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Gravitation singularities are examined as singularities of space-time foliations. These
singularities represent topology transitions and caustics.

PACS numbers: 04.20.Cv

1. Introduction

The description of gravitation singularities as singularitics of space-time foliations
related to gravitational fields was suggested in [1, 2]. In this paper we aim at studying
structure of these singularities. Our approach is based on the following propositions and
their corollary.

Proposition 1. For any gravitational field g on an orientable manifold X* there exists
a g-compatible pair of a nonvanishing 1-form ® and a Riemannian metric g* on X4 such
that

By = gﬁv"zwuwv”wlz: (1)

where |o]? = 0,0, = — g"w,w,. Inversely, let w be a nonvanishing 1-form on a mani-
fold X*. For any Riemannian metric g* on X* there exists a pscudo-Riemannian metric
g such that Eq. (1) holds. The form w/|w| coincides with a tetrad form A° = hdx* of
a gravitational field g.

Proposition 2. There is one-to-one correspondence between nonvanishing 1-forms
o and smooth orientable distributions F of 3-dimensional subspaces of tangen: spaces
to X* which are defined by the equation w(F) = 0.

Let us call space-time distiibution a distribution F whose generating form o is a tetrad
form A° of some gravitational field g on X*.

Corollary. Any gravitational field g generates space-time distributions on a manifold
X*. Inversely, any 3-dimensional orientable distribution on X* is a space-time distribution
relative to some gravitational field.

* Address: Physics Department of Moscow University, 117234, Moscow, USSR.
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A space-time distribution induces the (3+1) decomposition of the tangent bundle
T(X) = F® T°(X) in the 3-dimensional spatial (relative to g) subbundle F and its
timelike orthocomplement T9(X) (relative to g® and g). Thereby, a space-time distribu-
tion defines a space-time structure on a manifold, which is compatible with a given
gravitational field g. The associated Riemannian metric g defines a g-compatible
locally Euclidean topology on a space-time which is equivalent to the manifold topol-
ogy on X4,

A space-time structure is thought to be causal if a space-time distribution is integrable,
and its generating form w is exact, i.e. w = df. Let us remind that a distribution of codimen-
sion 1 is called integrable if its generating form obeys the equation w Adw = 0. In this
case, a manifold foliates in hypersurfaces such that fibers of the distribution are tangent to
slices of this foliation.

This notion of causality coincides with the stable causality by Hawking [3]. Slices of
a causal foliation represent level surfaces of a generating function f. No curve transversal
to slices of a causal foliation intersects any slice more than once. If Vfis bounded on X any
transversal curve intersects every slice once and only once. In this case, foliation slices
are diffeomorphic to each other, and a space-time represents the product X = VxR of
a slice ¥ and a line of reals R. Such a space-time is globally hyperbolic [3].

Taking into account this causality condition and the correspondence between space-
-time distributions and gravitational fields, we set up the following criterion of gravitation
singularities [1, 2].

Singularity criterion. A gravitational ficld on a manifold X* is free from singularities
if it admits a g-compatible pair of a complete Riemannian metric and a causal space-time
foliation on X%,

We distinguish three types of singularities with this criterion.

First, one may face singular gravitational fields characterized by singularities of a Rie-
mannian metric g* on X*. This means that a manifold topology of X* is non-compatible
with the metric topology defined by a gravitational field via a Riemannian metric g~
Therefore, one ought to remove such singular points from a space-time. If the remainder
is noncomplete as a Riemannian space, one can correct this by conformal transformation
of metrics g® and g [5]. Conformal transformations keep a space-time distribution. Thereby,
the first-type singularities are reduced to conformal singularities characterized by finite
values of conformal curvature at singularity points.

