taken into
account so as to avoid unnecessary calculations.

The Lagrangian density % depends on the unknown functions x, 4, &, 4, P, Q, 4 ; &
and B are related to 4 and & through (3.3). Observe now that the Lagrangian density
Z* is given by

P = L+ L+ Sy, (4.2)
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£ being independent of A4 and @. Then a direct calculation shows that, in component
form, the Euler-Lagrange equations corresponding to the variations of 4 and & are

8¥* 1
0= = ( - Qabvc + anbc)’bc - Qab'bt - l:“ (Ab'a - Aa’b) + vaa - Pan
éAa Ho
+ 8bac'//lc] - (So‘p'a + 8OAa’t - Pa)'t +qv,, (4.3)‘
‘b
é¥*
= FY ) = - Qab’ab + (Pa - e0¢’a - eoAa't)’a -4, (44)

where ., = 0/0x, and ,, = 0/0t. Letting

R=P-V-Q
and
y=4g-V R
we can write (4.4) in the form
&V E=1v; 4.5y

the quantity y can then be viewed as the effective charge density. As to Eq. (4.3) we observe
that, after some rearrangement, it can be given the form

1 *
— — VXB+gE,+VXxM+P+yp—(V-Q)*—V - (LQ-Q"L") = 0.
Lo
L denoting the (spatial) velocity gradient and the divergence being taken on the last (second):
index; for any vector w, the derivative w is defined as
*
w=w,+{(v:  V)w+wV v—Lw,
Now, it is an easy matter to see that
V- (LQ-0"L") = Vx (M -M).
Then a direct substitution and the definition of R allow us to write (4.3) as

1
— VxB—gE, = po+R+Vx M. (4.6)
Ho

Consistent with (4.6) we regard { = 1$+Vx.//{ as the effective current density.
Equations (4.5), (4.6) constitute the sought pair of Maxwell’s equations in matter..

Our purpose now is to derive the equation of motion and then, in turn, the force density

acting on the electromagnetic solid. Mathematically the equation of motion is the Euler-
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-Lagrange equation corresponding to the variation of the function x(X, ?). In order to
obtain this equation it is convenient to perform the necessary calculations within the
. L-description and to have recourse to the fields 4, P, O, M which are respectively equal
to Jtimes g, P, O, M. The fields 4 P, O, M arise because of the need of specific quantities
in the material volume dV. For example,

Pdv = PdV;

the relation dv = JdV provides the stated connection P = JP. It is worth emphasizing,
however, that P, O, M are not the usual material representations of P, Q, M (cf. Ref.
161, § 12.4). What is important for our procedure is that 4 P, 0O, M are to be viewed as
functions of the material coordinate X and time ¢. Specifically, the dependence of P (and
0, M) on ¢ stems from the definition

Pdv = 24,8,

as a consequence of the dependence of the &,’s on 2. As to g instead, the charge conservation,
g, = constant, results in the condition g = g(X).
By th: same token we can write the Lagrangian Ly as

oo =12V 4.7

nj=

with o(X) = Jo, V = JV.
In view of (4.1) we have

F" = JLi+IEL + P

Because &5 is independent of x, as shown in the Appendix the Euler-Lagrange equation
8%"|6x = 0 reduces to
)

(PrP+Pw) =0, 4.8)
ox

where P™(x) = Z™(A(x), ®(x), x). Now, on account of (4.7) we see immediately that

5P pit o av
= —fx+ — —.
5% eXT ox oF

‘On the other hand, owing to (3.6) we can write
PP =Gqv-A—qP—P -VO—P- A, +(Pxv)- (VxA)—0 (VV®) -0 - (V4,)
+(ORv—v®0) - (VVA)+M - (Vx A).

So the function #™ depends on x through 4 and & while the dependence on X =vis
expressed explicitly; hence

oL

= q(VA)o—qVP—(VA,)P+[V(V x A)] (P x v) —(VVVP)Q
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—(VV4.,)0+(VVVA) (O@v—v@ 0)+[V(Vx A)IM,
0T
ox

= gA+(P- V)A—~(VAP+[Q - (VV)]4—(VVA)O.

