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Using the group-theoretical methods and the geometrical picture of pure spinors due
to E. Cartan we give the explicit construction of the manifold of such spinors for the group
SO(», v). We apply this construction to solve the Dirac equation for pure spinors in the
momentum space.

PACS numbers: 02.20.+b, 11.30.Na

1. Introduction

The nonlinear realisations of groups arised in physics more than a decade ago in
connection with current algebra and low energy hadron physics [1-4] (see also [6]). This
method is known under the name of the msthed of effective Lagrangians. Some models,
like for example the nonlinear sigma model, ate interesting on its own right [5].

It was noticed recently [7-9] that the natural basis for nonlinear realisations in the
case of fermion fields is provided by the Cartan theory of pure spinors [10-11]. In this
paper we discuss some topics concerning the mathematical structvre of pure spinors.
We choose the case of the pseudoorthogonal group SO(v, v) as an example because it is
the simplest case. The general case of SO(p, ¢) will be treated in the subsequent paper
{(13]. In our work we emphasize on the geometrical aspects of the problem. Similar results
can be obtained by algebraic methods [12].

2. Preliminaries

iet us remind some basic notions concerning the orthogonal groups and Clifford
algebras.
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2.1, The group SO, v)

Let M be a 2v-dimensional vector space over R with the pseudoeuclidean scalar product
determined by the metric tensor g

g = (2p) = 10
g = gap - Oll>

here I is the vx v unit matrix. The scalar product in M is invariant under action of the
pseudoorthogonal group SO(v, v), namely
0"¢0 =g 1)

for all 0 € SO(v, v). According to the Witt theorem [11] M is the direct sum of two v-dimen
sional maximal totally singular subspaces, say N and P. Note that this decomposition
is not unique. One possible choice is given by the following orthogonal transformation
of coordinates

x* = R%x?, 2

where

. pasr _ (ll) |
g—'Rg _(IIO' (-‘)

The subspaces N and P are spanned by the coordinates x§ and x§ respectively, where

1 . .
xk=x= ——i(x"—x"“), o
k k+v 1 >k rk+v
xp=x'=—=(X+x"")
2
for k =1, ..., v. Note that
XN = Xpo  Xp = Xpe %

Let us consider the Lie algebra of SO(v, v). From Eq. (1) it follows immediately that
the general element of this algebra takes the form

. (A8 Rl 4
L = S"T A__ or L= (M) . (6)
\—W e

in the cartesian basis in the Witt basis
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Here A, S, A, R and B are real vxv matrices and A% = —4, 4" = —4, BT = —B.
We adopt the convention without imaginary unit in the definition of infinitesimal rotations.

2.2. The Clifford algebra

In the sequel we consider the real Clifford algebra C™" with the anticommutation
rules for generating elements

{')’;a’ "};p} = zéaﬂl'

The vector space spanned by the generators of C™” is naturally isomorphic to M by identi-
fication (X% = X = x*,. In the Witt basis we obtain

{mn} =0, {pp¥E} =0, {75} =26 (M
and x = Xyxyy+Xpp> Y8 = Yro VP = Vi (see Egs. (4), (5)).
2.3. The Chevalley construction [11]

In the case of the Clifford algebra under consideration ope can give the elegant con-
struction of its representation resembling the construction of the adjoint representation
for Lie algebras. This is possible because of the existence of the Witt decomposition of M.
Let us note that the vector belonging to N or P can be written in the form xy = x§ym
OI Xp = X%yp, 1espectively. The elements yy, and yp, generate two 2'-dimensional Grass-
man algebras C" and C? over N and P respectively. Let fp be the element of CT of maximal
order i.e.

Jp = Yp1¥p2 -+ Vpv (8)

Now, fp, up to a multiplicative factor, does not depend on the particular choice of basis
in P. Furthermore, let us consider the left ideal C™" fp = Cyfp. This ideal span the
space of the representation g of the Clifford algebra. We define this representation by the
formula

ueC":  ou)Cfp = uC"fp = C'fp. )

Note that the generators yy; and yp, act under ¢ as Grassman multiplication and differentia-
tion respectively. The representation ¢ determines the representations of the Clifford
group as well as the groups Pin, Spin and SO(v, v) [11].
24. Pure spinors
Let Z be an arbitrary maximal totally singular subspace and let M = Z @ Z’ be the
corresponding Witt decomposition. We put
Jz = Vz1¥z2 - Vzv-

As previously f; is determined by the choice of Z up to a multiplicative factor. Now
S2C" = f,C% is the maximal right ideal in C™. It follows then that the intersection
CY N f2CZ is the one-dimensional subspace of C™" [11]. Consequently we can write

Ce N f2C% = {szfp} where s, e Spin (v, v).
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We call this one-dimensional subspace of the space of pure spinors associated with the
maximal totally singular subspace Z. Remark that for the particular case Z = P this
subspace has the form 8fp with 8 € R. Let us note that the pure spinor y associated with the
subspace Z is d:termined up to a multiplicative factor by the equations.

