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Some structural features caused by the intrinsic behavior of the internal variable () are
reconsidered in more detail with respect to our newly introduced Finsler metric gax(x, »)
= yax(x)+ hax(x, ¥) (Acta Phys. Pol. B15, 757 (1984)), where y;, denotes the Riemann metric
in Einstein’s sense and %1, the Finslerian metric induced by the internal field spanned by
vectors {y}. In particular, the mapping process of the internal (y)-field on the external (x)-field
is treated systematically.

PACS numbers: 03.50.Kk, 02.90.+p

1. Introduction

In the theory of gravitational field in Finsler spaces [1, 2], the vector y is attached,
as the internal variable, to each point x at some more microscopic stage than in Einstein’s
sense [3] and the line-element (x, y), instead of the point x, is chosen as the independent
variable. Therefore, it may be said that the Finslerian field is regarded as “‘microscopic”
and “nonlocal”, while the Riemannian field in Einstein’s sense is regarded as “macroscop-
ic” and “local” (cf. [2]).

In this paper, as in the previous one [2], Greek indices «, 4, ... (= 1, 2, 3, 4) are used
for the external quantities, while Latin indices i, /, ... (= 1, 2, 3, 4) are used for the internal
quantities, in order to distinguish the physical functions explicitly.

The internal vector y(= y°) belongs to the internal field called the (y)-field spanned by
{y} and shows its own intrinsic behavior. The (y)-field has, in general, a four-dimensional
Riemann structure (R,) with the Riemann metric #;(»), although it may be reduced to
Minkowskian, if necessary. This is supported by the fact that the tangent space spanned
by {y} at each point of Finsler space is Riemannian (cf. [4]).
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Therefore, there appear two fields arcund x: One is the external (x)-field spanned
by points {x} and the other is the internal (y)-field. The former is nothing else than the
-gravitational field in Einstein’s sense, which has R,-structure governed by the Riemann
metric y,,(x). The total space, i.e., the “unified” field between the (x)- and (y)-fields presents
an aspect of eight-dimensional Riemann space (Rg), whose spatial structure is represented
by the metric G,z and the connection

DV = dVA+ 4,2 VA XE, (1.

where X (= (x,)"); 4 = 1,2,3, ..., 8) denotes the “unified” coordinate and Az* the
Christoffel three-index symbol formed with G 4p. .

In our case, at the first starting point, it may be assumed that the metric G has the
direct-product form such as

Y).x(x) 0 AB (y'd(x) 0 )
G 4B = | s R G = [ L. s , 1.2
(0 | ;hi,(y)) 0" HIG) 42

and then the non-zero components of 4% are only 4,%, = {FLK;(} and 4} = {jl k} (both

of them are Christoffel three-index symbols de1ived from y,, and h;; respectively). Therefore,
our problem is to obtain the four-dimensional Finsler metric g, (x,») by unifying
7a(x) and A;(y), that is to say, to extract g,.(x, y) from G, properly by means of the
decomposition process such as g;, = 4142G 5, where A is the decomposition factor (cf.
[5] and see Section 3). This kind of decomposition has close analogy with the process
adopted in the generalized Kaluza-Klein theory of gravitation (cf. [6]), where the state
of (1.2) is regarded as the “vacuum” state without “fluctuation”.

Concerning this kind of Finsler metric g,, (x, y), we have alrecady introduced it in
Section 3 of [2] in the form

8%, ) = Yax(X)+hye(x, ), 1.3)
where k,, is induced by the following mapping process:
y* = ey,
ha(x, y) = ex(x)el()h; (1), (1.4)

by which the internal (y)-field is embedded in the external (x)-field. But the physical and
geometrical meanings of (1.3) and (1.4) cannot yet be given fully. So, in this paper, we shall
reconsider the mapping process (1.4) and the resulting metric g, (x, ¥) (1.3) from the stand-
point of the above-mentioned decomposition process of G, where the components
8 &ai» €tC. are caused by the “interactions” between the (x)- and (y)-fields in the sense of
generalized Kaluza-Klein theory (cf. [6]).