Secondly, there are gravitational fields admitting a complete Riemannian metric
and a space-time distribution, but no causal foliation. Such a field, being regular itself,
yields causal singularities of a space-time structure on a manifold X*. Notice the global
character of these singularities. Any gravitational field admits locally a causal space-time
foliation. '

The third type of singularities includes gravitational fields admitting no regular space-
-time distributions. These singularities can be described as distribution singularities. One
may indicate them by infinite values of the scalar exterior curvature

K = —3,h—L htd, In |gY
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of fibers of a space-time distribution [6]. The scalar K obeys Raychaudhuri’s equation
which governs the evolution of K in a space-time with a given Ricci curvature. In this
particular case of a causal foliation F generated by an exact tetrad form A° = df (the dual
vector field A, is geodesic, and F defines a synchronous coordinate frame) Raychaudhuri’s
equation for K reads:

‘_1_I_< = _9q24 1 K2 _ 1
d = —ROO 20 +3 K ’ Oup = Kab_':f 'YabK'
S

Singular solutions of this equation are well known and, e.g., are applied in singularity
theorems by Hawking and Penrose [3]. These singularities represent focal and conjugate
points, i.e. critical points of the exponential map defined by a geodesic field.

However, in a general case the dual field 4, is not geodesic, Raychaudhuri’s equation
includes additional terms preventing singularity formation, and exponential map fails
t0 be applicable to describing distribution singularities.

Our approach is based on the following speculations. Since a regular gravitational
field admits locally a causal foliation, singularities of a space-time distributions can be
described locally as singularities of causal foliations. Therefore, let a Riemannian metric
g" be complete everywhere on X* and a space-time distribution represent a causal foliation
in a domain U, where it is regular. Let us consider again the particular case of a geodesic
dual field A,. It is geodesic relative to both g and g® inside the domain U,. Being complete
relative to g%, geodesics of 4, i.e. time lines are prolonged outside U,. However, the corre-
sponding extension of the foliation F meets with singularities at intersections of time lines.
One can overcome these points by lifting a space-time foliation F onto a total space of the
tangent bundle to X*, by extension of this lifted foliation along geodesics in the total space,
and by projection of the extended foliation onto the base X+. Then, singularities of F can
be described as singularities of this projection.

We apply this method in a general case, and we show that foliation singularities repre-
sent locally critical points of a generating function and caustics, i.e. branch points of f.

In Sections 2-4 the mathematics we need is briefly reminded. Throughout these sections
X denotes a n-dimensional manifold.

2. Geodesic spray

Let L(X) denote a principal reper bundle associated with 7(X). Let {x*, X"} be the
bundle coordinates on a total space t! L(X), which are associated with coordinates {x"}
on a manifold X, i.c. {X*} are matrix elements of the transformation of the basis reper
{8/0x"} to a given one. A connection form « on the bundle L(X) reads:

Wb = (XTYHAXS+T5Xdx),

where I';; denote coefficients of a local connection form I' on the base X. Lift of geodesics
onto tl 7(X) is based on the following proposition [5].



1020

Proposition 3. Projection of an integral curve of any standard horizontal vector field
on t1 L{X) onto X is geodesic in X. Inversely, any geodesic in X can be built in this way.

A field 7 on tl L(X) is called horizontal and standard if «:(z) = 0 and 6*(z) = &" where
6% = (X-')}dx" is the canonical form, and £* is a constant vector. By these conditions
a standard horizontal field reads:

0 g
e ] By S g
T ( )aé <5X” up 6X:)

Integral curves of this field are governed by equations:

dax* ax’
—— = X REY L= —ThXIXEE, 2
ds vé ds B € ( )

where s denotes a geodesic parameter. Trivial manipulations bring Eq. (2) into the familiar
form

= IR () = &)
of the geodesic equation on X. Denoting P* = X%, we rewrite Eq. (2) in the form
X' =Pt PY= —TLPP" (PNO)=¢") (3)

of geodesic equations on a total space t1 T(X) provided with coordinates {x*, P*}. A geodesic
field on tl T(X) reads [7]:

0 5
- —Ih Pt 2
=P TP

Its projection onto X is a geodesic field on X.

