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1. Brief view of higher order analysis
1.1. Prologue

The standard SU(2)x U(1) electroweak theory, i.c., the Glashow-Weinberg-Salam
theory [1] has been very succcssful and widely accepted as the correct theory at least in the
zeroth order analyses for low energy phencmena. Moreover, we know at present that it can
also describe properly much higher energy prccesses: €.g., the weak boson production [2].
Therefore, as a next step, much effort shculd be dcvoted to testing this theory more precisely,
i.e., beyond tree approximation.

Higher order effects (quantum cffzcts) of the clectroweak theory have been studied
for more than ten years. At an early stage, however, only a small number of people paid
attention to them (see, e.g., [3]). That is, this subject was rather an unnoticed one. It is after
the phenomenological success of the theory (especially after the discovery of the W* and
Z bosons [2]) that a lot of particle physicists have become interested in the higher order
effects (and their experimental verifications). And, so far, calculations of these effects
have been made in ve = v, ve = pv,, p = e, vq — vg, ete” — 17, efem —» WHW-,
ete~ — Zd (¢: the Higgs boson), eq — eq, ... (See, e.g., [4, 5] and references cited therein).

These studies will become more and more important since we will obtain, in the near
future, a lot of uscful information directly from experiments at high energy accelerators:
CERN SppS, TRISTAN, SLC, LEP, HERA, Tevatron, ....

In this lecture, I would like to explain the way of renormalizing the clectroweak theory
(Sect. 2), practical calculations of higher order effects within one-loop approximation
(Sect. 3), numerical analysis of them (Sect. 4) (I call these processes simply “renormaliza-
tion calculations”) and also show how to develop a clear experimental test of these effects
(Sect. 5). Many parts of this lecture are based on our works:

a) calculations of the electroweak higher order effects for v,e — ve, V€ o V€, V,€ = UV,
and p - ev,v, [6, 7],

b) calculations of the hard photon effects in these processes [8, 9],

¢) a proposal to use the weak boson mass relation for testing the higher order effects
[to, 11],

d) applications of this mass relation for heavy fermion search [12, 13],

€) review articles [5, 14].

1.2. Summary of renormalization calculations

The process of renormalization calculations consists of several steps: (/) Fixing a set
of independent parameters, (i) Introducing renormalization constants, (ii{) Choosing a sub-
traction scheme to fix the renormalization constants, (iv) Practical calculations and (v) De-
terminations of values of parameters. Let us explain each step in the following.

() Independent parameters

The electroweak theory has five kinds of independent parameters: g, g’ (the SU(2)
and U(1) coupling constants), p, 2 (the Higgs potential parameters) and g, (the fermion-
-Higgs Yukawa coupling constants (matrix)). In the actual calculations, other parameters
which are combinations of the above parameters are also used frequently. For example,
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g and My, (the W* boson mass) are usually used to describe charged current phenomena,
while g, M, (the Z boson mass) and sin? 6y, (the Weinberg angle) are adopted for neutral
current prccesses, where, at tree level,

My = gv/2, MZ = \/82+g'2 0/2, sin GW = g’/\/g2+g12
and
v (the vacuum expectation value of the scalar field) = \/ Wi (1.1

We may of course work with any other combination.
In this lecture, I adopt the following set of independent parameters in relation to the
on-mass-shell renormalization [5, 7, 15]:

e (= gg'/\/éz+g'i; the electric charge), My, Mz,
m¢(= gev/\/2; the fermion mass matrix), and
my(= N; ZF; the Higgs scalar mass).

The Weinberg angle is a very convenient ard useful parameter in tree level discussions,
but I do not use it since, in addition to the fact that ¢ and masses are more convenient for
our scheme, the use of 6y, in higher order analysis sometimes causes a confusion. (I will
comment on this point at the end of Sect. 2.)

(i)) Renormalization constants

Bare fields, bare masses and bare coupling constants are divided into renormalized
ones and divergent parts. In the case of scalar field, for example,

Po(x) = Zdl,/2 d(x), mio = mﬁ,+6m§,, (1.2)
and in the case of QED,
po(x) = Z3"9(x),  Aou(x) = Z5*A,(),
eo = Z,2; 25" %,  myy = m,+om,. (1.3)
Accordingly, the Lagrangian is also divided into the tree part and countérterms,
(B0, Mo, -..) = Lireet L oounter
Free = L(P,m, ...),
Zoounter = L(Po, Moy )= Lrees (1.4)

and the Feynman rules are derived from the tree part.
(iii) Subtraction scheme

When making perturbation calculations beyond tree approximation, we frequently
meet two kinds of divergences: the ultraviolet (UV) one, and the infrared (IR) one. Further-
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more, another divergence also appears when a massless particle emits a massless particle
collinearly (“Collinear (CL) divergence” or in other words “mass singularity”). Among
these, the UV divergence can be eliminated by suitably adjusting the renormalization con-
stants if the theory is renormalizable. On the other hand, we need other techniques to
rescue the theory from the IR and CL divergences, which I will explain in Sect 3.2.

Concerning the determination of the renormalization constants (choice of subtraction
scheme), we know at present several ways [16]. As a matter of fact, there are many groups
studying electroweak higher order effects, and each has adopted their own scheme which
they believe most useful. So, there exist a lot of “the most useful” schemes in the world.
If all groups work with a cammon scheme, it will be easy to compare various results with
each other, but such a unification, just like a unification of all the languages in the world,
will be difficult. Each group will agree only when their own scheme is selected as the
standard one.

In the case of the perturbative QCD, the choice of a scheme is not a matter of taste.
As is well-known, different schemes produce non-negligible difference in results. Fortu-
nately, however, the scheme dependence is considered to be weak in the case of the electro-
weak interaction since the expansion parameter, «, is sufficiently small [16]. (Concerning
this problem, an interesting paper has recently appeared [17]. See Sect. 5.1 and Sect. 6.)
Furthermore there is recently some compromise. That is, there seems to be an emerging
consensus on the use of e, My, My, m¢ and m, as independent parameters, and renormaliz-

*ing them by the on-mass-shell conditions [4] although several schemes are still used for
determination of wave function renormalization constants.

The scheme which I have been using is the one in which not only the parameters but also
all the wave function renormalization constants are fixed by the on-mass-shell conditions
[5, 7, 15]. (Such a method is always adopted in the case of QED.) For example, the trans-
verse part of the W boson self-energy (coefficient of £,p) 1s renormalized so that it satisfies

I%(g% and I%'(¢% 0. (1.5)

—
q2->Mw?

As a result, we obtain the physical mass My and a properly normalized (i.e., the pole
residue of the propagator = 1) field Wf(x). So, our scheme is the direct and natural exten-
sion of the on-mass-shell renormalization in QED, and I of course believe it most useful.
A more detailed description is given in the next Section.

(iv) Practical calculations

We are now ready to carry out practical calculations. As a method to regularize the
UV divergence through computations, the dimensional one is very popular [18). This
method is to keep loop integrals finite by changing the space-time dimension from 4 to D.
Then the UV divergence appears in the form l/e, where ¢ = (4— D)/2. (This technique
is applicable also for the IR divergence.) A lot of concrete examples will be seen in Sect. 3.
(v) Determinations of values of parameters

In order to compare the theoretical results with the corresponding experimental
data, we have to make numerical computations. Therefore we must determine the values
of the parameters first by taking some precisely known experimental data as input.
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In the case of the electroweak theory, we need five pieces of data. Let us express them
as f7P (i = 1 ~ 5). Then, we obtain the following simultaneous equations after calculating
Ji theoretically as functions of e, My, z, m; and m,,

Sfie, My, Mz, mg, my) = f7, (1.6)

and solving these equations, we can determine the values of those parameters.