For that purpose, we must, first of all, determine the decomposition factors such as
A -(see Section 3) by setting the base and dual base suitably in the “unified” field, which
must be done by taking account of the intrinsic behavior of y' in the internal (y)-field.
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2. Intrinsic behavior of y

As has already been mentioned in the previous papers [1, 2, 7], the intrinsic behavior
of y' in the (y)-field can be represented by such a rotational property as, as Asanov’s

K-group [8],
7' = Ki(x, )y (=y'+dy), (2.1)

where the rotation matrix Kﬂ- is assumed to be a function of (x, y) from a general stand-
point. (Some special cases will be considered in Section 4). Of course, (2.1) is different
from the coordinate transformation in the (y)-field.

For our purpose, the intrinsic behavior given by (2.1) must be *“‘geometrized” as the
parallelism (8)° = 0). This is actually done as follows:

8y’ = dy'+ K yldx"+Ljy'dy* = Pldx"+Qidy* (= 0), 2.2
i aK.ll i 6K; i i J i i i J
where K/, = — P L= — o and P, = K;,y', O, = &+L;y’. (The homo-

geneity conditions of K§- and Ljik with respect to y are not assumed here from a general
standpoint, cf. [4].) (2.2) corresponds to the so-called base connection of y from the stand-
point of the theory of higher order spaces (cf. [9]). (Finsler space is the higher order space

of order 1.)
This intrinsic behavior 8)* (2.2) must be reflected in the whole spatial structure of the

“unified” field. This reflection can be done by decomposing (1.1) as follows:
DV* = dV*+T ", V*dx*+T X V*dy'
= dV*+F,", Vidx" + 0,5 V*sy", , (2.3)
DV'= av'+ I/ Vidx*+T/,Vidy*
= dVI+F}/ Vidx*+ 0/, V7sy",
where V* = A5V4, V' = BLV*, and
F ;.xu =T l""—Nf‘F e 0% = Q—l%ir s
F},=I},—Nirj, ©f =07 4r}, (24)
N, = P07,

and I';*,, I';", etc. are obtained by, e.g.,
0
Iy, = ASASASA c+ A (A,‘,’ 53?) A3,

d
rr = A';A';B,.CA,,AC+A;~(B§’ 5}—(—,,) AS. .5
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In (2.4) and (2.5), 4, B denote the so-called decomposition factors [5], which will be deter-
mined below (see (3.1)). The quantity N,i, in (2.4) plays the role of nonlinear connection

[4], which prescribes the “interaction” between the (x)- and (y)-fields (see Section 3).
From (2.2) and (2.3), the base and dual base can be set for the “unified” field as

follows:
é = 4B 0 B 7} N 0
ox* T Trax®  axr oy’

5 _ A a —1i a
= Beaxa = @ ng)
(dx* = A%dX*, oy* = BidX* = Pidx"+Qtdy). (2.6

It is also understood from (2.4) and (2.6) that the intrinsic gauge fields K ji,, and Ljik are
absorbed into the “unified” gauge fields F;*, and F ji,‘ at the level of horizontal covariant

¢ 0
derivative with respect to x (cf. [10]), that is, the partial differentials (F , -a——;) and the
X" 0y

connection coefficients (I';*,, ;") or (I’ ,fu, r j’k) are both “unified”” by means of the non-
linear connection NN at the level of covariant derivative by x.

3. Finslerian structure — I

In our case, the internal field is assumed to have R, with the Riemann metric 4;;(y),
which is attached to each point x of the external field with the Riemann metric y,,(x).
Therefore, as mentioned already, the “unified” field of the (x)- and (y)-fields has some
Rg-structure with the “‘unified” Riemann metric G 45, in which the frame conditioned by
(2.6) is established as the result of taking account of the intrinsic behavior of y (i.e., dy
(2.2)).

