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MATRIX FORMULATION OF N =1 SUPERGRAVITY BASED
ON UNIVERSAL NONLINEAR FIRST-ORDER EQUATIONS
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Lagrangian and equations of N = 1 supergravity are obtained in terms of universal
matrix nonlinear first-order equations with quadratic nonlinearities, which have a number
of advantages. The quadratic and cubic matrices are derived and their properties are investi-
gated. It is shown that tetrad-formalism matrices have much simpler minimum polynomial
compared with metric one. The field function structure is obtained containing tetrads, Ricci
coefficients and Riemann tensor and also both spin-vector and components lowering non-
linearities.

PACS numbers: 04.65.+e¢

1. Introduction

Gauge fields are presently the basis for the unified theory of fundamental interactions.
It was supergravity (SG) where the idea was first realized that fermion fields, usually associ-
ated with the matter, could be the true gauge fields and that they unite with the fields of
integer spin in the irreducible supermultiplet. Because of the great mathematical difficulties
there ariscs a problem of adequate mathematical formulation of SG. One of the possible
approaches to the solution of this problem is based on the universal nonlinear first-order
equations (UNE) first suggested in [1] and developed in [2-11] for a number of field theory
models including fields with different transformation properties and statistics.

A distinguishing feature of this approach, convenient for supersymmetrical theories
is that, by definition, the unified field satisfying the UNE includes interchangeably the
fields of fermions and bosons which are the elements of Grassmann algebra. The first
order of UNE is also adequate for SG, since Ricci coefficients which actually give transition
to the first order of gravity equations, are the gauge fields components. Due to the first-
-order equations and quadratic nonlinearity of UNE, ¥ contains tetrads, Ricci coefficients
and Riemann tensor as components of Bose sector. Using also the 1.5-order formalism

* Address: Institute of Physics, BSSR Academy of Sciences, Leninsky prospekt 70, Minsk 220602,
USSR.

951)



952

[12], we can circumvent difficulties connected with transformations of auxiliary compo-
nents.

In this work we consider formulation of N = 1 SG on the basis of such approach.
In the UNE formalism all interacting fields, both bosons and fermions, are introduced
as components of the self-interacting unified field ¥ = {¥ ,(x)}, (4 = 1, 2, ..., n) which
satisfies the following UNE:

("8, + )P +L MPY =0, (1)
with Lagrangian of the form:

£ = 19", +aO)Y+ 1 MPPY. ¢

Here, o* = (¢%5), «° = (a%p) are quadratic and M = (M o) cubic matrices, which
completely characterize the system (1), and ¥ are the elements of Grassmann algebra:

P 4(0)¥5(x")— (= )" ¥p(x) P 4(x) = O, (3)

where a, b are Grassmann parity of components ¥,, ¥5 (a, b = 0 for Bose fields and
a,b =1 for Fermi fields).
From (1) and (2), we have the following symmetry properties of o, «®, M [2, 4]:

typ = _(_l)abaﬁm ayp = (—l)ab“gm
M 4pc = (“l)abM BAC = (—l)a(bN)M BCA> ) -
For the UNE formulation of N = 1 SG we must find the corresponding component

structure of ¥ and explicit form of matrices o, o° and M.

2. N = 1 supergravity

The action of the minimal N = 1 SG is expressed as follows [13-15]:

S=§ d4x[$G(x)+-5”3/z(x)], ®)
'?G = k Mvad' mncde € Rqa ((D) (6)
L = _" uvwll’u)"s)’ng’l’m O
where
Raacd — ae wacd_ ad wgcd + wack CO,,.kd _ wack a)ekd (8)

is the curvature tensor, »,” are Ricci coefficients or spin connection, e} are tetrad
(€hey, = g,v) components, ¥,(y, = —yrC-1) is a Majorana spin 3/2 field, C is a charge
conjugate matrix, y, = eyy,, 7, are Dirac matrices, 75 = 7,Y273V4>

VYu = (50 _% welnaln)ww &)



953

where
O = 5 yu¥m) = & (V0= VaV1)-
Field equations are found by independent varying e}, y,, and @, (Palatini formalism)
1 k2% a€nR e O — 3 £, 757D, = 0, (10)
—3 &0 (P ysy)+ 5 & qul/_)uysyvaklwo
—5 "Dy, )C 'ysy, = 0, (11)
1 k2% i€ a5 kT2 e
X epev0eq" +3 &P,V 51,0 cat = 0. (12)
If we postulate that tetrad is covariantly constant:
60e2+w0"ke,,"—1" ve€s = 0, 13)
where,

rﬁv = }+r[nv} { }+CI"”