Proposition 4. A line connection is complete if and only if each standard horizontal
vector field 7 on tl L(X) (or on tl 7(X)) is complete [5].
If a field T on tl T(X) is complete, Eq. (3) has solutions

x(s, x(0), P(0)),  P(s, x(0), P(0))
defining the exponential map Rxtl T(X) — tl T(X):
Exp,: {x", P} - {x"(s, x, P), P*(s, x, P)}.
By Eq. (3) the map Exp possesses the property
x(ks, x, P) = x(s, x, kP), P(ks, x, P) = P(s, x, kP) C))]

and a field T on tl T(X) is called geodesic spray.
Let X be a submanifold of X, and N(K) be a n-dimensional submanifold of tl T(X)
which consists of points (x, P) of tl T(X), such that x e K and P is orthonormal to T,(K).
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For instance, if K reduces to a point x, N(x) = T(X). The exponential map Exp, yields
the map

exps=1 = 7 o Bxp,_: {x¥ P*} - {x"(1, x, P)}

of N(K) onto X. This map is defined everywhere on N but, in general, it fails to be 1:1
on N(K). Singular points of

exp; : N(K) > X

are called focal points (conjugate points if N(K) = T(X)) [8].
In gravitation theory a geometrical locus of focal or conjugate points is named caustic
by analogy with geometrical optics [9-11].

3. Caustics

From the mathematical view-point, caustics represent singularities of maps of a rather
special kind: Lagrange maps [12, 13]. Any caustic can be brought locally (in the germ form)
into the standard form we show here.

Let a space R*" be endowed with coordinates {x*, P,}. Consider a 1-form o = P, dx*
on R*" and a submanifold.N of R?" such that du(N) = 0, i.e. « restricted onto N becomes
an exact form a(N) = dz(N). Such a manifold of maximal dimension n-is called Lagrange
manifold. A Lagrange manifold can be built by means of a generating function S(x', P)
of n variables {x’, P;;ie I, je J} (where (Z, J) is some partition of the set 1, ..., n), and
this is defined by relations:

oS oS
—, Pj=—.
OP; ox'

Let 7 : {x*, P,} = {x"} be projection of R* onto R". This projection, restricted
to a Lagrange manifold N

,. oS
mv:{x,Pj}—'{xi,x’ = — a—PJ}

is called Lagrange map. Caustic is defined to be a-set of critical points of Lagrange map,
i.e. the points where the matrix 025/0P;0P; becomes singular.

The caustic picture on manifolds is locally equivalent to this one. The form o = P,dx"
on a total space tl T*(X) (endowed with the cotangent bundle coordinates {P,, x"}) defines
n-dimensional Lagrange submanifolds of tl 7%(X). A Riemannian metric g® on X defines
the diffeomorphism of 7*(X) to T(X), and images of Lagrange submanifolds of tl T*(X)
under this difftomorphism are Lagrange submanifolds of tl 7(X) defined by the form
a = g,,P"dx" on tl T(X). Singular points of projection of Lagrange submanifolds of tl 7*(X)
(or t1 T(X)) onto the base X compose caustics. _

Caustics of focal and conjugate points of Riemannian and timelike pseudo-Riemannian
geodesics are also caustics by Arnol’d. Indeed, the sympletic form du = d(g,,P*) ndx’
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equals zero on a submanifold N(K) < tl 7(X) defined in the previous Section. Since this
form is invariant under the exponential map Exp, [10], dx equals zero on the submanifold
Exp; N(K) which consequently is a Lagrange manifold. Since Exp, is a diffeomorphism,
critical points of the exponential map ’

exp,: N(K) » Exp; N(K) > X

coincide with the critical points of the map nyy, of a Lagrange manifold Exp; N(K)
onto the base X, ie. they compose caustic by Arnol’d.

4. Haefliger structures

A smooth map ¢: Y — X of a manifold Y into a manifold X endowed with a foliation
F is called transversal to F, if T(X) = T(Y) @ Im (dy), at each point x € X. If the map
@ is transversal to F, the pre-images of slices of F compose the induced foliation ¢*F on
a manifold ¥, and codim ¢*F = codim F. When the map ¢ : ¥ — X fails to be transversal
to the foliation F on X, the induced construction ¢*F, called Haefliger structure, makes
a certain geometric sense, too [14]. This may be interpreted as a singular foliation.

We restrict our consideration to the case when a Haefliger structure on a manifold
X is generated by a real function f possessing critical points, i.e. points where df = 0. Such
a Haefliger structure can be constructed as induced by the imbedding X 3 x — (x, f(x))
€ X x R when the product X x R is endowed with the foliation {R3z = const}. There
is a classification of critical points of real functions [12]. We pay special attention to Morse
functions possessing only non-degenerate critical points, i.e. points where the matrix
8f]ox*dx" is nonsingular. Remind the following theorems [4].