Under these conditions, it is necessary for our purpose to extract some kind of Finsler-
ian structure (F,) from the Rg-structure, and then obtain a Finsler metric (g.(x, )
from G,z. That is to say, it is necessary to decompose G, into such components as (ga,, g
= g, &;) adapted to the base and dual base given by (2.6). For that purpose, we shall in the
following consider the decomposition process of Rg-structure by analogy with the general-
ized Kaluza-Klein theory [6].

Now, we can first determine the decomposition factors from (2.6) as follows:

A5 = (35,0), 4] = (3} —N)),
By = (P, 0D, B=(0,07"). G.1)
Therefore, we can obtain the following cofnponents:
Zax = Va(X)+ NN (),
gu = — N30 ha(y),
gy = @710 jhu(y). 3.2
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& = yH(x),
Ki i, xA
g = Ply (x)3
g’ = PLPIy*}(x)+ QLQ{n"(y).

In (3.2), g..(x, ») has quite a similar form to (1.3} with e(x) being replaced by N(x, ),
but other additional components such as g,;, g, etc. do appear. And those quantities
P, Q and N represent the “interactions” in our sense caused by the intrinsic behavior of y.

Next, if we assume that as in the ordinary theory of vector bundles (cf. [11]), only
such components as g;,, £ and g;;, g appear at the stage of metric (i.e., g;; = 0 and
£*" = 0) and then the rotation matrix Kj(x, y) in (2.1) is positively homogeneous of degree
0 in y (i.e., O = &}, since Ly’ = 0, see (2.2)), then we can further reduce (3.2) to

L = yj.x(x)'*'NleJ{hij(y)’

8 = hij(y)'
g = y*4x),
g/ = hi(y), - (33)

where N% = P} (see (2.4)).

At this final stage, if only g;, and g** are taken into account by *“compactifying”
h;; and h¥ in the “unified” field, then the resulting field obtained by this decomposition
process appears to have F,-structure based on the Finsler metric g,.(x, ») of (3.3). This
process resembles the “reduction” process of dimension number from 8 to 4. The nonlinear
connection N(x, y) plays the role of mapping operator of the (y)-field on the (x)-field,
(which will be called the N-mapping), as e(x) does in (1.4), and causes the same effects as
the “fluctuation” does in “vacuum” state from the viewpoint of generalized Kaluza-Klein
theory (cf. [6]). Thus, the mapping process given by (1.4) and ths Finsler metric g,.(x, )
given by (1.3) can now be supported by the above-mentioned decomposition process.
Of course, the F -structure based on g,.(x, ») of (3.3) is found to be more suitable.

4. Finslerian structure — Il

Now, taking account of the above results obtained in Section 3, we shall hereafter
consider that our Finslerian gravitational field has the Finsler metric g,(x, ») given by
(3.3). Then, the intrinsic behavior of y given by (2.2) is brought to the ‘““unified” Finsler
field as follows: ’

5yx = N;cayi = dy”+Kl"“y‘dx"+L4"“yAdy“

= Pudx*+Qudy" (= 0), 4.1)
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where

K5, = NINIK},— ONE i
An e
L;*, = N¥NIN*L/ — ON N 4.2)
An ERAF AT 0" o .
and P = K*y' O = (3:°,+L,1",,y’1 (see (2.2)). (4.1) gives the intrinsic parallelism or
connection of y in the Finslerian field, so that the metrical conditions 6k, = 0 can be
assumed for the connection & under the absolute parallelism of N (i.e., SN = 0). (It is easily
understood that the condition SN = 0 is compatible with the relation (4.2).) It should
be remarked that dg,, # 0, even if 6k, = 0 (see below). '

From the most general case given by (4.1) and (4.2), we can consider some special
cases as follows: if K; is a function of x alone, then Lji,‘ = 0in (2.2) and (4.2); if Ki- is
a function of y alone, then K/, = 0 in (2.2) and (4.2); If the (y)-field is flat (i.e., Minkow-