If we adopt ¢*? (= v 470®) for f7*°, the left-hand-side is just e thanks to the on-mass-
-shell renormalization. Similarly, if we take MZ®, My?, ... for /37, f3*°, ..., then f, = M,,
J3 = My, ... Thatis, we can directly substitute the experimental values into the correspond-
ing parameters. Instead of this, if we use, e.g., cross-section of some process ¢ as one of
/i, the corresponding condition is expressed order by order of perturbation:

6"Ne, My, ...) = ¢

— Tree level constraint on e, My, ..., (1.7a)

1T o My, ) = 0P (1.7b)

— One-loop level constraint on e, My, ...

(Values of parameters determined by the latter method depend on the choice of input
data unless exact quantities are used for the left-hand-side of Eq. (1.6).)

Anyway, after fixing all values of parameters, we can make numerical analysis exten-
sively. A more detailed explanation will be presented in Sect. 4.2.

2. On-mass-shell renormalization

In this Section, I will explain the on-mass-shell renormalization procedure. However
a great amount of space is necessary to give complete description on it, so the following
is only a summary of important points. (For more details, see {5].)

The basic Lagrangian of the electroweak theory consists of four parts:

Here % is the gauge fields part,
gG = "'%FZVF“M—%FMFW’ (a =1~ 3)’

Fa, = 0,WS— 0, Wi+ ge™ WW,),
(SU(2) gauge fields)
Fm, = a,,wv—avw,,, (2.2)
(U(1) gauge field)
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Py is the fermion part,

Lr =Y iLy"0,—igT*Wi—ig'Tw,)L,

n

+ Y iRy 0,—ig' T*W)R,, (2.3)

where T° is the SU(2) generators, and T° is determined by T°+T° = Q; (electric charge
of a fermion f in the proton charge e unit), and

Yr
L= , R =y,
(Wi)L Ve

(I have used 7 and i to express the weak isospin +% and —4 component respectively.)
%y is the Higgs scalar part,

Lu = 10,— igTWi—ig' T, )®* + p* oo — J(d10)’,

_ _}_ i1+ X2
R K oo

where y; (i = 1 ~ 3) and ¢ are scalar fields which become the Nambu-Goldstone bosons
and the physical Higgs field respectively after the spontaneous symmetry breakdown,
and & is the mass generating term,

gM = - gfmnim¢Rn - g;mntm(irl¢*)Rn + (h.C.), (2'5)

where the first (the second) term gives a mass to 7° = —1/2 (+1/2) component fermions.
In addition to these terms, we have to take account of the gauge fixing term %y and the
Fadeev-Popov ghost term Zygp to make the electroweak theory “a consistent quantum
field theory”

After the spontaneous symmetry breakdown, mass terms are generated, and by diago-
nalizing them % is re-expressed in terms of the mass eigenstates Wf, Z,, A,, vand ¢ (and
several unphysical particles). At the same time, we of course transform g, g', ..., g to
e, My, My, m; and m,. According to the diagonalization of the fermion mass matrix,
the Kobayashi-Maskawa mixing matrix Uy, is also introduced.

As a next step, let us introduce renormalization constants. We should pay special
attention to the neutral gauge boson (the Z boson and the photon A) and the fermion
sectors since so-called “‘particle mixing” occurs. For example, concerning the Z boson-
photon sector, the Z-A transition self-energy diagram (Fig. 2.1) gives non-zero contribu-

A Z

Fig. 2.1. The A(photon) — Z boson transition self-energy
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tion. It is natural to renormalize so that its contribution vanishes for g* = 0 and g2 = M2
In order to realize it, we have to use matrix type renormalization constants (also for the
fermion sectors) as follows:

z Zy7 Z¥N\(Z
(Az") = (Zx/z Zlfz) # (Zza # Zaz), 2.7
1

A,
Yo = (ZUR)™vim  (Qn = Qu). (2.8)
For other quantities,
Mz, = Mz+8M3
Wb = Zy*W,E, Mo = M +M3,
and
e = Ye. (2.9)

The renormalization constants for the Higgs scalar, the Nambu-Goldstone bosons and
the FP ghosts are also introduced in a similar way. (Concerning the FP ghosts, a simpler
treatment is possible due to the fact that they appear only in loops.) Consequently the
Lagrangian is divided into two parts:

g = gtree’*‘ gcounter' (2.10)

In the following, I show the renormalization conditions and counterterms for the
gauge boson sector explicitly. Let us represent the transverse parts of the renormalized
W=, Z, A and Z-A proper self-energies as

M, 0%q*), 0Y¢") and 1)

respectively. They consist of the unrenormalized self-energies Iy, %, I, and nz,
and the corresponding counterterms. For example, at one-loop level,

m™(g») = MEy(g") +dMy+Zy(My—g?), (2.11a)
0%(g) = I%,(q%)+8ME+2ZE3 (M2 — g?), (2.11b)
(g% = IY,(qh)-2Z33d", (2.11c)
M*Yq%) = OE(aH+2Z5E (M3— ") - Zi7 4", (2.11d)

where all renormalization constants mean the order a terms in the perturbation expansion
of those in Egs. (2.7) and (2.9).

We impose the on-mass-shell conditions on them:
Re MY(M3%) = Re TV (M3) = 0, (2.12)
Re TA(M32) = Re IT*(M32) = Re IT**(M3) = 0,
T4(0) = I*(0) = IT*4(0) = 0. (2.13)
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Here in the six conditions of Eq. (2.13), only five are linearly independent due to the
remaining U(1) gauge symmetry. Actually, H(U)(O) = 0 and there is no corresponding
counterterm at one-loop level. We obtain the following results!

SMy, = (U)(Mw), Zy = H(U)(M )
oMz = —II{,(M3), 21/2 = 5 O(M2),
1 .
ZW = 3050, ZE = o IGMD, 2k = 5 T, (2.14)
z z

We can renormalize similarly the fermion sector and the Higgs sector.

On the other hand, the unphysical particles do not appear in external lines, so the
finite parts of their renormalization constants are irrelevant. Hence we may take any re-
normalization condition. All we have to do is to eliminate the corresponding divergences.
Practically the minimal subtraction is most convenient.

Finally we obtain the physical parameters e, My, Mz, m; and m,, and the properly
normalized fields W,*(x), Z,(x), A(x), ypr(x) and ¢(x). After practical calculations, all
physical quantities are expressed in terms of the above physical parameters.

I did not adopt the Weinberg angle as one of the independent parameters so let us
comment on this point before proceeding to the next section. As is well-known, sin? Oy
is a very useful parameter in tree level analysis. As a matter of fact, the structure of the
neutral currents is expressed very clearly, and we can write various relations among parame-
ters very simply with a help of 8y,.

Beyond tree approximation, however, it is no longer true. When we say “mass” or
“electric charge”, you will naturally think of the physical ones, i.e., those defined on the
mass shell. And, there is the unique (process-independent) correspondence between theory
and experiment: In the case of mass, for example, the real part of the pole of the propagator
and the peak point of the corresponding invariant mass distribution (e.g., My 2 the
peak of M(ete-) for Z — ete-). However, the Weinberg angle does not have such a property,
and consequently there has been so far no natural “standard definition” of it. Different
definitions have often been used in different papers, and we sometimes meet a comment
like;

“Their results differ somewhat from ours in part because a different definition of sin? 0y, was
employed”.