Morse’s lemma Let x, be a non-degenerate point of a differentiable function f: X — R.
Then, there is a local coordinate system in a neighborhood u of x, such that

k n
fx) =fxo)— Y, X+ T (xH
i=1 j=k+1
The number k is called index of the function f at the point x,.

Theorem 1. Let f be a Morse function on a manifold X. Let M. and M. denote slices
before and after transition through a critical point of index k. Then, there are a k-dimen-
sional cell ¢ and a (n— k)-dimensional cell "% such that ¢* () " * = x,, M—[) " = 8¢,
M. e % = 0" * and M_— ¢ is diffeomorphic to M.—de"* (0 denotes a boundary).

This theorem describes changes of topology of level surfaces under transition through
a non-degenerate critical points {15].

5. Foliation singularities

Proposition 5. For any foliation of level surfaces F on a manifold X there is a folia-
tion F' on a Lagrange submanifold of t! T%(X) such that Fis an image of F’ under Lagrange
map. A foliation F’ is induced on a Lagrange submanifold by a foliation {R 3 z = const}
on t1IT*(X)xR.
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Let a foliation F be generated by a real function fon a manifold X. Define the imbedding
yi{x"} = {x¥, P, = of/ox"}

of Xinto the space tl 7#(X). Its image y(X) is obviously a Lagrange submanifold of t1 T*#(X).
Let F’ be the induced foliation xf(x)F on y(X), where 7, is the Lagrange map 7,x, : (X)
— X. The foliation F’ on y(X) can also be induced by the imbedding

p:y(X)3(x, P) » (x, P,z = f(x)) e tl TH{X) xR,

where the space tl 7%(X) x R is endowed with the foliation {R € z = const}. Since y and
T,x) are diffeomorphisms between X and y(X) (m,x,y = Id X), the foliation F on X can be
represented as the image of the foliation F’ on y(X) under the Lagrange map 7,y,.
Now, let N < tl T*(X) be a Lagrange submanifold generated locally by a function
S(x', Pj). Let us denote by F’ a Haefliger structure induced on N by the foliation {R>z
= const} on t1 7*(X) x R. This is formed locally by level sets F,, z € R of the real function

L P)=S-P o5
fx', P)) = 5P,
defined on the Lagrange submanifold N. The image ny(F’) of F’ under the Lagrange map
ny . N — X represents a certain construction on a manifold X. By Proposition 5 this con-
struction represents a foliation on the image ny(U) of a domain U of N where the Haefliger
structure F' is a foliation and the Lagrange map ny possesses no critical points. The foliation
stiucture on X is destroyed at critical points of the function f and at caustic points of the
Lagrange map ny.
Note that caustic points can also be described as branch points of the multiple-valued
functions f'(x) = f(n5 '(x)) on a manifold X.
In Sections 6 and 7 we shall discuss some properties of foliation singularities whose
type is stable under small deformations of a generating function.

6. Changes of spatial topology

Proposition 6. Critical points of general position of real functions on a manifold are
non-degenerate points described by Morse’s lemma [4].

According to this proposition, changes of topology of spatial slices in a space-time
are performed, as a rule, by transition through non-degenerated critical points (Morse’s
singularities) [15]. The following theorem proves this fact [16].

Definition. Let M_ and M. be differentiable 3-manifolds. A cobordism between M_
and M, is a connected differentiable 4-manifold whose boundary is the disjoint unicn of
M_ and M. _

Theorem 2. There is a cobordism between any two 3-dimensional compact manifolds,
and any such cobordism admits a Morse function taking different values at different critical
points.
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By this theorem a compact manifold M. can be obtained from M_ by a finite sequence
of topology transitions through non-degenerate critical points. This statement can be
extended to include noncompact 3-manifolds if one assumes that a topology transition
is localized inside a compact domain.

