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In this work both the radial and angular parts of the relativistic fermion-antifermion
equation with the Coulomb-like scalar potential are investigated. The formula is obtained
determining a discrete energy mass spectrum of the composite quark-antiquark systems.
The performed analysis of the angular part of the equations leads to the two series of solutions
corresponding to the P-parity values P = (—1) and P = (—1) !, respectively. By using
weak coupling approximation the satisfactory agreement between particle mass values
calculated on this basis and experimental data for several families of the real mesons is
obtained.

PACS numbers: 11.10.Qr

1. Introduction

In [1-2] and later in [3-4], a procedure has been developed of reducing the Bethe-
-Salpeter equation for composite fermion-antifermion systems to two simple systems of
equations for the radial and angular part of the wave function. In subsequent papers [5-7],
Krélikowski and Rzewuski considered a tensor representation of such a relativistic
equation with a potential allowing for spin effects (Breit equation). There, the reduction
of the equation with a complete potential, having both vector and scalar parts, was made
and a classification of the equation solutions by the quantum numbers J, /, s was obtained.
However, as it was also shown there, an analytical solution of the equation for the complete
potential could not be found because of terms like (dV/dr)/(E— V) (in [5], for example,
only the approximate solutions of the Breit equation with the Coulomb potential in the
case of parapositronium was obtained).

* Address: Institute of Physics, BSSR Academy of Sciences, Leninskii prospect 70, Minsk 220602,
USSR.

** Address: A.N. Sevchenko Institute of Applied Physical Problems, Kurchatova 7, Minsk 220106,
USSR.

©71)



972

Solving the relativistic fermion-antifermion equation with a potential which contains
only a Lorenz scalar is a simpler problem and, in some cases, allows one to get useful
information about the composite systems.

In the paper [3], an analytical solution of the equation in the case of the states with
complete momentum J = 0 and the scalar potential corresponding to the square-well
potential was obtained. Later, in [9), the analytical solution of the equation for the arbitrary
Jwas obtained, where the same potential was used. A similar problem was solved in [10, 11]
for the Coulomb-like scalar potential.

In the present work, the complete solution of the radial equation system with the
Coulomb-like scalar potential is found for general case of fermions differing in mass;
a formula for the angular part of the equation is investigated to classify the solutions by the
sequences of states corcesponding to the parities P = (— 1)’ or P = (—1)’*! of the bound
system. No Breit interaction is considered in such approach, and so there is no separation
of the states with different / and s for a given J in the classification proposed (contrary
to [5-7]). Finally, a comparison between theoretical estimates and available experimental
data for meson masses of different families is made. The result§ obtained are in qualita-
tive agreement with experiment, even for the simplest case of the Coulomb-like scalar
potential, which is an evidence of the consistency of the approach developed in [3-7]
and [9-11].

2. Separation of variables and solution of the radial part of the equation

The relativistic fermion-antifermion equation with instantaneous interaction for the
spherically symmetric scalar potential ¥{(r) may be written as (see [3-5]):
Hy(r)¥(r) = 0, 1)

where
0
Ho(r) = E—i(@@®—a") = —BVm, — B Pm, - v(r) (B +82), ®

o =a®l, o =I®s, U =pol p7=108

and P(r) = {¥,(n} (g = 1, 2, ..., 16) is the 16~component wave function of the composite
system under consideration. Here a«, f§ are the known Dirac matrices, /is a unit 4 x 4 matrix,
m; (i = 1, 2) are masses of bound particles.