We can see a typical example of such a confusion in the relations among My, My, Oy
and the g-parameter which are frequently discussed after the discovery of W* and Z:
In one scheme (Appelquist et al. and Salomonson-Ueda in [3]), the well-known relation
My = M, cos Oy receives a radiative correction

My = M, cos Oy +0(w),

! There are some incomplete parts in the descriptions of our review article [S], and we need modifica-
tions when making two-loop analysis {19]. Fortunately, however, no parts of our previous works are affected.
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while in another scheme [20],

My = M, cos Oy,

where My, ; are the physical masses in both cases (in the latter scheme, this equation is just
the definition of 0y and it may be the standard one in the future). Furthermore ¢ is some-
times expressed as ¢ = M /(M3 cos? 0) and a deviation of ¢ from 1 by radiative correction
is discussed.

Of course, this discussion never means any logical inconsistency, and we can obtain
correct results in a scheme with 6y. However, it is desirable to avoid such a confusion.
This is the other reason why I did not use 0y, Then, readers may have a question: “A lot
of experimental data have been reported in terms of 6y,. What does this 6y, mean?” The
answer is as follows: Experimentalists express their results on measurements of cross-
sections, decay-widths, asymmetries etc. in terms of Oy through the tree level formulas.
So, its meaning is apparent. We should distinguish clearly 0y as a parameter in theoretical
calculations and )y, as experimental data (which I hereafter express as “0%"”). Discussions
in Sect. 4.2 will be useful for understanding this situation (there I will give the definition
of g too).

3. One-loop effects: practical calculations

I show, in this Section, practical calculations of electroweak higher order effects within
one-loop approximation taking purely leptonic neutral current processes, v,(v,)e — vp(\"/p)e
and charged current processes, v,e — pv, (1 — evpVe) as examples. From the theoretical
point of view, they are the most suitable examples since their structures are very simple
and strong interaction effects are considered not so important (although more accurate
experimental information is obtained from deep inelastic v,-nucleon scatterings).

As was mentioned in Sect. 1 we will meet two kinds of divergences: One is the UV
divergence, which arises from high momentum region in loop integrals and is eliminated
by renormalization. The others are the IR and CL divergences, which have their origin
in low energy regiomn, i.e., occur due to the existence of massless particles, and we have
to take account of additional diagrams (real photon emission in the present case) in order
to rescue the theory [21].

I should also mention regularization of divergences since, practically, we cannot
make any well-defined computation in intermediate stages without regularizing divergences.
In order to regulate the UV divergence, I adopt the dimensional method briefly explained
in Sect. 1.2. The IR divergence can be also treated by this technique, but I will use a tradi-
tional one, in which a small fictitious photon mass A is introduced, to show a procedure
different from dimensional one. Consequently, the IR divergence appears in the form
of In 2. On the other hand, the CL divergence is an approximate one in our case, i.e., be-
comes “real divergence” only in the limit m, or m, — 0. It appears, e.g., in the form ~ (In m,)?
in v,e — v,e process. So, regularization is unnecessary.
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3.1. UV divergence and renormalization

In the neutrino-lepton processes, the squared momentum transfer g2 is very much
smaller than va,z. In fact, the mean value is estimated to be [{(g?>]| ~ 4-5 (GeV)? even
at EX*® — 10* GeV. Therefore I neglect quantities of O(g*/M%, ), and also those of
O(m,,,/My,z) in comparison with O(1) quantities. Thanks to this reasonable approxima-
tion, we may leave out of consideration every diagram with the Higgs-lepton vertex since
this coupling is proportional to m, ,/My, ;. Then we obtain the relevant Feynman diagrams
for v,(vJe = v,(v,)e process (Fig. 3.1) and for v,e - pv, (n - ev,v,) process (Fig. 3.2).
There blobs stand for all the possible one-loop diagrams, which are explicitly shown in the
following. I discuss the neutral current processes first,

Neutral current processes

Let us first arrange the necessary renormalization constants (within one-loop approxi-
mation):

For the Z boson self-energy (Fig. 3.1(2)),

$Mz,  Z77;
for the Z-A transition self-energy (Fig. 3.1(3)),
73 Zigs

(These four constants are determined here.)

e Y
z Z Z A Z
P Vv,
m (2) (3)
4
z z A
(4) (5) (6)
u z_{ z Z
w Z 5‘
) (8) (9)

Fig. 3.1. Relevant diagrams of one-loop corrections for the process vu(vue — vp(vule
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y w
> w < >W@ W< w-
e Y,
m (2)

(3)

w Z

4
7& z w
(%) (5) {6)

)w A( ):w ZI )é{(
%))

Fig. 3.2. Relevant diagrams of one-loop corrections for the process vye — pve(pt — ev,&,)

for the eeZ vertex (Fig. 3.1(4))?,

Y, SM32, Zt, Zg (and already fixed Z37, ZL7, SM3);

for the vwwZ vertex (Fig. 3.1(5)),
Y, 8M3, Zt (and Z77, SM7);

for the vwA vertex (Fig. 3.1(6)),
(21/2

In order to determine Y, M, Zf &, Zy, we have to take account of additional dia-
grams:
the W* boson self-energy for dM% (see CC.1),
the lepton (e and v) self-energy for Zj g and Z;,
the eeA vertex for Y.

In the following, Ishow one-loop dlagrams for each blob of Fig. 371, and the correspond-
ing formulas in the 't Hooft-Feynman gauge. (Explicit formulas for the renormalization
constants will be collected in Appendix A.2.)

2 In the present case, we need only dla.gonal elements of Z{"k for electron and muon, and those of
Z{™ for neutrinos. I represent them as Z;_ R (I=e or u) and Z" in the following.
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NC. 1. Z boson self-energy
Twelve kinds of diagrams contribute (Fig. 3.3),

(g% = Z IG(a®) +TEgD). 3.1
V4
% ] W¢W ' W¢W+ Z \::.¢
7
oA
w{ e of } v x{ o e

T kY T

Fig. 3.3. The Z boson self-energy at one-loop level. C* represent the FP ghosts, and the last diagram
expresses the counterterm

Here, the second term is the counterterm, and

12

«
I(g%) = E (4% =g]\m[ E Mz{—% ¢’ +1)+mf}
f

n=1
—2M3(M3+2M2M%y —4My) -1 g2(ME—2M2M3 — 18M3,)] Cuv
o
T E M3{(n? +1)q*F(my, m;, §)— m2F o(my, m,
+87'5Mv2v(M§“Mv2v)|: z{(ng +1)q*F(mg, mg, q) t Fo(mg, mg, )}
f
3 P(ME—2MIMZ +AMY) +2M2 (M5 —AMEMZ +16M%) In My,
+Mz(M3 In Mz +m} In m,)— 10M%q*F (My, My, )
+(Mz—4MIM3 +24M3)q*F(My, My, q)

+My(3MZ7—4AMIM3, ~ 16M3)F (My, My, q)



+M3{2M2F |(my, Mz, @)~ M3F (my, Mz, )+ q*F(my, M, q)}

- m;MgFl(MZ, my, q)] s

where Y denotes the sum on all flavors and colors, and
-f

‘ M3 1
N = 2{7}3"2Qf (1— Z)} , Cyy=— —vyg+Indn.
M3 e

(T is the third component of the weak isospin and pg is the Euler constant.)

The functions F, (n = 0, 1,2) and F are defined by

1 .
F (M, My, ) = | x" In {M3(1 —x)+M3%x—g*x(1 —x)}dx,
0
F(My, M,, q) = Fi(My, M,, q)—F,(M,, M3, q).

According to Eq. (2.14), we obtain M2 and Z}7 (see Appendix A.2).

NC. 2. Z-A transition self-energy
Relevant diagrams are shown in Fig. 3.4.