Then, taking into account that g = 0, after some rearrangement we arrive at
oLT

. HE+vxB)+(P-V)E+ox(P - V)B+Px B+[0 - (VW)]E

+ox[Q - (VV)]B+(QV) x B+(VB)M.

In conclusion, upon dividing by J we can writ: the equation (4.8) in terms of the fields
8, #, R, 7y as

X &+ E+Vx.ll x B+ 1o v
X = _— e —
ox = y&+( ) 7 ox oF
4V {EQOR+[(QV)®E] +BQ—(B- M)+ MSDB) (4.9)

where # is the skew-symmetric tensor associated with the vector B. The right hand side
of (4.9) constitutes the expression for the force density acting on the electromagnetic solid.
In a natural way we may regard such a force as consisting of three different contributions,
namely the body force

- *
b=9y8+(R+Vx.#)xB, (4.10)
the Piola-Kirchhoff strzss

and the electromagnetic stress

™ = g®R+[(QV)®¢s’]T+gQ*—(B- M)+ M B. 4.11)

It is an advantage of the variational approach that the constitutive equations can be
derived along with the balance equations. Specifically, first observe that, when ¢, P, Q,
and .# are the quantities to be varied, owing to (3.2), (3.8), and (3.9) the pertinent Lagran-
gian is

P =Jg(v- A—D)+JP - E+JQ - (VE)+ I M - B—JV(F, q)
—JV,(F,P,Q, M)+ ...,

the dots standing for the contribution Zgv®+J%% which is independent of g, P, Q, 4.
Then the Euler-Lagrange equations corresponding to variations of ¢, P, Q # are

v-A—d— —L =0, (4.12a)
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..P » ( .12b)
6Q 4 ( . C)
E, q{ * ( > )

Is is apparent from (4.12b, c) that the derivatives dV,/0P, 0V,[/0Q satisfy the condition
ov, oV,

P 0Q
Once the functions V,, ¥, are chosen, the relation (4.12a) provides g in terms of 4, &
while (4.12b, c, d) are in fact constitutive relations in that they give P, Q .# in terms
of & and B (or vice versa).
Within the theory of elastic dielectrics the dependence of the internal energy on the
polarization gradient is motivated on several grounds. In the present case this is accom-
plished by letting ¥, depend also on 0P/0X. Hence in view of the identity

v, oV,
=) =J Fig
OP g/ x OP y P

v, v, \*
= YV |\avp) ="
where C = FFT.

As shown by Maugin [7], electromagnetic internal variables prove very useful in
setting up models for electromagnetic solids such as elastic ferroelectrics and ferromagnets.
If such dependences would be in order we could generalize our scheme by letting the
response functions (e.g. ¥>) depend on the time derivatives of P, Q, .#. In so doing, how-
ever, we would model non-dissipative (or gyroscopic) effects, which is expected in view of
the variational character of the approach. A simple way of accounting also for dissipative
effects is to consider the constitutive equations for & and B in terms of P, @, and #,
arising from (4.12), and to supplement them with dissipative terms like NP in the expression
for & (see, e.g., Ref. [8]). The characterization of the phenomenological quantities so
introduced should then be found through a thermcdynamic analysis. This point is pot
developed here.

Eq. (4.12) becomes

5. Comparison with other theories

Before ending this paper it is worth presenting a brief comparison with the analogous
results which already appeared in the literature. Explicitly, the comparison involves Max-
well’s equations and the force acting on the electromagnetic solid. It is immediately apparent
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that the expressions (4.5), (4.6) for Maxwell’s equations coincide with the analogous ones
given by Dixon and Eringen [9], Lax and Nelson [4], and Maugin and Eringen [10]. The
same is true for the statistical formulation and the formulation of Lorentz and Minkowski;
the formal coincidence is obtained once suitable identifications are made [2]. As a con-
sequence the equations (4.5), (4.6) do not coincide with Maxwell’s equations in the Chu
formulation {2] because of the extra term —V x(M x ) in Faraday’s equation.