The equation (1) with the Breit potential

V(r) = V(E)—2[a® - a®+(r-a®) (- a®) PV ()

was considered in the works [5-7]. It was shown there that the presence of the vector
part of the potential, as had been noted, did not permit to obtain the analytical solution
of the equation. In the case of the scalar potential (¥’(r) = 0) considered here, the situation
becomes simpler and the radial part of Eq. (1) has an analytical solution.
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To separate the variables in Eq. (1), as is known from [3, 4], it is necessary to go over
to the spherical system of coordinates and make a unitary transformation:

U = exp (—iA0) exp (—iBg), 3)
(am O 1 o@Pa), B = %(a‘ll)oc(zl)+a(f)oc(22)). (3a)

With the transformation of (3), Eq. (2) transforms to

(UH(r)UHYUY(r) =0 @
and its solution can be written as:
UY(r) = Zj(cos 0, p)o’(r). ©)

As a result of such transformation to a spherical system of coordinates, the following
expressions, essential in further considerations, are obtained [3, 4]:

i a - i d 1 1 j Q("a ])
v (a( ) a7> U™t = o ((; ; 7) L v+ 280
1 0 L0
03, j) = o5 <;m—0 o9~ 1oy ctg 9) +af? <% +3ctg 9) , Q)
- 0 1 0
Z3(cos 0, ) = I:u+ + ——#— <—— + ol — ) ¢™?P7(cos 9)] ®
VI +1)\a0 sin 0 dg

(i=1,2 j=12 i#j; pe=0+a05Pu)2,
which have the properties:

[0, 257 = 0, [a{aP+as"08?, ZF] = 0, ©)
(1, 2)Z7(cos 0, ¢) = Z](cos 0, p)as” VI +1),
0(2, 1)Z"(cos 0, g) = Z7(cos 0, P)as2 /I(JT +1). (10)

Relations (6)-(8) provide the separation of the radial part of the original equation. The
obtained system of 16 equations for the radial function can, in turn, be subdivided into
two independent syst:ms, of eight equations each, which correspond to two eigenvalues
M = 41 of the normal divisor M [3]. Further on, a system of eight equations for M = +1
will be considered. In this case, as has been shown in [8], the system of radial ~quations
consisting of four algebraic and four first-order differential equations can be significantly
simplified by introducing, instead of the functions ¢,(r) (r = 1, 2, ... 8), new functions:

D, =x1+4ss Po=Xi—Xe» P3=X3tXss Pa=XA3—Xs> (11)
where y,(r) = ro(r).
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Now, the system of differential radial equations takes a simple form

> JUJ+1
[(p‘ R +w2] ®(r) =0, 12)
1/d B, i
=—|— -4 o,
@2 a (dr r * 2r> (132)
P, = L4 _#- i P 13b
" ;(dr ro2r) "’ (13b)

(m=m)NIG+D) B —(my—my)

O=0, =0, p,=73t B ) —E

o = ‘% [E? —(my +m,+2V(r)*] [E*—(m; —m,)"]. (14)

The corresponding system of algebraic equations now reduces to equations:
28y = (a1 — a2 )P—(%2 +21)Ps,
2s = —(oaf ~a3)@+(of —a3) Py,
24 = —(af +03)P~ (2 —3)P,
27 = (a1 +03)P—(ay —%3)P3, 15)
where
of = (mAV+iVITHDM, (=12 (15a)

Taking the scalar potential as:
as
V) = - — (16)
r

Eq. (12) can be rewritten in the form:
> & 24
FREIC PN
where
s = J(J+ 1)+,
dz = % vzas(m1+m2)’
V= [Ez_(ml_mz)z]/Ez, . (18)
2 1

&g = ZP [EZ___(;n1 _m2)2] [(m1+m2)2—E2]. (19)
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It can be seen from the properties of second-order differential equations (such as Eq. (12))
and from expression (19) for &? that the discrete energy spectrum is in the range:

imy—m,| <E<m +m,. 20)

The general solution &(r) of Eq. (17) is expressed via the confluent hypergeometric function
F as:
® = Crie *F(A—d*[e, 24, 2er), 1)

where

A= LA +V1+4J(J +1) +4a37). (22)

Substituting (21) into (13a) and (13b) and using the properties of confluent hypergeometrical
functions, it can also be written:

2i _ d? a*

D, = e "C[—r*aF+r‘"1 (x— —-) F +r*1 (- —-%+i> F:I, (23a)
E £ €
2. d2 d2

P, = —Eie_"C[—r‘eF+r"'l </1— —8-) F'4+r7*71 (—8— —%—i) F], (23b)

where the following definitions have been introduced:

d? d’
F = F(}.—— —, 24, 28r>, F' = F().-—- — +1,24, 2er). 24)
) £

The discrete spectrum of solutions (21) of Eq. (17) can be found from the condition
of finiteness of the confluent hypergeometric function at r — oo, For this purpose it is
necessary to assume:

YIr(A—d?e) = 0. (25)
It follows from the properties of the I'-function that
i—d*le = —n, n,=0,12,.. (26)

(n, is a radial quantum number). Now, taking into account that the function F’ (Eq. (24))
enters into Eq. (23) only as a product (A— d?/¢)F’, the condition of finiteness of the second
term in Eq. (23) at r — oo yields

(A—d?e)[[(A—d?*[e+1) = 0. 27

Since I'(z+1) = zI(2), it can easily be seen that condition (27) is actually reduced to
Eq. (25). Thus, to find all the solutions of the system of radial equations (12)~(13), which
correspond to the discrete energy spectrum of a q-q system, the same formula (26) can be
used.
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Note that at m;y =m, =

E =2u \/1—40:52/(1+2nf+\/1+4.l(.l+1)+4a52) 2%
follows from (26).

3. Classification of states by P-parity

Consider now the properties of the original Eqgs. (1) and (4) and their solutions with
respect to spatial inversion (P-parity) transformations.

Acting on Eq. (1) with the spatial inversion operator, in accordance with the general
rules [8), the following expression can be obtained for the complete parity operator:

P = nfVPUL(r - ~r) = Pol,, (29)

where P, = nf V8, and 7 is a quantum number determining the internal parity of the
'system. For the q-q systam n = —1 [12].

It should be noted, however, that under unitary transformation by the operator
U(8, ¢), Eq. (1) is changed to Eq. (4). Naturally, the P-parity operator Eq. (29) should also
undergo such transformation. Therefore, the behaviour of Eq. (4) due to spatial reflections
requires further investigations.

Let us consider the behaviour of the operator Py = nf"® due to the transforma-
tion U(0, ¢). By expanding in series the exponzntials: exp (—i460) and exp (— iBy) entering
into Eq. (3), and vsing the properties of the matrices 4 and B (see Eq. (3a)), one can easily
-obtain:

exp (—idf) = 1—iA sin §— A*(1 —cos 6),
exp (—iBg) = 1—iB sin ¢p—B*(1—cos @). 30)
It can be seen that the operator U(f, p) commutes with the matrices B, g

[U, g1 =0 G
-and, hence

[U,P;] =0, Pp=UP U =P, =npp2, (32)
i.e. the operator P, under unitary transformation considered does not change its form.

Returning now to the original Eq. (1), it is easy to see that the action of U(0, ¢) trans-

formation (see (3)) on the operator consists only in modification of the second term in the
-operator

G G
i(@?—a)y— > U [i(a‘z)—m(“) —} Ul (33)
or or

In turn, it is with this term that the sign changes under the action of the operator
Py = nfMBP, Therefore, by virtue of (31), (32) the operator P, will have the same action
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on the operator H(r) in the transformed Eq. (4). Inde=d, taking into account relations
(6)~(10), it is easy to see that under the action of the operator P, = P, on the transformed
operator H(r) = UH,(r)U-! also the sign of the above mentioned term of (33) is changed
in Eq. (4).

Thus, the operator Py = P, is also a reflection operator for Eq. (4) after unitary
transformation of (3), (30) as well. Now it is seen that the action of the total spatial reflection
operator P’ = PyI(r — —r) = Pyl, on the operator H(r) of the transformed Eq. (4) leads
to their commutation, i.e. [P’, H(r)] = 0.