8
g = Y A@(a)+ID).

A
% ) W¢w ’ W¢W +‘W¢\,\I‘X
Z

3. 1.
e X xeCch O CE 0O+ w

{ ¥ A

Fig. 3.4. The A-Z transition self-energy

Here
B8

n=1

aM . M3
n(z(;.)n(qz) = -“":2“]——2[{% q’ <_ tet Hg‘ +18> +2M%} Cyv
Z dn VMZ—M2, Z w
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3.2)

(3.3)

(3.4)

(3.5)
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—2(MZ—8My) In My —(M2+8M3)F(My, My, q)

M3 12M
+q { 5 LcFme, my, @)~ == F(My, My, §)

5Fo(My, M )+M‘”‘_4Mw
0( W ws 4 6M%1 ’

4M M?2
= Mfo{Tf —2Qf( M‘g)}

2 and Z7/? are determined by Eq. (2.14).

and

(3.6)

3.7

By similar computations, we get the remaining renormalization constants M3, Z5 ¢
and Zj, and Y is fixed through the eeA vertex, the calculations of which are almost the

same as those of the eeZ vertex explained below.

NC., 3. eeZ vertex
Relevant graphs are in Fig. 3.5.

4

F:eZ(p;’ pe) = 2 I:lelfna(pe’ pe)+1-veez

n=1

where I'SZ is the counterterm.

&I

(N (2) (3) (%) (5)
Fig. 3.5. The eeZ vertex diagrams

The first term is somewhat complicated:

e3

64n°My NV MZ - M3

(pe+ pe)a}
m

(]

F(elegla(P;’ pe) =
X [(3M z—4Mg) {F (a*)1.+G(4d%)

+M3 {Fs(qz))’a')’s +Gs(q%) @‘em—pe)n‘t ?s}:l .

€
In this equation,
1+a

F(g*) = Cyv—21n me+ — 111 —
a 1-a

(3.8)

(3.92)
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1+4? 4 1+ i1
. im—_ =22 —21n—-1n——+— ~ (@),
a 1—a?> 1-a m, 1-—
1—-a®> 1+
GgH) = - ——In—2,
1—a
1+2a®> 1+4a
Fy(q*) = Cyy— 2Inm + In —
. a 1—a

1+a? 4 1+a _ 4 l+a
- {%Inl———ln——— —21]1;11’11_—‘1 —¢(a)},

a —a® 1-a
, 1—a* (142a®> 144
Gs(q®) = — { In —2}, (3.9b)
a a 1—a
where
1+a 1—-a
=Spl— )} -Sp{—,
#(a) p( 3 ) p( 2 )
a=\/:;£_
TN —g*+4m?
and

1
Sp(x) = — _[T In (1 —1¢)dt (the Spence function).

On the other hand, the remaining parts become very simple thanks to the approxima-
tion of neglecting q2/M€v,z and m, /My, ; in comparison with O(1) quantities:

4

SMZ
eeZ
.;- (U)na(pv Pe) 6471;2(M%—M€V) \/m

n=2

M
[16Msz (Cov—3—21In My {3 +¢& ) (1+352))’5}

M
+ {ZMZ (Cuy—7—2In My)—My(3Cyy—3—61n Mw)} Ya(1~— 'Ys)] (3.9¢)
w
- 4M3 —3M32
="

Z 1/2
Iee = —eZA/Zya
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eM; { +
4My VMZ—M?, 2(Mz—M3)

S M2 SMZ2  6M3 ZE+Z% 28 —Z%
+_"\/Mz Mw}’a{Y+ _—_Z_——(_Xxl_iz—__;!) Zypy SETOR L2 R'ys}.
YA

) +Z"’+Z°}v,(1—?s)

—2M% [(6M3 MY
M: M}

My, 2AAM3—M3) M3 2
(3.9d)
NC. 4. WZ and vvA vertices
Fig. 3.6 and Fig. 3.7 show the relevant diagrams.
(1) (2) (3) (4)
Fig. 3.6. The vvZ vertex diagrams
(1) 2
Fig. 3.7. The vvA vertex dlagrams
. 3
I4(pl, py) = Zl Ta(Dy P+ TS, (3.10)
3
Zx I DY PY)
e3M2 M2+M2 Z+7M4 M4
= Z {( z W)3 w v — : 2(—;—+21an)
64n3 (M2 —M2) VM2 — M2, 4My 4My
M32— —-2M},
T oM (—+21n My)—Mu(E+6 In My) ¢ 7,(1—7s), (3.1ia)
w
eM3 MZ2-2M3% (oM} SM3
rgf = -———z—-—-——__.{Y = ( ; W) ”2+zL} Pol1=75)-
4My \/Mﬁ—-Mvzv 2AMZ—MY) My

(3.11b)

2
A p) = Y Tiomdps P +TES (.12)
n=1
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2
Z Il Pe DY)

n=1

q2

M2
3CUV—6 In MW'—' 372 {1+2 In MW—GF(mw m,, q)} Ya(l _}’5)9
w

~ 9eni (ME—My)|
(3.13a)

where g2/M% terms must be maintained in connection with the 1/g? term in the photon
propagator. The counterterm is
eM2

e Zésza(l 7s)- (3-13b)

I—wvA —
4My N ME—

Ca
NC. 5. Box diagrams
The four point functions (Figs 3.1 (7)-(9)) have no dlvergenoes and include W* and
Z internal lines, so the result is very simple.
a*Mz
64My(M7z— My’

A(P;, P;§ Des pv)(7)+(8)+(9) = u,y (1—ys)u,

- 2 2 2 2 24M®
X 1,7, J(28MYy —9MD) — ( 15M—20M+ — | ys e (3.14)
z

Collecting the results, we obtain the one-loop-corrected amplitude o/(ve — ve) in the
following form:

s#(ve - ve) = iiy(p)) [v () + By} + () PR n" °)] ue(pe)

€

X APy )ya(1 —75)u,(py)- (3.15)
The cross-section is

2

o _ 1| 4 _eBpyiasen? u=me 2+2(|A}2 B2y et
dt  2n - —mf (S—mz)2
+4 Re AC* {1+ _ st (3.16)
(s—md)?*) | '
(¢ = +1 for ve > ve and ¢ = —1 for ve > ve)

Charged current processes
We need the following renormalization constants:
SMZ, 6M32, Zy, Zi(l = e, ), Z} and Y.

Among them, Zy, is an only constant which did not appear in the neutral current processes.
(Z¢ is obtained from Zj by changing m, to m,.) It is determined through the W* self-



A
A 6+ C“{i ¥+ c’4 vC‘+ CZA 'C’
T T T
1

Fig. 3.8. The W* boson self-energy. C*, CA and C% represent the FP ghosts

-energy explicitly shown in the following. (The W * self-energy is a main part of calcula-

tions of the charged current processes. So, I explain it here although it was already used
in the N.C. processes to fix SM3.)

CC. 1. W boson self-energy

18

mq* = Zl Hr{m(qz)“i‘ﬂg(qz)' 3.17)
where
18 .