' ONY N

skian), then K} = constant and (2.2) reduces to 8y’ = dy' = 0, so that K", = — S NV

X
i

and L;*, = — N in (4.2); etc.

oyt

Our Finslerian gravitational field has the Finsler metric g;,(x, ¥) given by (3.3), so
that its spatial structure must be made consistent with the metrical conditions Dg,, = 0.
Concerning the connection D, which is first introduced by (2.3), it should be now summar-
ized in the form

DV* = dV*+4T* Vidx*+C;*, Vidy"
= dV*+F* Viax + 0,5,V y", 4.3)

where I';*, and C;*, denote, as usual [4], the horizontal and vertical coefficients of connec-
tion of the “‘unified” field, and

Flnu = FAKM_N;C}.KV’ @Axu = Q_lp‘;cﬁ.xv’
N}, = Q" '}P.. 4.4)

The quantities in (4.4) correspond to those appearing in (2.4) and N, is the nonlinear
connection in this case. And for the total Finslerian structure represented by (4.3), the
base (_67 —N}{i‘, , 0”4 —a;> and the dual base (dx", 5y") can be set, and the intrinsic
ox ay oy .

behavior of y' represented by L, or L,*, is summarized by the quantity C,",, which is finally
absorbed into the quantity F,*, through N}, because in our case, the intrinsic parallelism
holds good, i.e., 65 = 0 and then &y* = 0.

The relation between (I';*,, C;*,) of (4.3) and (K", L,",) of (4.1) can be obtained in
more detail as follows: As to the connection §, it is assumed, from the beginning, to be
metrical for h,,, i.e., oh;, = 0 under the premises of 84;; = 0 and 6N = 0. And as to the
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connection D, it is also assumed to be metrical for g;,, i.e., Dg,, = 0. Then, we can obtain
the relation that Dg;, = 0, Dh,, # 0 and ék,, = 0, 8g,, # 0. Therefore, we can reconsider,
from the standpoint of Kawaguchi’s theorem [12], that the connection D is a metrical -
connection for g, (i.e., Dg,, = 0) derived from the non-metrical one & (i.e., dg;. # 0).
So, by use of Kawaguchi’s theorem which supplies a method to make a non-metrical
connection metrical, the relation between D and & can bes obtained in the form (with
neglect of arbitrariness)

Dy* = 8y" +3 (g%, (4.5)

by which the relations between (I',%,, C;",) and (K;",, L;*,) can be obtained as follows:

x 3 v agv T T
'rl = Kl u+—;— gK (ax: _Kv ugtA—KA ugvr> H
K K 1 _xv ag\'l 1 T
CA n = Ll u+—2' g ayu _Lv ugtl—L). uBvr |+ (46)

With the use of (4.6), we can further obtain the relation between (F;",, ©,,) of (4.3) and
(K", Li",) of (4.1), but we shall omit them for simplicity’s sake. (Of course, (4.5) and (4.6)
can be applied to the case where the (y)-field is flat.) (These considerations have also been
mentioned in Section 3 of [2].)

5. Conclusions

In the theory described in this paper, a “unification” between the external (x)-field
and the internal (y)-field has been performed at the stage of metric by the N-mapping,
by which the resulting “unified” field appears to have the F,-structure with the metric
&ix(x, ) of (3.3). This N-mapping has been justified, as mentioned in Section 3, from the
decomposition process of the “unified” Riemann metric G,5. And the intrinsic behavior
)" of the internal vector ' is given by (2.2) and (4.1), which is reflected in the total “unified”
Finslerian field at the stage of connection as in (4.3). The relation between Dg;, = 0 and
0hy, = 0 is obtained in the form of (4.5). Thus, we have clarified the Finslerian structure
of the gravitational field caused by the internal vector y.
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