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It is shown that the only Kasner-like solution of the GFT field equations with a nonzero-
electromagnetic field corresponds to an empty field geometry of the space-time. In this case,
the electromagnetic field tensors of the theory coincide as could be expected from general
considerations.

PACS numbers: 04.50.+h

1. Introduction

Generalised Field Theory (GFT; Refs [1, 2]) has so far yielded a unique model of the
universe in the case of the static, spherically symmetric solution of its field equations and
a reformulation of the theory of the electromagnetic field (Ref. [3]). Although both of the
above conclusions are different from the results of standard theories in some respects and
could, in principle, lead to empirically verifiable predictions, their immediate ussfulness
is questionable. Observational data in cosmology are, more often than not, theory-
-dependent and hence hardly useful as its test. Similarly, macrophysical aspects of the
electromagnetic theory do not lend themselves readily to experimental investigation while
the implications of the impact of the current reformulation on the microphysical domain
remains an open problem. Barely first steps have been taken towards its possible solution
(Ref. [4]). In other words, GFT remains a speculative theory however compelling the
reasons, logical, mathematical and philosophical, for proposing it as the natural (and,
hopefully, physically valid) extension of General Relativity.

These and other problems arising from investigations carried out since the publica-
tion of Ref. [1] will be further discussed elseswhere (Ref. [5]). We shall confine ourselves
in this article to seeking for mo1e general solutions of the GFT field equations. In particular,
we shall consider the case when the metric of the background, Riemannian space is of
Kasner type:

ds? = dt* —a%dx* — a’dy* —aidz?, (1
where a;’s are functions of ¢ only. We shall find that again, as in the case of static spherical
symmetry, we are led to a unique field structure. This may not be very realistic from a physi-
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<al point of view (after all, it is doubtful whether Kasner universes are realistic either).
However, and quite surprisingly, application to our result of the arguments outlined in
Ref. [3] will lead to a further conceptual strengthening of GFT itsclf.

Now, the field equations of the latter are those of the nonsymmetric unified field theory
of Einstein and Straus:

uvi— 2180 — T840 = 0, )
Rm() = 0, ©)
Ry = 3 (=T, )
and
F,=0(=p",p"=—gg" I\, = I{,0) ©)

(the last one is an equation in the Einstein-Straus theory and not an identity which here
arises from the relation between the two “connections” of GFT

Lo =Tu+3 8l

for reasons explained in the first two references, I call I' the physical connection and I"the
geometrical connection). (Greek indices go from 0 to 3 and Latin, when used, from 1 to 3.)
In addition to the noted difference in the relation (5), we have also the definition of the
space-time metric a,, (= a,,) (“the metric hypothesis” or theorem), in requiring the sym-
metric part of the geometrical connection " to be a Christoffel bracket constructed from

the tensor a:
o A
Fhoy = {W}a. ©)

An even more comprehensive theory than GFT can be obtained by explicitly including
.the definition (6) in the Lagrangian. It has been pointed out (Ref. [6]), however, that the
resulting system of field equations is virtually unsolvable. The reason is the difficulty of
deciding whether symmetry restrictions (and consequent simplifications) should be imposed
on the metric a or on the field g. It seems that only in the Kasner case, which we are going
to consider, does the imposition of such simplifying conditions on the metric alone (with
the assumption that the components of g are likewise only functions of ¢, which seems emi-
nently reasonable) lead unambiguously to a complete solution of the problem.

We shall start with a general solution of the equation (2) in the Generalised Field
Theory.

2. Solution of equation (2) in GFT
It has been shown by Mme Tonnelat (e.g. Ref. [7]) that, except when
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equation (2) is algebraically solvable for the connection I’ in terms of the tensor g and its
first derivatives. The Tonnelat solution is considerably simplified in the case of GFT on
account of the metric hypothesis (6) since the symmetric part of I" can now be regarded

as known.

Let, then, a stroke denote covariant differentiation with respect to ffm as affine con-
nection. If we denote by 4,, and k,, the symmetric and the skew-symmetric parts of g,,

respectively,

8w = hyytky, hy, =h

uv

) kuv = —k

vur
then

huv]l = huv,l_fga).)hav_rgvl)hua = ffu}.]kav"'rf}.v]kua-
We easily see that permuting the indices cyclically and adding
h[uv]l] = 0.
Similarly,
kuvlﬁ. = kuv,l_fzul)kav—rzvl)kua = Fgul]hav+f€lv]hpa:
and
kvl[u = I:Evu]hal+f¢[1ul]hva; k}.ulv = ff‘lv]hau-l'ffvu]h).a'
Hence, adding the last two equations and subtracting (10) as usual,
ngvu]ha'l = kv}.]p+kly]v_kuv|}.a
or, since A,, is necessarily nonsingular,
~?vu] = —;‘ hal(kln|v+kv).|u_kuv|l)'