(U)n(q )= “‘—_ZE'Z—_‘ leilz(m%+mi2"%"12)"2(M§_2M%v)+132 g*¢ Cuy
8n(M2— M%)

n=1 (1,i

: 2ME ) |Uy*2q*F(my, mi, q)

87I(Mz Mw) z Ii I i
(@.0)

—miF,(my, m;, q)—m%Fl(mi’ my, q)}
—MZ{g® —14M% In My—(12M%+M3) In M;—m{ In my}
+(2M3—5MIM3 —14M{)F o( My, My, q)
—10M3q°Fo(My, My, Q)“(Mz'*‘15MzMw_16Mw)F1(Mw: Mz, q9)
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+(MZ+20M3)q*F(My, Mz, q) -
—2M3—M3) {TMZF oMy, 4, )+ 5" Fo(My, 4, q)
—8MyF (My, 4, 9)—10g°F(My, 4, q)}
- m:MJZL{Fo(mw My, q) —F;(m¢, My, q)}
+ M2ME{2F o(my, My, §)— F1(my, My, @)} + M2g*F(my, My, q)]. (3.18)

Relevant graphs are shown in Fig. 3.8. (In the actual calculations. I will take only the
Cabibbo angle part of Uy, into account.) According to Eq. (2.14), sM3 and Zy, are determin-
ed. Now all of the necessary renormalization constants have been fixed.

CC. 2. vVIW vertex (1=e, W)
4
L p) = T TP PO+TE, (3.19)
where
a W
Z F:U)na(p:" pl)
n=1

3 e M3 (M2 +10M%) c
- g uv
1287 ME(M3E — M%) v 2(M%— M3)

eM,
+ SEAA2 . AA2
64n® V2(M2—M3)

2

x [5—12 In My + 5 {5(M2—M2)—12(M% In My —M% In My)}

(M Mw
M%(M§—2M3v)

- —(144In M 1 —=7s), 3.20a
iz (410 M) |71 =79) (3.202)
iw eM,

<4 aMEi—ME)

—My (6M oMy,
g {M%—Mév (7%2 B Mw> +2Y+ZL+ZL+Zw} Vo(1=7s)- (3.20b)
' M) 2 3 @ ®

Fig. 3.9. The vVIW¥ vertex diagrams (1 = e or )
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CC. 3. Box diagrams
The contributions of the box diagrams except for the photon exchange graph are
rather easily evaluated (Figs 3.2 (5), (6), (8) and (9)) due to the same reason as in NC.5.
A(p;.,'p\',; Pe> pv)(5)+(6)+(8)+(9)

*M2(3M5—6MEM% -2My) Mg _ _
= SM&I(M%_M\ZV)s In Mw uuy (1 _'YS)uv ) uv’ya(1 —yS)ue' (3218)

On the other hand, it is not so easy to carry out the loop integral of the graph Fig.
3.2 (7). By applying the Fierz transformation due to a technical reason, the result is given as

#u(py) LAWY (L =75) + B (L +v5) + C() (1 —75) (po)°

+D(“) (1 +'Y5) (pe)a]ue(pe) : ﬁv(p;)))a(l _'YS)“v(pv), (321b)
2 2_ R 4m? 2_ 2 R
Ay = G| T8 bRy in N i (2 ) e T
R 24 —u 2m, /[ —u

+ln<4m§>ln mﬁ_msz —¢ (i, ___mﬁ—mf )}
—u 2m,\/—u —u —u

2 2 2 2 242 2 2 2
_% —In Mw _ m,—me In m, + (mu—me) —4(m,.+me)u+3u T:l ’
mpme u m, u

B(u) = —4m mGT,

2m,G m '
Cu) = —2 {In —E p(mi-ml+ u)T},
u m

(]

2m.G m,
D(u) = —= —{ln +(mf,—mf+u)T} ,
m
2302 2 2
aM ‘ 1 m;+m;—u+R
G = ﬁ‘z—z N R = \/(mﬁ—m62+u)2—4mﬁu , T = —ln——"-—————
8My(Mz—My,) R 2m,m,

a+1+b a—1+b a+1-b a—1-—b

,b)=S§ —Sp| ——— S —-S .

e =305 =5 () wen (V57 -0 ()
(3.21¢)

Collecting all the parts, we obtain the one-loop-corrected amplitude the form of which
is same as Eq. (3.21b), where all the contributions except for the photon exchange box
diagram are collected into the term A. Then, the cross-section is written as

do 2

el s LIA]2(s —m?) (s—m2)+2m,m, Re (AB*)u

+(m?Zm? —st) Re A*(m,C+m.D)]. (3.22)
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So far, I have calculated the amplitude for v,e — pv,, but the amplitude for p decay can
be obtained by the same functions and the width is calculated as
d’r  |p.| (mi+ml—2mE)*
dE.dcos 9  4n’(m,—E.+|p.|cos )

X [IAIZ{(mf, + mz)E,+ (m;f - mez) {pe| cos 08— 2mumf}
—2m, Re A*B(m, — E.+|p.|cos 0)* +m, Re A*(m,C+m.D) |p.|* sin? 0] (3.23)

(0 is the angle between € and v,).

Now we have obtained the UV convergent quantities. Since the electroweak theory
is known to be renormalizable, it is not surprising that all the UV divergences, Cyy, com-
pletely cancel out in final results. But in actual computations, such cancellation seems some-
times even miraculous since we have to deal with a lot of terms together. (As a matter of fact,
Aoki and I almost invented a new notion “spontaneous breakdown of renormalizability”
(1?) when we failed to eliminate UV divergences due to some miscalculations.) It may be
one of the reasons why many people feel that gauge theories are correct for describing
fundamental interactions.

3.2. IR, CL divergences and real photon emission

As a next step in practical calculations, we have to treat the other divergences, i.e.,
the infrared (IR) and the collinear (CL) divergences. As was mentioned, the latter one is not
areal divergence in the present calculations. However, we still have to eliminate it in relation
to actual experimental setup, which will be explained later.

First, let us see why such divergences appear. In the diagram of Fig. 3.10, the denomi-
nator of the fermion propagator is

m?—(p+k)® = —2/k| (Vp?+m? —p| cos 0). (3.24)

Apparently it becomes zero when |k| goes to zero (IR div.), or when 0 takes vanishing
value if m = 0 (CL div.). Such divergences appear also in diagrams with virtual photon
correction in connection with the value of loop momentum. It is easily understood that
their origin is the emission of real or virtual photon.

Kk &6

Fig. 3.10. An example of a real photon emission process. k and p express the momenta of the, photon
and the fermion respectively, and 6 is the angle between & and p
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The well-known Kinoshita-Lee-Nauenberg theorem [21] says that real and virtual
photon emissions give opposite sign contributions, and they completely cancel out with
each other. So, if we define the cross-section, e.g., of ve — ve as a sum of those of ve — ve
and ve — vey (Fig. 3.11), we can get a result free from those divergences. From the experi-
mental point of view, such a definition means that photons with momentum smaller than
some value or emitted almost collinearly to charged particle cannot be detected. (The
actual conditions depend on the resolution of experimental apparatus.)

Let us proceed to concrete calculations for these real photon emissions. Strictly speak-
ing, there is a little difference between v(v)e — v(v)ey and ve — pvy (or p — evvy). That
is, three graphs contribute for the latter (see Figs. 3.12 and 3.13). Actually, however,
the diagram of Fig. 3.13 (2) has no contribution to the IR divergence and gives only very
small magnitude, so we can neglect it safely. Then, simultaneous treatments become possible
for both processes. :

Practical evaluations of those diagrams’ contributions become very easy if we restrict
the emitted photon energy to be much smaller than that of e or u (the soft photon approxi-
mation). That is, by expressing the tree cross-section of v(v)e — v(V)e or ve — pv as dog,
the cross-section of v(v)e — v(v)ey or ve — pvy, do™™, can be represented as

a (d’k/p n\?
dsoft=_____ Pl ¢ =1 -d 1 = s 1. 3.25
- -5 <kp, o) -doo 1 = e (3.25)

(A similar formula holds, of course, for p — evv.)