Now, let us examine the action of the spatial reflection operator P’ on the wave function
U¥(r). Write the column matrix U¥(r) of (5) in the explicit form. Taking into account
the possibility of breaking sixteen radial equations into two independent systems, we
obtain for the case M = +1 according to (5)—(8) the function with the following eight
components:

,_.__}
U¥(r) = {(UP(r),} = {K-(J, 0, @)e(r), 02(r), K-(J, 9, p)as(r),
Q4("), QS(r)s K+(J9 0’ ‘P)Qs("),

2+(r), K +(J, 0, @)og(r)} exp (im@)PF(cos 0),

K. (J.0 —___..1__<a+__1_£.> 34
:h(, ,(p)—\/jm E“’sm@&p . ( )

The analysis of the behaviour of (34) due to the spatial reflection transformation presents
a severe problem. This is due to the fact that under the action of transformation of (29),
in (34) the structure of terms with derivatives d/0r changes so that it is impossible to see
how the sign changes in individual components of (U¥), (¢ = 1, 2, ..., 8) of the function
UY in (34). However, thesz difficulties can be avoided if one goes over to such basis in the
space of the function U¥ = {(U¥),} of (34) where the X, components of the new function
X={X}(g=12..,8) are associated with the original components by the following
relations:

X, =UP)+U¥Ps X,=(U¥)—(U¥)s
X3 =(U¥);:4+UP)s, X4 =(U¥)—(U¥)s, (35)
X5 = (UY),, Xe = (U‘I’)4, X, = (Uq’)m Xg = (U¥);.

According to this and taking into account (5) and (34) we obtain

i ) P P
X, = x, = SRUMD 0 b0y PO _ qin 2O (36)
J(J+1) 00 r
2. . (p Q 3
X, = — w ?(cos 0) 2(7’) = Qimz 3(r) s (37)

VIU+1) r oy
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2i i (/]

X, = - im exp (img) P7(cos 0) () _ Qf’l D4(r) ’ 38)

JIT+1) r r

P o]
X = Xg = exp (im@)PF(cos 0)a” —fQ = Q{"';“ ﬁr) , (39)

P

X¢ = X, = —exp (img)PF(cos O)a” —(—) = Q%, ir) ,

(k = 1, 3, k1 = 5, 6; kz = 6’ 7): (40)

where (see (15))
of = of = of = (uti VIU+D/PE

and Q" 2 (@ = 1,2, ..., 8) denotes the angular part'of the X, components of the function X.
Performmg now spatial reflection, which corresponds to the substitution:

050 =71-0, ¢—-¢ =¢+n

in the angular variables used, it can easily be seen that in the functions X; and X, of (36),
the factor (—1)’*%, and the remaining functions X, 4 56.7,s of (37)-(40), the factor (—1)”
arise.

This is evidently due to the fact that different values ! and s are possible for any given
value J, i.e. at a fixed value J of the functions X = {X_}, states with different sets of quan-
tum numbers / and s can be described. The function X describes in general a certain mixture
of states. This feature was noticed earlier in [5].

The problem is now reduced to isclating such functions from the obtained set of

= {X,;} (¢ = 1,2, ..., 8) functions of (36)-(40) for which one and the same factor would
appear for all the components under spatial inversion according to the law of P-parity
conservation. It is functions of the states of the system with a given P-parity are to be
constructed.

To this effect, let us first introduce, according to (13), standard spectroscopic nota-~
tions for the states of g-q systems:

a) P-parity for q-q systems is equal to P = (—1)’.
Then the following set of states is isolated:

P=0%17,2% .. (41)
or, with other notations, this will be:
(J£1); = Py, 38, +°Dy, °P,+°F,, ... (41a)
b) P-parity for g-q systems is equal to P = (—1)"*",
Then, the following set of states is isolated:

JP=0",1%2", ... (42)
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or
(1—3).,_, = 1So, 1P1+3P1, 1D2+3D2, (423)