Interchanging p and v and using skewsymmetry of k

Iton = 5 B Kgput Koy + Kunjo)-

Q)

®

®

(10)

3))

The same relations, of course, hold also in the Tonnelat solution but now, because

~ A
A
r (wv) — {Nv}a

(12)

is known for given tensors a and g, our task is completed. We may notice that the same

procedure applied to equation (8) gives

- A ~ ~
Ty = { + B ik + TaviKua)
Win
because

Iy =0=h"%,,
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whence . .
o| _Jo '
uof, ,ua},,’ (13)

V-hoe/-a, | (14)

where h = det h,,, a = det a,,. We cannot, in particular, choose h,, = a,, without imposing
an intolerable restriction fful]kav+fflv]kua = 0 on the nonsymmetric affine connection.

Finally, we may also note that the skewsymmetric part of the Ricci tensor constructed
from the connection f‘ﬁv and given by equation (4) as proportional to the curl of the vector
I', (contracted skew part of the “physical” connection I') is also given by

or

R[MV](f )= ~T .[’uV].d+f' ‘(rue)r fav]+1—;¢(7@ﬂr futf]_r :de)f' gﬂ"’] = __Eruvlla' (15)
In an n-dimensional space Schrodinger’s relation between I' and I" must be replaced by
o 1
ri, =ri+ —ar, (16}
n—1
when, again,

I, =o0.

"

3. Solution of equation (2) in the Kasner case

Let us now return to the case when the metric of the space-time is given by equation
(1) and the components of the field g are also functions of time only. Then, of course, the
only nonzero Christoffel brackets are (no summation)

with the dot denoting differentiation with respect to time.
If we now write out in full (given in the Appendix) equations (8), we immediately
find by inspection that

hoy = hoy = ho3 = and  hyy = constant (18)

unless the background space-time is flat. Then, however, we casily obtain equations

hi—4 = hy—2aah0 = 0, (19)
a;
and
=2 (‘ * ‘) iy = 0, 20)
a; a;
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again without summation. Hence the components 4, of the tensor h are fully determined
in the form
hy = —hgoal +caf (21)
and '

hy = kka,-za}, (i, j, k cyclic 1,2, 3) (22

where ¢,, ¢, ¢3; ky, k,, k3 are constants of integration. Moreover, we obtain additional
equations

fFOi]kai = _cia?di’ (23)
fYOi]kaO =0, ffij]kaz = ff‘ij]kaj =0 (i#})) (24)
where only a summation over ¢ is understood.

If we similarly write out equations (10) we find that the only nonzero components of the
skewsymmetric part of the affine connection are

- ksa? k,a
3 3az; =5 243
I'toyy=—"ad,, I'tg11= — a,a,,
kas kys
2 2
~3 ksai . =~ kias |
021 = aydy, Tgoay= — ad,
13 kys
. k,a? N k,a?
2 241 . 1 142 .
Fios; = azds, Tz = — *k asds, (25)
12 12
when
. 2 2.
- a a,asasd
0 1 142034,
I'fipgy= — —ky, —‘k‘—Pz,
ag 23
. 2 2.
. a a,asasda
0 1 192434,
I3y =— —ki3+ ———P;,
a, kas
. 2 2.
o a aia,asd
0 2 1424342
I3 = — —kys+ ———= Py, (26)
a, ks
where
2
Py = hook;+(kki—kic)a;, 27
and
k01 = koz = ko3 = 0. (28)

(Notice that the P; notation appears somewhat clumsy in equation (26); this, however,
is immaterial since complete symmetry of the notation will be restored below so that there
i> no point in trying to restore it at this stage.) The solution now proceeds by finding condi-



964

tions for the equations
R(U)I' = 0,
or
Fpftn =0 i#j (29)

to be identically satisfied. Somewhat tedious but elementary algebra shows that this is
going to be the case providing

k3ikzs = ——afagagPs ‘ (30)
and
k P
2 _ 3 (3D
ki, P,

so that we can equivalently have (30) and
kiz2kys = —a";agang. (1)

However, there remain still three differential equations for k,,, k3; and k,; amongst
equations (10) which must be satisfied under these conditions. These now acquire the
symmetric form

k a .
a;;zlz (kxz“z a_l klz) = —2a,4,P,,

193
k a .
a—gza% <k31 -2 f ksx) = —2a.4,P;,

243 3
k a .
%(k23—2 _2 k23) = _2a3a3P2. (32)
aia; a;

In the next Section, we shall obtain a complete solution of thesee quations and,
a fortiori, of the field equations (2) through (6) as well. Before we do so, however, let us
observe that if one of the P factors vanishes, say P; = 0, then the corresponding k; = 0
so that k; = 0 and therefore P; = 0 as well. In other words, if one of the P’s vanishes,
then another must vanish as well.