2 2
g ~ l W + \:M + K——-{
Fig. 3.11
7 | 7 _
p4 Z
e v e v
Fig. 3.12. The real photon emission in the vu(vue — vu(Vu)e process
.V i Y 7 H ¥ 7 g
7 .
w w
' w
e 1 e 12 e v 1
(1) (2) (3)

Fig. 3.13. The real photon emission in the process vye — wve ( = €v,v¢)
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Effects of the addition do*™ to the one-loop-corrected cross-section do‘*)(ve — vl)
are as follows:
(i) The IR divergence term In 4 in do'") is replaced by In (2w), where w is the maximum
of the emitted photon energy (so we may set 4 = 0 safely), and
(i) A term, 2Cdo, (the @ and A independent part of the above 1ntegral in the Lab.
frame) is added, where

E' E’+ ' 12
Cope = 1[1_+ —f—ln( ‘ ‘pll){l—21n2—1n ﬂ——}
2n |2l m myE;+|pi))

El Ipi | ‘
1l { 5P (Ex +1pi I>} ] ©29)
As a result we obtain the UV and IR convergent quantities (cross-sections or decay-
-width). However the (approximate) CL divergence still remains and produces extremely
large EM corrections, which is theoretically rather peculiar. Furthermore, this situation
and the constraint @ < E, (they are not independent to each other) are both experimentally
quite unrealistic. since. they correspond to a statement that we can distinguish ve — vl
and ve — vly as long as E, > o even if y is emitted collinearly to 1 or E, is much smaller
than E,.
Therefore, in order to derive more realistic results, we must estimate the contributions
of Figs. 3.12 and 3.13 (except for 3.13 (2)) without taking the soft photon approximation
(hard photon effects [8, 9, 22, 23]). After some tedious computations, we obtain

1 ‘ ,
Z | (ve = viy)* = —64Gh [m [(mi —kpy) {(1 +&)*(p.p,) (piP, + kDY)
, l ,

spin

+(1=&%(p.pl) (pip,+kp)} +(1 —EHym} me(p.pl)l
1 o
- 2 2 k 1 v‘ A :: - k i ePv. e :r
= (kpe)L (1 +&% {(kpe) (p1py) (1Y) — (k1) (PePy) (PeDY)}
+2(1 = EYmmg{(pipe) (pypu) +(kpy) (kp))}
+(L+E%(pipe) {2(pipl) (Peps) — (k) (pip) +(kD}) (Pep,)}

+(1=8*pip.) {2(pipy) (PeD2) —(kpy) (P1py) +(kp,) (Pepy)}]

1
+ G [(mZ+kp.) {(1+E*(iPY) (PP —kp) +(1 — E)*(pip,) (PePy—kpPl)}

+(1 —,é”)mlmi‘(pvpC)]] , (327



1060

where k is the photon momentum, and

Goo ZOMi MM ey
" 16ME(ME-M3)’ M3
M2
Gy E=1 for ve- uvy.

T 8MR(ME-M3)’

The formula for ve — vey is obtained by changing £ - —¢, and the one for p — evvy
is also derived by modifying the above formula slightly.

Taking these contributions into account, we have the UV, IR and CL convergent
quantities. Of course, the hard photon effects also depend on actual experimental condi-
tions, but we can now consider any condition. Numerical analysis based on these results
is carried out in the next Section.

4. O(x) corrections for physical quantities

The main purpose of this Section is to determine the values of the renormalized
parameters and make numerical analysis, but it is useful to clarify first the meaning of the
“electromagnetic (EM)” part and the “weak” part in the whole electroweak radiative
corrections since they are sometimes discussed separately.

4.1. EM and weak corrections

In principle, the electromagnetic correction is defined by the diagrams which include
photonic correction only. ‘

Its meaning is quite clear in the case of the neutral current processes (Fig. 4.1 plus
the corresponding counterterms). The diagram in Fig. 4.1 has not only the UV divergence
but also includes the IR and CL ones, which are eliminated by considering the real photon
emission, Fig. 3.12. At one-loop order, the latters do not appear in the other diagrams.
So the weak part, which is defined by the sum of the remaining diagrams, is free from the
IR and CL divergences, and consequently does not depend on experimental conditions.

e Yy

e A

Fig. 4.1. The purely electromagnetic one-loop correction for the process (e = vu(vle
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On the other hand, the situation for the charged current processes is rather complicated.
The diagram which corresponds to Fig. 4.1 is Fig. 3.2 (7). This is UV convergent but
includes the IR and CL divergences. However they cannot be eliminated even after adding
the real photon emission effects, which can be explicitly seen in the results in Sect. 3.
Therefore we have to find another way.

The traditional one, which I adopt in the following, is to define the EM part by the
photonic correction to the four-fermion interaction (Fig. 4.2 plus the counterterms).
In this scheme, the real photon emissions are given by Fig. 4.3. By representing the radiative

Y K

e

N

A

€ e

Fig. 4.2. The purely electromagnetic one-loop correction for the process vpe — pve(p — evpVe) in the
framework of the four-fermion interaction

v i v 7 /)
7
e v e v
Fig. 4.3

correction from this EM part as 4gy and the whole one-loop (electroweak) correction as
A, the weak correction 4y is defined as

Aw = A_AEM' (4.1)

Let us express the amplitudes including the whole one-loop effects and only the weak
effects as o/ and &y, respectively, and those corresponding to Fig. 4.2 (plus counterterms)
and to Fig. 3.2 (7) as &gy and op,, respectively. After some'calculations, we can find
the following relation:

o
A em = Fpoet+5 {Z°+Z“— o {(1+41In Mw)} g, (4.2a)
where

Z(l=¢ep)= — ad {Z—In m+2In (—%—>} , (4.2b)
2n

m,
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and &, is the tree amplitude of v,e — pv.. On the other hand, it is easy to see
A =[... +Apxt ... +2(Z2+ZHsl o+ ...], (4.3)

and the UV convergent part (Cyy independent part) of Z} is

o
L=2Z" MIMy(1+4In My)+(M;—2M%)* (3 +21n Mp)}. (44
Z;, +161tMv2v(M§—M€v){ zMw(1+4In My)+(Mz : W (E+2In Mz}  (44)
(See Appendix A.2.) Then, the IR (which exists only in &g, and Z") and the CL (included
only in &p,,) divergences disappear in &y = & — A py.
Therefore, also in this case, &/w does not depend on actual experimental setup.

4.2. Numerical results

We are now ready to determine the values of the parameters. At present, we have
experimental information of « and various masses (except for m, and my), so we can
directly substitute them (I express them as a®P, MyP, ...) into the corresponding param-
eters thanks to the on-mass-shell renormalization. Then, a radiative correction to a cross-
-section ¢ is evaluated as

4 = (e —6'Y)/0'?, : 4.5)

where 6{1 and 6'® are the one-loop-corrected and the tree level cross-sections respectively:

o110 a(l),(o)(aexp’yMa,&p’ MZ®, me, m¢
‘Here we have of course to use some assumed values of m, and m,, but the results do not

depend sensitively on these values unless they are extremely large as will be shown
in Sect. 5.2.

However we want to see how the success of the theory at tree level is affected by the
inclusion of higher order effects, and the tree analyses have been done with the following
input data,

™= 1/137.036), G2P(= (1.16632+0.00002) x 10~° GeV~2),
sin® 09°(~ 0.23) (and m{™®, mf;‘" . 4.6)

Therefore we should use them also in one-loop analysis. In this case, our task is to'determine
the values of My, and M, from GE®, sin? Oy® and others.