Now, the wave function Z;" can be split into the orbital and the spin parts by using
the Clebsh-Gordon coefficiznts Cimgn.. The formula for splitting is:

Z CLmsmsYJm(cos 0’ (p)Xmss (43)

where Yq‘"" (cos 0, @) are spherical vectors, y, are Dirac spinors.
Making use of the possibility of expanding (43) as well as of the law of P-parity con-
servation, we can now isolate two sets of wave functions by the following rules:

Case 1. P-parity of q-q systems is equal to P = (—1)’.
a) To the functions X{,,,,,k (k = 1, 3) there corresponds L = J. This means that
(see Eq. (30):

1,mg=0) j@

J __ J6=
Xk - Q.I,m,k r

44)

o %0 @

b) To the functions X7 ., (k' = 2, 4, 5, 6, 7, 8) there corresponds L = J+1 so that
(see Eq. (37)-(40)):

- @,
Xt = i, 20, (46)
r
X Qj(s " 1) q(r) (47)
’m’ r *
Case 2. P-parity of g-q systems is equal to P = (—1)’*!,
a) To the functions Xi,,,,’,, there corresponds L == J41. This means that
. ‘P(r)
= QT — " (48)
.= ‘D(r)
xt = ey, = “9)
b) To the functions X{,’,,, & there corresponds L = J, so that
xt = @m0 20, (50)

r

P
le - QJ’(;,,:,‘?) 1) (51
r
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where @, = @, , for k' = 2, 4and ¢, = @ for k' = 5, 6, 7, 8. In these formulae s = 1, 0
are spin quantum numbers determining the eigenvalues s (s+1) of the operator of the spin
momentum square s? (m, = 1,0, —1 at s = 1; m, = 0 at 5 = 0).

Thus, to the two sets of states of Eq. (40) and (41) for the P-parities (— 1)’ and (- 1)’*",
there correspond two different sets of wave functions, (44)-(47) and (48)~(51), respectively.
Note 1. In the case L = 0, considerable simplifications take place. Indeed, by using the
equation

(USPU™HUY = s(s+ 1)U (52)

which is true when L = 0, it is easy to establish the following:

a) s = 0. All the functions X; (k = 1, 3, 4, 5, 6, 7, 8) (36), (38)-(40) but X, vanish,
i.e. in the case of antiparallel spins of composite particles there is only one function X,
which describes the g-q system and its P-parity is always equal to —1 (see (51)).

b) s = 1. In this case X5 = X = X7 = X3 = 0 and only functions X,, X; and X
are other than zero which is in agreement with the presence of three possible spin states
for the g-q system at s = 1. However, the P-parity can be different now (see Eq. (44),
(46), (48)-(30)).

The above classification of states by P-parities equal to (—1)” or (—1)’** can be clearly
interpreted if the approximation of the so-called strong or weak coupling is considered.
It turns out that in such approximation, components X, are isolated which correspond
to certain P-parity without distinction in all possible quantum numbers, and the states
of g-q systems can be classified using only allowable sets J*.

It follows from the previously obtained condition of energy spectrum discreteness
(Eq. (20)) that the strong coupling between the quarks will occur when

E <2pu. (53)

Going over to a corresponding limit in Egs. (36)-(40) we find that the functions X, break

into “big” and ‘“small” components. “Big” components in this case are X) 456,78,

i.e. the strong coupling approximation isolates a series of states (42) with P = (—1)’*?,
Under the condition of weak coupling:

E—>2pu 54)

“big” components are the functions X, and X, i.e. such limiting transition isolates a series
of states of Eq. (44) corresponding to P = (—1)’. -

Note 2. Note that if L = 0, s = 0 (see Note 1, case a) the 1S, state of the q-q system
does not exist in the limit of weak coupling. This state is described here by one function
X9 which vanishes in the case being considered. At the same time, the state 38, (s = 1)
of the system exists at L = 0 in the limit of both strong and weak coupling (the nonzero
components are X;, X3, Xy).