The same conclusion holds for the expression of the force. In this regard, however,
we have to observe that the magnetic moment vector M (M, in Ref. [2]) is related to the
magnetization

MGdV = zaeaéax(v'*'.éa)
by
M =Ms;+vxP.

In addition we remark that, in the present theory, the contributions due to the electric
quadrupole moment @ are evaluated both for Maxw:Il’s equations and for the expression
of the force; this constitutes an improvement on the theories in Ref. [2].

Finally, a comparison with the paper by Lax and Nelson [4] is in order especially
because their approach is variational in character. From a mathematical standpoint the
peculiar feature of the approach of Lax and Nelson is that the unknown functions are the
position vectors x, of the single charged particles. That is why Lax and Nelson first derive
the equations of motion as Euler-Lagrange equations and then proceed by averaging
over the forces acting on the charged particles. In the present approach, instead, the interac-
tion Lagrangian is written in terms of the electromagnetic field and of the position x of the
center of mass (of the groups of charged particles). Physically this mzans that the interaction
Lagrangian has the form of a multipole expansion, which is associated with a twofold
advantage: it makes the generalization to higher-order expansions immediate and renders
the derivation of the sought equations purely deductive. In a sense our approach is similar
to and generalizes that developed by Lax and Nelson in connection with elastic
pyroelectrics [S].

The research leading to this work bas been performed under the auspices of
GNFM-CNR and partially supported by the Italian Ministry of Education through the
409, research project “Problemi di evoluzione nei fluidi ¢ nei solidi”.

APPENDIX

With each material system we can associate a spatial Lagrangian (density) #*° or
a material Lagrangian #™ depending on whether we describe the system through the
E-description or the L-description. Specifically, consider a (solid) body interacting: with
a set of fields y,, ¢ = 1, ..., n. The Lagrangians #°, ™ are given by the expressions

& = 28(1/)0" X)s z" = gm('pa(x)’ x)’
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which mean that the unknown functions are, respectively, v,(x, 1), X(x, t) and (x(X, 1), 1),
x(X, 1) [3]; to save writing the dependence on the derivatives of the unknown functions.
is unspecified and understood.

On the basis of the invariance of the action under the transformation mapping the
E-description and the L-description into each other, we have P = JF°. As proved in
Ref. [3], the variational derivatives of £* and ™ with respect to ¢, and x are related by

d7" 8F*
=J-—, o=1,..,n,
oY, 0%,
SF™ L™ By 5*
— + 2 = —JF! . Al
ox oy, Ox oX (AD)

Some care must be exercised in writing explicitly the variational derivatives L6y,
and 6.%%/5y,. Specifically, £*° is meant to depend on y, through the values vy, themselves
and the derivatives 0v,/0t, 0v,/0x, ... Analogously, the dependence of ™ on y, occurs
explicitly through the values of y, and the derivatives v,, 0v,/éX, .

A different viewpoint may be adopted for deriving the connection between the varia-
tional derivatives of #° and %™ with respect to the position variables x, X. Since the
variables y, are held fixed, ‘we may consider the function P™ defined as £™(x)
= P"(y,(x), x). Hence (A.1) becomes

0L o _JF il
ox oX

(A2)

A significant simplification occurs when the Lagrangian Z* takes the form
& = L1(vs)+ LYo X)s

with a nonvanishing %% ; such is the case for the Lagrangian (4.2), £ being the field La-
grangian. Then (A.1) and (A.2) imply that

L™ SPT oy,

— =0, A3
ox Sy, Ox (A-3)
o
i‘ =0. (A.4)
ox
Whenever a variational formulation holds, namely
8 F° 80Z®
0, —=0,
0P, oX
we have
8L oF™
=0, —=20
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Moreover, in view of (A.3) and (A.4) we obtain the equivalent conditions

8L + 0L7 0y,

—— )
ox oy, Ox (A-5)
L7
2 =0. (A.6)
ox

Often, when deriving the Euler-Lagrange equations, the form (A.6) turns out to be more
convenient than (A.5).
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