4. Solution of the field equations
Let us suppose first that
P, # 0. (33)
Then the last two of equations (32) immediately give (because of (30) and (31'))

2 2 2 2
ki = y.ajaz, ky3 = y1a3a3, ¥, ¥2 const.,
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so that equation (30) requires
7172070305 = —atazai[hooks+(kky—kscs)a3l,

where either k; = 0 and y,y, = —k k,, or a; = constant.
() If a; = constant, then either k,, = 0 or ka3 = 7,43, ¥, = 7,45
a) If a; = constant, k,, = 0, then P, = 0 which is a contradiction.
b) If a; = constant, k,; = 7,43, k3; = y,a> = y,aa>, then

hook, , (kiks—kyc)) , ,

ki = — ai— aiai = a,a +a,aa3, say.
71 71

The first of equations (32) now glves a2 == constant, k,; = constant and so, as we cam
easily verify, only two components I {uv; SUIVive, namely
k3a§
= . ~2
T[OI] = — a0, and F[Ol] = —
k23 23

2
k;a;

a.d,.

Moreover, the equation Ry, = 0 now gives a, = a+f¢ («, § constant) and, by equation
(15), there is no electromagnetic field.

In the same way, we can verify that the case k3 = 0, y,y, = —k, k, leads to vanishing:
of the electromagnetic field as well (in both these conclusions we may recall that, in GFT,.
the electromagnetic intensity field is identified as proportional to R[,".](f‘ )]

(7i) Similarly, if k3 = 0, y,y, = —k,k,, we easily show that either a, or g, is necessarily’
constant and again we get a zero electromagnetic field.

It now follows that at least two of the factors P; must vanish. Let us suppose that

P, =P,=k, =k, =0. (34
Then k,, = 0 and k3, = y,a302, y:ks3 = —k3a3(hoo— c3a3). Therefore
oo Y2014, F3 ___k_a a,d,
ot hoo c3a§ ’ roz1 72 a3 ’
but
d ad,
hoor[m] =0= ?zaxas'*')’z ——“_z( hooas"'csas) = ')’20103“3 (35)
Hence, either
y2=0 (36)

or a, is a constant. We have already seen that the latter possibility leaves us with no electro-
magnetic field. Therefore ¢quation (36) must be assumed to hold but then P; = 0 implying
k; = 0 and, with

a, =a; =a, 37
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the only nonzero component of the skewsymmetric part of the affine connection is
f?zs] = — — — k3. (38)
‘The functions @, and a are now determined by equations (3) which become

d
< 42-=0,
a, a

. ay ., .
a,d,+2—add =0,
a

(ady + < da, = 0. (39)
a4
‘We easily find that these are satisfied by
a; = e (t—1t)"13,  a =a, = a; = c(t—ty)*">, (40)

‘where ¢,, ¢ and ¢, are constants, the first two of which can be absorbed into a scaling of
space-like coordinates.

Furthermore, only one of the components of the skew part of the Ricci tensor {(equation
{4)) now survives in the form

Ri;3; = 4, a constant. C3))

This equation, finally, determines gp;3, = k.3, which, with B being another constant,
becomes

kys = 2 A(t—10)*+B(t —t,)*"2. 42)
A straightforward calculation shows that the Russell-Klotz tensor
Wiy = a“"kwl‘,,, 43)

is then given by
W23 = "'2A. (44)

5. Conclusion

We have shown that the only Kasner-like solution of the GFT field equations which
allows a nonzero electromagnetic field corresponds to an empty field geometry of space-
time, that is to the solution of the general relativistic field equations

R,, = 0.
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The standard formula for the energy-momentum tensor (Ref. [1])

1
T, = - M Guvy ({;;})

fails in this case since it gives
T, =0,

while we know that there is a nonzero energy of the electromagnetic field. Of course, the
reason for this is that, in the highly pathological situation of the current model, gravity
and electromagnetism become separated from each other. Energy of the latter must therefore
be calculated from the Maxwell energy-stress-momentum tensor.