Let us assume that sin? 03" is obtained from the data of v,e — v,e. Then, expressing
the amplitudes of v,e — v,e and p — ev,v, as

A(ve - ve) = iy {AN(q®) +B (g*)ys}u. - 71 ~ys)u,, (4.7a)

A~ eW) = 4@y (L —75)05* Byl —ys)uy, (4.7b)
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we obtain the following simultaneous equations?®
ANC— 2

1 {1 N NC(qz)}
B™(q%)

A°0) (=

M2
<= 1—- K/I—VZY— at tree level) = sin? 09, (4.8a)*
g2 =(q2yexe z

Gg?

V2
Here it should be mentioned that &y (ve — ve) and &/ (u — evv) are used as the one-
-loop-corrected amplitudes (otherwise the right-hand-sides of Eq. (4.7) become more
complicated (see Eqs. (3.15) and (3.21b)). The reason is as follows:

In the case of the muon decay, for instance, the following equation is used [9, 22] when
expressing the actual data I'**® in terms of G,

Gim} 8m? P
ree = - —- )1+ — @& -) ). )
1927° mf 2n C&=) (3.9)

~naM3
2M3 (M} —M3)

at tree leve]> = (4.8b)

That is, the O(x) EM effects have already been taken into account at this step. Therefore,
the equation (4.8b) at one-loop level is equivalent to

I'™ = I*° - (1—4gy), (4.10)

T™: u decay width with the weak correction only) except for the neglected g% de-
pendence, and further equivalent to

I'Y(= 1™ (14 A4gy) = '™, (4.11)

which is consistent with Eq. (1.6) in Sect. 1.
Let us take this opportunity to give some comments on another important parameter .
Apparently, it is quite misleading to define ¢ by the equation

e = My/(M7 cos’ By),
since one of the simplest definitions of 8y is
cos Oy = My/M,.
We should use the equation
0 = 2BN0)/A°°(0) (=1 at tree level). 4.12)

I think it is much clearer to deal with the electroweak effects as a whole, but the EM
and the weak parts have, so far, often discussed separately as was shown in the above.
One reason is that the one-loop EM correction to the four-fermion interaction p — evv

3 Strictly speaking, we should compare <6"*~ V) = | #(E,)6"*”Y¢(E,)dE, (¢ : neutrino energy spectrum)
and I' (the p decay width) with the corresponding data, but the resultant difference is small.

* In the actual computations, I have used the ratio R, = o(%¢ — we)/o(ve — ve) (see Appendix A.1),
but I show this equation here in order to clarify the meaning of “sin? e
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had been known to be finite [22] and consequently G had been determined through Eq. (4.9)
before the electroweak theory was proposed. And, in fact, this theory was constructed
to reproduce the four-fermion coupling effectively concerning the low energy charged
current phenomena. Another reason is: many people consider that the weak part is just
important for precise tests of the theory since it was impossible to get any well-defined weak
correction when weak phenomena were being studied in the framework of the above-
-mentioned four-fermion interaction. But such a separate treatment may come to be unpo-
pular in future.

Anyway, let us determine the values of My, and M7 from Eq. (4.8). First, using the
tree level formulas on the left-hand-sides, we obtain the well-known results

mo [ = P 372813 77 GeV 413
Y\ VJ2G62Psin?03  [sin 697 ~ oY (4.132)
M (= MQ[cos O3°) ~ 88 GeV, ' (4.13b)

where “(0)” means the lowest order approximation. (These values correspond to
sin? 05 = 0.2344.)

Similarly, we compute M’ and M$ using the formulas in Sect. 3. In practical compu-
tations, the perturbative method is often used by setting M{) = MY, +A4AMy ;. The
results are

MY ~ 7925 GeV, MP =~ 90.64 GeV. (4.14)

(We may also solve the equations directly by computer calculations as My’ ~ 79.17 GeV
and M ~ 90.54 GeV [5]. The differences are interpreted as parts of higher order effects.)
The most part of the above large one-loop effects is due to the coexistence of aIn m;
terms and « In My, z terms in the results. (The formers exist in Y, IT** and I'}**). In Sect. 3
I gave formulas with u = 1, where y is the parameter appearing in the dimensional regulari-

zation. But, of course, the final results do not depend on p, so setting yu = My we can
find approximate formulas easily from Y, I1** and I'2* as follows:

© e d exp exp
1
MY > M {1+ — 9;:?( D " E 0.T? In M<°> )} (4.152)
MY ~ MY {1— o tan? 657 0 In —-—2
3n z : M

Nar ) (10 0T n 0 4.15b
X _ LN .
+ 6n \sin® 65° " cos? g M@ S i ( )
T

(Here 1 have set (g*> = 0 for simplicity.)
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.. Now all the parameters have been fixed, and we can calculate O(x) radiative corrections
for various quantities. For example, weak one-loop correction to a cross-section o is
o_(l)(aexp, M&})Z’ m:xp’ mexp)_a(o)(aexp’ M&'))Z: mf s md:

Aw = (0)(aexp’ M%;?)z, m;xp’ ;xp) . (4.16)

instead of Eq. (4.5). Here, of course, ¢'? is a quantity with the weak correction only.
On the other hand, the EM correction essentially depends only on « and estimated in the
same way as in QED.
I show the EM and weak corrections for the processes studied so far in Table 4.1,
where Thave used the following values for the other parameters; m, = 0, m, = 5.11 x 10~4,
= 1.057 x 10-1, = 1782, my=my=m, =01, m,=15 m,=47 m =30
and m, = 10 (in GeV unit) and sin? O (the Cabibbo angle) = 0.0562. (4 for p decay
is exactly zero since I have used the condition I'™ = I'®) In the table, 45 means the

TABLE 4.1

The O(2) corrections for the tree cross-sections of vue — vye, ¥ue — vye, vue — v, and the width of i1 — ev,ve.

EYAY means the laboratory neutrino (or antineutrino) energy in GeV unit. dw, AEM and Agy represent the

weak correction, the EM correction with the soft photon effect only, and the EM correction with the real
(soft and hard) photon effects

vue - vue
Ep® A 45% % 5% Agn
(GeV) (w = 1keV) (0 = 100 keV)

1 0.86(%) —25.7 -12.6 —-1.4
102 0.89 —~56.2 —-333 —21
104 0.99 —96.6 —63.8 —29

Vue = Ve

1 0.87 ’ —-253 —124 —1.4
10? 0.84 —55.8 —33.0 -2.1
104 0.74 { ~96.1 ~63.5 -29

Vue = pve
15 0.00 ’ —21.7 —12.1 —4.5
10?2 0.00 —30.6 -18.2 —-2.4
104 ~0.01 —64.2 —42.5 =29
- evyve
0 (input) ! —179 —-9.5 -0.4
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EM correction with the effects of the soft photon only, the maximum energy of which
is w. Therefore, 4% still includes the (approximate) CL divergence. The corresponding

erms are, for example in v,e — v,e,

4 1+a 1+a —q*
il —mn— +2Inm,In —— E\/———— in Eq. (3.9b).
T 1—-a® 1-a l—a <a —q*+4m}? in Eq. (3.9)

Apparently these terms diverge in the limit of |q2| — oo, and it is the origin of the extremely
large value A

As was explained in Sect. 3.2, 4gy depends on an actual experimental condition,
and values given in Table 4.1 are those obtained by integrating the photon momentum
to all over the kinematically allowed region in the phase space. That is, the present values
of Agy correspond to a situation in which any event with a photon in the final state is taken
into account for estimating the cross-section of ve — vl (or the width of p — evv) regardless
of the size of the photon momentum. (Of course, we can estimate the value of Agy cor-
responding to another situation. For such studies, see [9].)