9 =0 (10)
for all z%y,€Z.

3. The construction of pure spinors

From the discussion given above it is obvious that the pure spmors form a nonlinear
representation of the group SO(v, v). Having this in mind we can proceed in the standard
fashion and construct the manifold of all pure spinors as follows. We choose an arbitrary
but fixed pure spinor and determine its stability subgroup G, C SO(v, v). Now the group
SO(v, v) acts transitively on the coset manifold SO(v, v)/G,. It follows then that we can
identify the manifold of all pure spinors with the above coset space. Every pure spinor
can be obtainzd fiom the standard one by applying a suitable transformation from SO(v, v).

3.1. The stability group

Let IT be the homomorphism of the group Spin (v, v) into SO(v, v). By s we denote
the element of Spin (v, v) such that II(s) = O(s) € SO(v, v). Putting s, fp = fzw we obtain

0(S)szfe = sszfp = sfzw = (sfzs™ " )sw
but

v

sfys = Z syzs™ ) and  sysTt = 027y,

Consequently, from the above formalas we conclude that sfzs' = B(s)fz, B(s) € R, if and
only if the subspace Z is invariant under the action O(s). Then

sszfp = f2B(s)sw efZCZ' N CNfP'

It follows from the above considerations that the stability subgroup of the one-dimensional
subspace of pure spinors associated with Z consists of those elements of SO(v, v) which leave
Z invariant.
Let us choose the spinor fp related to the subspace P as a standard one, i.e. we put
Z = P. It is easily seen from the above that the stability group of P should leave invariant
(6:¢9)
0

the vectors of the form . However, we need to know the stability group G, of the

fe alone rather than the subspace P, namely the elements s e Spin (v, v) such that
sfe = fp- an

1t can be easily shown [13] with the use of the main involution of the Clifford algebra
[11] that from Eq. (11) it follows that II(s) when restricted to the subspace P should have
the determinant equal to one.
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Now, the condition that the global transformations leave the subspace P unchanged
reads

10
(I—Hp)Lllp =0, Ip = <0|%> (12

where L is the general element of the Lie algebra of SO(v,v) as given by Eq. (6). The
condition on the determinant mentioned above can be written in the form

detp(ITpeIlp) = 1. (13)
It follows from Egs. (6, 12, 13) that the general element of the Lie algebra of the stability

group G, CSO(v, v) of fp is
Ly = OI 14
0 0 i—Rg ’ (14)

where AT = —A4, Tr R, = 0. From Eq. (14) we see that Lie algebra of G, contains

two subalgebras
Ro| 0 0|4
Ro =\ — =% and & =< )7
0 |—Rjy, 0[0

R, is isomorphic to the Lie algebra of SL(v, R) and & is the ; -dimensional abelian

algebra. Moreover, it follows from the commutation rule between A, and & that & is an
ideal. The general element of G, can be written as

1A\ [e®l0
e“e® = <0!V> <:) :e—RoT> = {4, %% (15)

with the composition law
{4, e’} {A', "}y = {A+eRoA e, eRoe™ ).
Summatizing we see that G, is isomorphic to the semidirect product of the group SL(v, R)

and the <;>-dimensional abelian group N i.e.

Gy, ~SL(v,R)® N.
3.2. The coset space W
Let us write the general element of the Lie algebra of SO(v, v) in the following form

Rl 4 Ro| © 04 0[0 al| 0
—— = )l )+l )+ ,
B|-R 0 |-R} 00 B|0 0 |—al

% _J \ —)

hd Y

the stability subalgebra the complement

1 ,
where v = Tr R, Ry = R— <— Tr R> I. Note that the Lie algebra elements complementing
v

the stability subalgebra do form the subalgebra by themselves. lts structure is very simple.
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It comnsists of the ons-dimensional algebra

1
x l 0 and v dimensional abelian ideal glq .
0 |—al 2 B|o

The elements of the space W (which form the group) we parametrize as follows

N [ R

The composition law in W reads

{w, B} {«/, B'} = {a+o', B+e *B'}.

Consequently W is the semidirect product W ~ R @ N’ with (;)—dimensional abelian

N'. The group Wis nilpotent so the exponential mapping gives the global map for the group

manifold. In our case the group manifold is diffeomorphic to RG)“. Denoting by
by = — b, the matrix elements of B we can parametrize the coset manifold W = SO(v, v)/G,
(and consequently the manifold of pure spinors) by the set of real numbers o and by,

4. Transformation properties of pure spinors

To determine the nonlinear action of SO(v, v) on the manifold of pure spinors we
proceed in standard way. Let O € SO(v, v) be any element and W e W; the action of O is
given by the relation O: W — W', where W’ e W is uniquely determined from

oW = W'g, 17)

with go'€ Go. According to Eq. (16) we will denote W = {a, B}. Then the following
transformation rules are obtained from (17):
Stability group G,:

a =a
SL (V, R) 3 {0, €Xp Ro}o: {BI — e_.RoTBe -Ro

1
o = a+ — In det (I + AB),
N3{A4,1},: v

B = BUI+AB)™ ..