It will be shown below that good agreement with experiment is observed only for
a series corresponding to the weak coupling for all the families of mesons. Since in the
involved model a Coulomb-like scalar potential is chosen, i.e. the ons which is essential
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for the meson-forming colored quarks only at small distances between them, ope can say
that the approach being developed agrees with the well-known notions of asymptotic
freedom of quarks, though it is not based on the quantum chromodynamic ideology.

4. Comparison with experiment

An essential feature of the proposed approach is that the consideration is carried out
with a single Coulomb-like scalar potential. Only two parameters are changed depending
on the quark aroma, they are: the effective constant of interaction «, and the effective mass.
of quark u.

Based on the model involved, we shall consider families of mesons consisting of light
u, d and s quarks as systems of the light quarkonium type and those consisting of heavy
quarks ¢ and b as systems of the heavy quarkonium type.

a) Light quarkonium

Attempts to classify low-lying mesons consisting of light quarks u, d and s and their
antiquarks were made by many authors on the basis of both non-relativistic and relativistic
models. The most satisfactory values for masses of a number of mesons werz obtained by
introducing a large number of phenomenological parameters (see, for example, [14])-
The simple model considered here does not require such procedure.

Table 1 summarizes the results of numerical calculations by formula (28) for the mass
spectrum of mesons consisting of u, d quarks (i, 4 = gy = ly)- They are well fitted with
the series corresponding to the weak coupling of quarks (41). To estimate the unknown
parameters «, and p, 4, the states E; and E; 2, were identifizd with the vector mesons.
o(776) and (1110) (taken from [15]) respectively. o, 4 = 6.37, p,q = 909 (MeV) were
obtained. The well-known problem of calculating a reasonable value for the pion mass
is naturally avoided in our model. The !S, state which is usually compared with the n-meson

TABLE 1
Light quarkonium states (for non-strange quarks)

Eipeor Eexp P P
J ny (MCV) (MCV) Jitneor -’exp
1 0 776 p(776) 1- 1-
0 1 1072 3+ (981) 0+ (158
1 1 1110 (1110) [15] 1- 1-
0 2 1268 £(1300) (123 o+
1 2 1290 £’(1250) 1~ 1-
1 3 1405 (1384) [15] 1~ 1-
1 4 1485 — 1~ —
1 5 1531 ©”(1600) 1- 1-
2 1 1174 f(1273) 2+ 2+
2 2 1330 A,(1317) 2+ 2+
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TABLE II
Light quarkonium states (for strange quarks)
E E,
J nr (l\t/}l::;) (Mcex{;) Ji tI;leor J gxp
0 0 992 S$*(980) 0+ o+
0 1 1452 €(1300) o+ (0
1 0 1020 O(1020) 1- 1-
1 1 1498 (1498) [16] 1- 1-
1 2 1764 X(1690) 1- ?
1 3 1939 — 1- —
1 4 2064 9’(2136) 1- ?
2 0 1175 £(1273) 2+ 2+
2 1 1577 f'(1516) 2t 2+

does not appear in the series of states (41) allowable for the weak coupling approximation,
i.e. it is excluded from consideration (note 2).

In general, it may be concluded that the satisfactory agreement has been obtained for
both, the masses and the quantum numbers.

Similar results are obtained for a family of mesons treated as SS systems. These results
are given in Table II. The states (1020) and (1498) (see [16]) for J =1 (n, = 0, 1) were
used as the initial masses.

In both cases, the experimental data available are indicative of the presence of weak
coupling between the quarks (asymptotic freedom).

b) Heavy quarkonium

(/) Charmonium. For charmonium, the series with P = (—1)” is also principal. Identi~
fying the J/¥P-particle mass with E:,==lo and ¥' with E]7Y, we have from (28)

r

o = 2286, p, = 2.188 (GeV).