On the other hand, the empty field structure.of geometry implies that the two el=ctro-
magnetic field tensors, namely the Russell-Klotz and the GFT intensity tensors, should
coincide. That this, indeed, is the case (constant proportionality or units factors apart)
can therefore be regarded as a very satisfactory feature of the theory.
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APPENDIX

Py i =Tty =T ihue = ket Ky,
hoo,o =0,

hoo,x “Zf(lox)hox = 2f?01]kao’
hoo,z"‘Zf(zoz)hoz = 2ff02]k,,0,
koo,s“szos)hos = 2ff03]kao§
hm,o"f(lox)hm = f{oukw,
ho1,1“’f(101)h11—f(1)1h00 = ffo1]ka1’
ho1,2"'f(202)h21 = fz’oz]kal‘*‘f{'zuk(m
h01,3"'f?oa)h31 = ffoa]kal +ff'31]k0a§
hoz,o“‘f(zonhoz = ffoz]kOa
hoz,l"'f(lonhlz = f€011k02+fg12]k00,

~s ~0 -
hoz,z"‘r(onhzz“rzzhoo = r[oz]ku,
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hoz,s_f?oa)hsz = fgoslka2+ff'32]k0a§
hos,o—f?os)hos = ffos]kmu

h03,1‘f(103)h13 = f([’oukas‘*'ff‘xs]kw,
hos2—Fionhas = Fonkes + Tastkoos
hos,s“f?oa)hss—fgshoo = ffos]kaa§
h11.0_2f(101)h11 = 2ff10]ka1’

h11,1“2f(1)1ho1 =0 = hoy,

hys,, = fo'xzjkan

hirs = 2l 1arkess

hxz,o—‘f(llo)hu‘“f(zoz)hlz = f[”lolk,2+1:‘[’02]k“,
h12,1—f(1)1h02 = f[GIZ]klas

h12,2_f(2)2h10 = ff12]kaz’

hizs = ff13]ka2+fgsz]k1a;
h13,0_f(110)hl3_1:?03)h13 = ffxo]kas"‘ffos]km,
h13,1_f(1)1h03 = fflslklaa

hysz = ff’u]kas'l'ffzs]km,

h13,3—fg3h10 = f[aw]kn;

h22,0—2f(202)h22 = 21:?20]’%2’

his1 = foznkaza

hzz,z“Znghoz = 0 = ho,

h22.3 = 21:{23]’%2;

hzs,o_f(zzo)hzs—f(soa)hzs = ffzo]kas+ffos]kza»
hys,, = f[621]ka'3+f[¢13]k2m

h23,2—f(2)2h03 = ffzs]kzm

h23,3“fgahzo = fl‘:’23]ka3;

has,o'Zf?os)hss = 2ff30]ka3,

h33,1 = 21:?31]’%3,



hys, = 2ff32]ka3:

haa,s_zfgahos = 0 = hgs.

hoy = hgy = hg3 =0,  hgo = const.
k01.o—f(101)ko1 = ffouhw = f?ouhoo’

ko1 = fgox]hap

k01,2—f<202)k21 = ffoz]hn +f?21]h00,
ko1,3—Tonks: = fgos}ha1 +I D3 13h005
koz,o—ff’oz)koz = fgoz]hOa = f?oz]hoo,
koz,x—f(lonkxz = f‘[’011h62+f?12]h00,

koz,z = fgothaz’

koz,s"f(sos)ksz = f‘[’osjhaz"'f?sz]hoo;
kos,o-f?os)kos = f?os]hom

k03,1_f(101)k13 = ffOl]ha'S'l'f?l?:]hOO’
kos,z_f(zoz)kza = ffozlhas'l’f?zz]hoo,

kos,s = fgos]ha3§

klZ,O—f(110)k12_f(202)k12 = f?lO]h02+fg02]hlav
k12,1“f(1)1k02 = fi'mhm

klz,z"fgzkm = fElZ]ho'Z')

kizs = ffxsjhez'*'ffsz]hm;
k13,o—f(lxo)k13_f?oa)k13 = ffxo]has"f‘ffoa]hw’
k13,1—f?1k03 = fi‘m)hlw

kis2 = f‘[’IZ]haZi +I:€23]h1m

k13,3—fgsk1o = fgl3]has;

kzs,o—f (zzo)kzs—f onkzs = r t201M03 +I {031P124>
ka3 = ffzx]ha3+ff13]hza,

kzs,z—fgzkos = f?zszhzas

0 ra
kzs,s—rsskzo = r[23]h03'
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