The structure of Moxse’s singularities is described by Theorem 1. The topology transi-
tion M_ — M, through a Morse’s singularity of index k consists of the following operations.
A submanifold M_—de* of M_ is mapped onto a submanifold M, —de* % of M,. A set
de* = M_ is retracted into the critical point, and then this point is inflated onto the set
de* F < M,

In a gravitation theory, describing of topological transitions implies also describing
of evolution of a spatial metric y_ on M.. to a spatial metric y+ on M. To describe such
metric evolution we apply the formalism of superspaces by Wheeler and De Witt [17].
We shall construct a connected superspace of spatial geometries on nonhomeomorphic
slices M. and M, before and after topology transition.

Let M be a 3-dimensional manifold. Denote by B(M) a linear space of symmetric
2-covariant tensor fields on M, endowed with the topology of uniform convergence in all
derivatives. Denote by R(M) a subspace of B(M) of Riemannian metrics on M, endowed
with relative topology. This space R(M) represents an open cone in B(M), and it inherits
the structure of a Frechet manifold. The superspace S(M) of geometries on M is defined
to be the quotient R(M)/Diff (M) of R(M) modulo diffeomorphisms of M ; each geometry
is an orbit of the action of Diff (M) in R(M). The superspace S(M) possesses a good topo-
logical structure, being connected and metrizable, but it fails to be a manifold in general.

In the case under discussion there are two nondiffeomorphic manifolds M- and M.,
and our goal is to glue spaces R(M.), R(M,) or superspaces S(M-), S(M.). One can use
the diffeomorphism between M.—de* and M,—de*™,

Let us consider a subspace T.. of B(M.) which consists of tensor fields y.. representing
Riemannian metrics on M. —de*, and whose all components vanish on de¢* = M_. Any
such field y. can be obtained as a limit point of metrics on M_. Therefore, the subspace
T_belongs to the boundary of an open cone R(M.) in B(M.), but T_is not closed in B(M.).
Let T, be the analogous subspace of B(M.). Since M_— d¢* is diffeomorphic to M, —de*™*
and all y-, y; vanish, respectively, on de¢*, de* ¥, the completion M. of M_—odé* relative
to any . is homeomorphic to the completion M, of M, — de*~* relative to any y.. Tensor
fields y- (y+) can be represented as fields on M- (M) which vanish on M_—(M_—éé"
(M;+—(M,—3e* %), and, thereby, T- is homeomorphic to Ty.

Now, one can glue spaces R(M.){J 1~ and R(M,) | T, together at points of T.
and T, by their identification. The resulting set R = R(M){J RM){J Ty = T.) is
provided with the clutching topology such that a neighborhood of a point y € R obtained
by identifications of points y_ e T- and y. e T} is definea to be a set whose intersections
with R(M){J T- = R and R(M.) |J T+ = R are neighborhoods of y- in R(M.) |J T-
and y; in R(M,) | T+, respectively. The topology space R is connected, and the evolution
of a spatial metric under the topology transition can be expressed by a trajectory in R
which joins points of R(M-) and R(M.).

To construct a superspace of topology transition let us consider the group G- of



1025

diffecomorphisms of M., keeping the set d¢* = M., and the group G, of diffeomorphisms
of M, keeping the set de**F = M,. Representations of G- on T.. and G, on T are equvi-
alent. Therefore, the quotient S of R modulo action of G- and G... on R is defined, and this
space can be treated as the generalization of the superspace construction to the case of topol-
ogy transition. Points T./G . are not isolated in S, and there is a trajectory in S which
joins 3-geometries before and after topology transition.

Notice that a superspace S fails to be glueing of superspaces S(M-) and S(M) because
they are quotients modulo Diff (M_) and Diff (M), but not G- and G,.

7. Stable caustics

According to Arnol’d stable caustics on a 4-dimensional manifold possess the following
generating functions: '

Ay:S = Pg,

A3:S = +p5+x'p},

Ay:S = py+x'pg+x7p},

D,:S = py+popi+x°p,

As:S = pox' £ p§+x>py+x°pi,

Ds:S = popi+ps+x°ps+x°pe. )

Any germ of Lagrange map in some neighborhood (in the Whitney topology) of a germ
of Lagrange map of types (7) is equivalent to this germ, i.e. its generating function S can
be brought into the canonical form (7) by fiber bundle diffeomorphism of T#(X) and sum-
mation with an orbitrary function ¢ of x', i e I. Here, we show the character of foliation
caustics of types 4,, As.