Note the constraint 4 # — B-! which follows from the fact that SO(v, v) cannot be covered
by exponential map.
The coset subgroup W:

o =a+p
Wik C}’{B' = e B +C.

We see that the action of SO(v, v) on the manifold W is essentially nonlinear.
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5. Pure spinors in the spinor representation

Let us construct the elements of the Lie algebra of SO(v, v) in the spinor representa-
tion. From the standard choice of generators ~ |y,, 5] we conclude that they are bilinear
forms in y’s (traceless in the matrix realization). We can give the following general con-
struction of the spinor generators. Let L be an element of Lie algebra of SO(v, v) (see
Eq. (6)) and L the corresponding element in the spinor representation. Let us introduce
the following notation

('y,;l)) ~ 1 v o1 v
y = s = s ey N> PPy ooy .
<()’;) Y= (v Yns VP VP8
Then
L= -%3Ly. (18)

The above formula can be checked by considering the commutation rule [L, yl= Ly
which is easily obtained by direct calculation with help of the relation gl’g = —L valid
for all elements of the Lie algebra of SO(v, v).

We can construct now the general pure spinor corresponding to the point {«, B} of the

manifold W. If we put
(0 [o) <od| o)
B = — s g =
B|0 0 |—al

f(a, B) = exp (—% yBy) exp (=% 7o) fp

B

then we obtain

or expanding in the power series

S, B) = ez l—[ ( _% buyniYne) fpe (19¥
(@ik)
i<k

6. The Dirac equation in momentum space

Let us consider the Dirac equation for massless spinor field in the 2v-dimensional
space M:

Y0, p(x) = 0. (20}
In momentum space it reads
7Pat(p) = 0, @y

where w(p) is the Fourier transform of u(x).

Let us note now that we can impose the condition that y(x) or ¢(p) are pure spinors..
However, because the manifold of pure spinors is essentially nonlinear these two condi-
tions are not equivalent. In the sequel we assume that 9(p) is the pure spinor. We remind.
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that the pure spinor yp, associated with a maximal totally singular subspace Z can be
determined up to a multiplicative factor by Eq. (10). Now it follows from the Dirac
equation (21) that ¢(p) is supported on the surface p?> = 0. Therefore the vector p is isot1opic
and belongs to some maximal totally singular subspace Z. The Dirac equation (21) can be
viewed as the condition that (p) is a pure spinor associated with such maximal totally
singular subspace Z which contain p. This statement form the basis of our construction.
It consists simply of finding of ail maximal totally singular subspaces which contain p and
then the pure spinors associated with them. We proceed as follows. For any given isotropic
vector p we choose in some standard way the vector g(p) € P and the boost L, € SO(y, v)
such that p = L,q(p). Then the spinor i; 1fp is obviously the pure spinor associated with
the maximal totally singular subspace L,P; but p e L,P and consequently Z; o fulfil the
Dirac equation. Let G, C SO(v, v) be the stability group of direction in M determined
by the vector p. Then any maximal totally singular subspace containing p can be obtained
from L,P by acting with the elements of G, Consequently any spinor fulfiling the Dirac
-eqaation (21) can be obtained by acting of ip" !f» with the corresponding elements in spinor
representation. We can simplify this construction by noting that G,L, = L(L; 1G,,L,,)
and that L, 1G,,Lp belong to the stability group G, of the direction g(p) € P. Further, we can
exclude from G, those elements which belong to G, and consider only the elements of
G, W.
After calculations described above we obtain as result

w(p, Q, ) = exp (— L,) exp (B) exp () fp, (22)

where ip and B are given by Eq. (18) with

1 |0
L,=
' Pp@Py 1
2

and

+ PNRQOpy—Opv®py

px

B=0

where Q is any real antisymmetric matrix, (p%) = pa, (P = pp, k=1, ..., v, pi = Y. Piph-
k=1

Explicitly

2 xy
w(p, @, @) = &(py) exp (5>

—_ + ——
xexp{ 1 [ Pr®py+pn@pr+ Py®Qpp—Qpn®pp +Q:|)’N}fr

—Z YN
¢ Px

The expression obtained here solves the problem posed in [9].



993

7. Pure spinors in configuration space

We consider now the Dirac Equation (20) with the condition that y(x) is pure spinor,
ie. p(x) = exp (B(x)) exp (6(x))fp (see Eq. (19)). After substitution this last expression
to Eq. (20) we easily obtain set of differential equations covariant under nonlinear
action of SO(v, v) on the cos:t space W parametrized by {«, B}:

= Oeat()+ Oyibul) + = bu(oyax) = 0,

Oppibi (%) + by (X)0n:bijy(x) = 0.

We are greatly indebted to Professor R. Raczka for inspiring discussions and permanent
encouragement. We also would like to thank Professor P. Budinich for the discussion
during his visit in Warsaw.,
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