The results of calculations are given in Table IIL 1n the case of charmonium, the state
7. (2.98) which is the ground singlet state can be evaluated if we go to another series (42)
and take into account that the effective constant of interaction for the 'S, state, which is
a bound state of the quark and the antiquark with antiparallel spins (s = 0), must be diffe-
rent, o,. To evaluate &, consider the level (3.51) as the ground state with J* = 1+ (n, = 0).
For the same masses u, of charmed quarks as before, formula (28) yields o, = 1.65. It can
be seen from Table III that the states 0'S, and 13S, of charmonium, calculated by the param-
eters o, and p, agree well with the masses of 5, and #, mesons.

(#i) Bottonium. Presented in Table IV are the calculated and experimental values for
the masses of a series of Y-particles. The values for the parameters o, and u, have been
obtained under the condition that E,_% = My.4s) Ej2y = Myo.02y and are:

% = 1.012, p, = 5.262 (GeV).
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TABLE I
Charmonium states
E, E, P
J ne ((;:e\;; (C;:\’/) Jtheor J&p
0 0 2.94 7c(2.98) 0 0
0 1 3.76 ne(3.59) 0~ 0~
0 0 2.6 — o* —
0 1 3.51 x(3.41) o+ o+
1 0 3.1 $(3.1) 1~ 1-
1 1 3.68 §(3.68) 1- 1-
1 2 3.97 $(3.77) 1- 1-
1 3 4.07 $(4.03) 1~ 1-
1 4 4.15 $(4.16) 1~ 1-
1 5 4.21 $(4.44) 1- 1-
1 0 3.51 x(3.51) 1+ 1+
1 1 3.93 — 1+ —
2 0 3.59 x(3.55) 2+ 2+
TABLE 1V
Bottonium states
E, E,
J e ( C;l:\‘;; ( G:;\“:) J, t}l,:cor J, 5;:
0 0 8.25 ? ot ?
0 1 9.71 — o+ —
1 0 9.46 Y(9.46) 1~ 1-
1 1 10.02 Y(10.02) 1~ 1~
1 2 10.23 %(10.25) 1- JH
1 3 10.33 Y(10.35) 1- S
1 4 10.39 Y(10.57) 1- 1~

In general, Table IV shows a good agreement between calculated and experimental
data for the masses of Y-particles.

Note the following distinguishing feature resulting from the above calculations: the
effective coupling constant a, for meson states decreases with the growth of the quark
masses. A similar result was also obtained using other approaches to the problem under
study. .

Thus, the precise solution of Eq. (12) even in the simplest case of the Coulomb-like
scalar potential is very appropriate for describing the masses of the meson families. It is the
natural step to continue the study by considering the potential which describes the effect
of the confinement of quarks. We have also a plan to use a tensor representation of the
Breit equation and apply the multipole reduction technique of the radial equation proposed
in [5-7].
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It should be noted that the estimates obtained by us for masses of light mesons are
in agreement with experiment, not worse than that obtained in [18] using the rela'uv1stlc
two-particle equation with the potential consisting of scalar and vector parts.

5. Conclusion

The relativistic fermion-antifermion Bethe-Salpeter-like equation is considered.
To reduce it, the technique developed in [1-4] is applied. The use of the simple scalar
(without the vector part) Coulomb-like potential (i.e. the potential which is essential when
describing the hyperfine structurc of quark-antiquark systems — see, for example, [17])
permits one to obtain the precise analytical solution of radial part of equation and to derive
a simple (with two free parameters) formula for the discrete energy spectrum. On the basis
of the analysis of the angular part of the equation and its solutions, two series of states
are separated that correspond to the different parities: P = (—1)" or P = (-1)’*". The
bound g-q system calculated in the sams way within the meson classification pertinent
to such separation agrees satisfactorily with the experimental data both, for light and heavy
mesons. Thus, one can conclude that the results obtained in the work evidence the simple
relativistic model of composite two-particle systems and, hence, this model can be used
for the primary description of the basic features of mesons when considered as bound states
of a quark and antiquark.
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