The A,-caustic. The generating function S = p3+ @(x', x2, x3). The Lagrange mani-
fold N is given by

op
2 ——
{xo = —3pbs Pi,23= ax1’2'3} ’

The Lagrange map reads:
x® = —3pa.
The caustic set where 82S/dp% = 0 consists of points p, = 0, and its image on X under

the Lagrange map consists of points x° = 0. The generating function of a foliation on the
Lagrange manifold reads: '

s
f'=8—po— = —2pa+e(x', x>, x%).
opo
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The generating function of the Lagrange image F of the foliation F' on X reads.

2
f== WE x4 p(xt, x2, x%).

3

One sees f to be a two-valued function on X. Thus, the A,-germ of foliation caustics is
)

characterized by a component p; = _;—fz of a generating form of a foliation being doubled
Ox

at caustic points.
The Aj-caustic. The generating function reads:

S = —pa+xipi+e(x', x%, x%).

The Lagrange manifold N is given by

Jp
{xo = 4p3—2x1po, P1,2,3 = é;iﬁ}

The Lagrange map reads:
x® = 4p3 —2x" p,. (8)
The caustic set where 92S/0p2 = 0 consists of points
x' = 6pg,

and its Lagrange image on X consists of points

0

¥ =k O ©)
The generating function of a foliation F’ on the Lagrange manifold N reads:
f'=3p—x'pi+e(x', X, x°).
The generating function of the Lagrange image of F' on X reads:
f=3p3(° x")—x'pd(x°, x)+ (', %%, %),

where the function po(x°, x') is determined by Eq. (8). At caustic points (9) this function
(and consequently the generating function f) becomes a three-valued function. Thus, the
As-germ of foliation caustics is characterized by the component p, = 9f/0x° of a generating
form of a foliation being tripled at caustic points.

So, our consideration leads to the following gradation of foliation singularities in
terms of generating functions.

(i) A one-valued real function f possessing a non-vanishing differential df on X generat-
es a foliation of its level surfaces on X.
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(i) A one-valued function possessing critical points where df = 0 generates a Haefliger
structure (singular foliation) of level sets of f on X. Level sets of such function change
topology under transition through a critical point of f.

(iii) A multiple-valued function f on X defines a structure when a foliation slices on
a domain, where f is one-valued, begin to intersect each other at branch points of f, and
level sets corresponding to different branches of f intersect cach other at every point out-
side U. Branch points of f, where a foliation is destroyed, compose caustic.

REFERENCES

[1] D. Ivanenko, G. Sardanashvily, Phys. Lett. A91, 341 (1982).

[2] G. Sardanashvily, Acta Phys. Acad. Sci. Hung. 57, 31 (1985).

{31 S. Hawking, G. Ellis, The Large Scale Structure of a Space-time, Cambridge Univ. Press, Cambridge
1973.

(4] M. Hirsch, Differential Topology, Springer-Verlag, N.Y. 1976.

[51 S. Kobayashi, K. Nomizu, Foundation of Differential Geometry, Interscience Publ., N.Y.-London
1963. ’

[6} G. Wiston, Gen. Relativ. Gravitation S, 517 (1974).

{71 M. Crampin, G. Prince, Gen. Relativ. Gravitation 16, 675 (1984).

[8] Sh. Sternberg, Lectures on Differential Geometry, Prentice Hall, Inc. Englewood Cliffs, N.Y. 1964.

[9] H. Borzeszkowski, H. Paul, Amn. Phys. (Germany) 37, 102 (1980).

[10] F. Warner, Am. J. Math. 87, 575 (1965).

[11] K. Rosquist, Commun. Math. Phys. 88, 339 (1983).

[12] V. Arnol’d, Mathematical Methods in Classical Mechanics, Springer, Berlin 1978.

[13] H. Friedrich, J. Stewart, Proc. R. Soc. London A383, 345 (1983).

[14] A. Haefliger, Topology 9, 189 (1970).

[15] P. Yodzis, Gen. Relativ. Gravitation 4, 299 (1973).

[16] J. Milnor, Morse Theory, Princeton University, Princeton 1963.

{17] M. Francaviglia, Riv. Nuovo Cimento 1, 883 (1978).