{ fv} = 4 87u8or+ Bou— o) (14)
are the Christoffel symbols, then from (12) and (13) we have the torsion given by
k2
C;‘:v = - _4' tl_)u?ezpv' (15)

3. Matrix approach in supergravity

Now, let us construct the appropriate system of first-order equations of the type (1)
in the supergravity theory. Equations (10)-(12) contain nonlinearities of higher degrees
than quadratic. To make nonlinearities quadratic, we need to introduce as auxiliary compo-
nents of the field function ¥ ,(x), Riemann tensor R,,”* and antisymmetrical covariant
derivative Dyy,;. Then, we must add to the system (10)-(12) an auxiliary equation (8)
and an equation for defining components @,, = Di,p,;:

Pov = OePv1— 3 OuPe@n"- (16)

Let us consider equation (12) and write it in the form:
7 & mnca0 (k™ Zeme: —% & mpea
X (k™ 2e0e)wqdt + " (9,757,)0 ¥, = 0. an
Introducing new variables ™, and y,, by expressions:

Kmn”v =-k-2egce:]’ Zuv = w[u)’s},v] (18)
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we shall have a system only with quadratic nonlinearities on field functions
% k-zsuveasmncde’:Reod""fl "™’ uC~1YSyn¢nc =0, (19)

.1 .pveo, N, mn 1 nveo, mn
4 € emnchpK nv+2 € EmnckK nv

X 0, oy +% €' Fn0eae = 0, (20)

K=k~ 2e{';‘e:] =0, 21)
201,057" — Ry + 200 0, = 0, (22)

=3 &0 Fun+ % € 00" — 1 € PuC V5708, = 0, (23)
Tuv—era¥iiC ' 7s¥n = 0, (24)

0P — P+ TP = 0, (25)

where n = diag(—1, —1, —1, +1) is the Minkowski tensor.
If we introduce as unified field ¥ a multicomponent function

P(x) = {P40)} = {¥uor Yutintr Ppuvicsary
T{ku]{;xv]} ‘Pczy’ Wa[pv]’ YI[mw]az}.r = {efn
@, Ry K s Who Phs Tuva) T (26)

we can write the system (20)-(25) in the universal matrix form (1).

For finding the explicit form of the matrices of (1) it is convenient to use elements
%® of the basis of quadratic and e**¢ of cubic matrices in the space ¥(x), which are expres-
sed in terms of elements of vector basis:

P = ot o, ABC — oA B oC

(e")s = S5, e'e” = b, @D
(the point denotes direct multiplication of basis vectors). Here, 8 45 are generalized Kronecker

symbols in the form:
é

papa = (02

Ougintw ko] = O Otkny,kemy
5[ku1,[k'n'] = ‘;“ (OkkOnn — O Ops)s
Opuatknltwv k] = Opuv),urv 1Otk e (28)
Using relations (26-28), we get the following expressions for the main matrices

ﬁu = _% Svouae dea[cd],[mn][va]

mnc

+2e[ﬂ\’][kn],v{kn]_ % grencgaoivelx + e[w]a,av’ (29)
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ﬁO = e[uV][mn],[mn][u\']_ e[mn][uVJ,[uv][mn] + e«[uV],Iuv}a_ e[uV]a,a[ut'], (30)

A= %_ k—Zsuvocamcaevn,ym,[oa][cd] +% euveasmd‘

X1 dev[cd].[mn][uﬂ.alak] +2,1 be[kn][ea],olka].a[bn]
o ai

+71{ a,uved(o.kn);{ed[k'l]ﬂ[ﬂ\’]yﬂa +eﬂa.a[uﬂ,0[kn]]
-1 SOl -1
+ % ellvoﬂ’(c yS?n)aﬂevn atiblect_ % (C 'YS)’n)aﬂ

x gflavhemvn _ % ( ak"); elHvL.Bv,ulkn} (31

1t is seen that these matrices do not satisfy symmetry conditions (4), and hence, the system
(20)(25) cannot be obtained from Lagrangian (2) through the variational principle. But
with the use of nondegenerate linear transformation, i.e. multiplying (1) by any nonsingular
matrix Q (det Q # 0) we can receive the equivalent system of equations with matrices
o = Qp*, a® = QB°, M = QA satisfying conditions (4). We can get it if we use Q in the
form:

Q = evk.vk+ev[kn],v[kn]_%_ apvqagmmd

X [e[uV][mn],[WJ[cd] . e[mn][uVJ,[cd][w] N
% suvoa[ea[nﬂ.a[ec]__ e[u\']a,[oﬂ]z]. (32)

And for o, «°, M we obtain

o = % 8veu08mncd[exmn][ve],a[cd]
— ev[cd],[mnl[ve]} _ % veua[e[ve]a,aa + eaa,{ve]a]’ ( 33)
a® = — _;_ 8uveasmncd[e[aa][cd],[mn]Duv]
+ e[mn][uVJ,[ed][cd]] _ __12_ Euved[ ed[ea].[u\']a _ e[uV]a,a[ecr]], ( 3 4)

M = 2 (_ ])D(ﬂ){%_ Suvoasmncd[k-2eum.vn.[e¢][cd]
p .

+ 2'7ak eﬁmn}[ﬂv].e[ck],c[ad]] _ _;_ 8““9’[(C_ 1 ')?5)’,,)0,,5

x e«u,vn.ﬂ[ecl__ _;_ (o.k"); e(u‘-']a,oikn]-ﬂo]}_ (3 5)
Here, 3 is the sum on all possible transpositions of indices for ¢*®, and p(z) is the sum
®

of multiplications of Grassmann parities of indices participating in transpositions.
Minimal polynomial for matrices p = p,d*, where p, is any vector, is given by

plp*+(-1)*3p’] = 0. (36)

One obtains minimal polynomial of p in SG of the third degree as in the case of matrix
tetrad formulation of gravity theory [11]. Note that in metric formulation minimum
polynomial is of the seventh degree [3].
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4. Discussion

Thus, we have obtained the universal form (2) of SG Lagrangian with matrices satisfy-
ing symmetry conditions (4). This Lagrangian differs from SG Lagrangian (5) by the total

divergence

A4F = — 'é— ae{sﬂvad[amncdk— Ze":le:wacd - 2¢y?5'}’v"/)a] } '

(37

Variation of 6% under general coordinate, local Lorentz and supersymmetry trans-

formations, can be written as
O = (*NYW +(*N3*0, ¥ + 0,0 *N4*w + 0, Kpek
K = (4, [ab], ®).
Here, NX, NX* N®K are constant matrices, V** are vectors:
NY = (0, N{™, NY),
NE? = 4 (lace™ " = 1y *) @ 14N
- rlaceu[bk],u[ck] + r’bce[ﬂﬂ[ak],[uv}[ck]

[uvIlbk],[nvIlck] +n, eLakIlavLIckipv] _ e[bk][pv],[ck][uv]
c ac

—Nacf n
+21 (aa,,)ﬂe““"' k1 (0,p) etV 1AV _ 1 (O.ab)g Bl
Ni = — 2 k(c™ ' Y)upe™? + 1 k™Yoo M

N3* = (N¥,0,0), NY = —5,¢",
N5® = (N%',0,0),
N‘;v = — gitkovk_ gulablvlab] _ o [rollabl,[ve]{ab]

—elabllrollabllval _ jamav__ 5 elpolalvel o e[ua]ar,[v«r]a’

veE = (0, e, v,

Vu[ab] — eu[ab]’ Ve = k—leau’

(38)

(39

(40)

41

42)

C5(x) = (L*(x), ")), {*(x)) are localized group parameters, (* define general coordinate
transformations, (x* = x*+{%(x)), {*¥x) local Lorentz and {*(x) local supersymmetry
transformations. We consider the invariance of Lagrangian (2) under supertransformations

. . . S
in the “l.5-formalism”, i.e. we suggest 5 Y% = 0 at A = plkn), [pv] [kn], [kn] [w],
A

a[uv), [pv]e. Lagrangian (2) varies under transformations (37) into a total derivative.

Matrices (33)(35) satisfy the corresponding invariance conditions.
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The appearance of curvature tensor R,,” (22) and x*,, (25) in the unified ¥ structure
(26) is due to a greater degree of nonlinearities of tetrad formulation compared to metric
formulation of the gravity theory.

Finally, ¢xpressions (34-35) for o”, «®, M, and (26) for the unified ¥ structure
completely determine Lagrangian and equations of the N == 1 SG in terms of universal
metric equations and make it possible to use the earlier developed method in SG. This
formulation implies further generalization on extended SG models.
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