Anyway, we find that the radiative corrections Ay, and Agy are very small, so the
success of the theory is not affected. It is certainly a confirmation of the theory beyond tree
approximation, but is quite a passive one. Then, is it possible to make clearer test of the
higher order effects? This is the subject of the next Section.

5. Experimental verification of loop effects

One possibility of making a clean (positive) test of loop effects is to use the masses
of W* and Z bosons. Equations (4.13) and (4.14) are “theoretical predictions” for My, and
My, and should be compared with My ® and M5*®. If My, are more favored than M),
definitely, it will be the first clear confirmation of the higher order effects. This seems to be
possible in the near future since the O(x) effects, AMy, , = M) — M), are large, and we
will obtain My with an accuracy of 0.1-0.2 GeV.

Actually, however, we need a further device to realize this possibility since we cannot
draw a definite conclusion from the mere comparison of M{%® with My*?, due to the
following reason: The results (4.14) have been derived from the fixed MQ,)Z (Eq. (4.13)),
but the actual MY, have non-negligible uncertainties (M$’ = 77.9+1.7 GeV and M
= 88.8+ 1.4 GeV) because the present data on Oy include a rather large error, at least
~5% (sin? 65® = 0.22910.010 [24])>. Therefore My and M{), have an overlapping
allowed region (Fig. 5.1), and consequently the one-loop effects become totally unclear.
According to Bailin (in [4]), it is important to calculate radiative corrections when both
of the followings are satisfied:

(i) There is a theory which makes a precise prediction of the zeroth order effects;
(ii) There are experiments which are precise enough to be sensitive to O(x) effects.

5 Strictly speaking, we must not use this value since it is an average value of those obtained mainly
in YN reactions while we are considering ve — ve. If we use the data from ve — ve only, ambiguities become
much larger.
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My.z(GeV)

92

7 ‘(OJ ,Va) Nk{m A'én
Fig. 5.1. The tree and one-loop calculations of My, and Mz. The ambiguities come from the error in
0%* (sin? 6%P = 0.2291+0.010)

The calculations of My ; do not satisfy the first criterion, though the second will become
satisfied in the near future. (It will not be so easy to get much precise 6" since it is mainly
measured in neutrino experiments.)

In order to improve this situation, let us make analysis without 8y7, i.e., with Eq.
(4.8b) only. Consequently, we obtain the interrelation between My, and M, instead of the
separate predictions for them [10, 20, 25, 26]. Let us call it the My, — M, relation. In other
words, we take a new scheme in which, e.g., My (and other quantities) are computed by
the input data o®*®, M3®, G“F"",Im?" and mg'™®.

First (in Sect. 5.1), I explain this relation assuming that all particles are relatively
light (<100 GeV), and subsequently study the effects expected when some of the particles
(m, or m,) are very heavy.

5.1. My— M, relation and light particle effects

In order to derive a form of the My — M relation more convenient for actual calcula-
tions, I divide 4°C in Eq. (4.7b) into two parts: the tree part 4, and the one-loop correc-
tion A,,

ACC = Ao(a, MW: MZ)+A1(as MWs MZ’ myg, md))'

The tree relation is obtained by using A, (see Eq. (4.8b)) only as

2/2 na\ |2
MO =M, |L(1 \/1— } 5.1
Z|:2< +' M%GF ( )
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(Here and in the following, I sometimes neglect the superscript “exp” for simplicity.)
The one-loop-corrected relation is derived from

Gy
N
This equation can be solved perturbatively by setting the solution as My’ = M{’ +4M,,
and neglecting AMy, in A,:

Ao(“, MW’ MZ)"'AI(a’ MW’ MZ: mg, m#) = - (52)

My(M%— M%)’
naM2Q2M3, —M32)

My = [Mw 1(“ My, Mz, mq, "%)J (5.3)

Mw=Mw(®

(As was explained before, we may solve the above equation numerically, but the resultant
difference is in this case very small, at most 0.01 GeV in-the absolute value of M [10].)

In Table 5.1 is given the numerical My— M, relation. We can find large one-loop
effects, [M{’— M| ~ 1 GeV, which mainly come from the large logarithmic terms as
was shown in Sect. 4.2. Picking up only the log terms, we obtain an approximate formula:

e[ PR 0 (@]
My —I:Mw+ 3n{ IME — M2 0?1 et 54)

Here readers may have a question: In the preceding calculations, we have observed
that M{}}, are larger than M{y%. Then, why is M{ smaller than M{’ in the present analysis?
The answer is obtained from Fxg. 5.2, in which I have drawn two kinds of curves on the
My, — M, plane. That is, one is a set of the curves corresponding to the present My — My
relation (curves (J), there the dashed and solid curves are the tree level and the one-loop-
-corrected relations respectively) and the other is another My — M relation derived from

a condition
ANC(qZ)
L1+ -——-—} = sin® 637,
4{ BY(q%)

TABLE 5.1

The numerical Mw— My relation. As for the
quark and the Higgs masses, I have used
my = mg = ms = 0.1 GeV, mc = 1.5 GeV,
mp = 4.7 GeV, my = 30 GeV and

my = 10 GeV
0
M, My MG
90.0 (GeV) 79.49 78.49
92.0 81.92 80.99
94.0 84.31 83.43
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(GeV)

s

82 1

80 1

78 1

() Input : P

76 | (2 Input : sirrgfy(=0.23)

Y e Y v ——T—M,
88 90 92 94 (GeV)
Fig. 5.2. Weak boson mass relations. The curves (1) are the relations obtained from GE® (the dashed one
is for tree level and the solid one for one-loop level), and the curve (2) is the one obtained from sin® 65P

instead of GR® )

only (curve (2), there I have used a value sin? @y = 0.23 and assumed ¢g? = 0). In the
latter case, I have drawn only one curve since the tree and the one-loop-corrected curves.
almost overlap, which can be confirmed by making an approximate formula as follows.

aM?2 m )
M@ = [Mw+ z {m —* E 0T In —
67TMW Mw IWW

3

+2 sin? 05° E Qf In ﬁ}] , (5.5a)
- lww Mw = Mw(9)’
and
M = M, cos 657 (5.5b)

(I have used the notation My, in order to distinguish it from the relation Eq. (5.3).) That
is, due to the opposite sign contributions of the log terms, |M{’ —M{'| becomes very
small, e.g., ~0.17 GeV for M, = 90 GeV. If we use both conditions simultaneously as in
Sect. 4.2, the separate predictions for My, and M, are obtained. The tree predictions are
given by the point 4, and the one-loop-corrected ones are 4’ in Fig. 5.2. Apparently,
M$), > MY,. On the other hand, I have made use of only one condition (Eq. (4.8b))
here, and computed My, for fixed M. Therefore, the prediction for My, moves from 4 to
A’ by the inclusion of the loop effects. That is, MYy’ < M{ in this case.

Anyway, the large one-loop effects make us expect that a clean test of the theory
may be possible. However, we should make further studies since
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° I have neglected the strong interaction (QCD) effects in the quark loop diagrams,

° The large one-loop effects indicate that the two (and higher) loop effects may be also
non-negligible, and

° There may be ambiguities from quark and Higgs masses.

Let us examine these problems.

() Light quark mass and QCD effects

As was already explained, the main origin of the large one-loop correction is the
coexistence of « In m; and « In My ; terms, and their combinations are especially significant
in the case of light fermions; e, p, u, d and s. The a ln m; terms are included in Y (see
Eq. (A.7)). This Y is in the counterterm for v IW® vertex, and is determined by Z./? and
several other renormalization constants through the on-mass-shell condition for eeA vertex.
That is, the above « In m, terms come from the fermion loop corrections to the photon
self-energy.

Concerning the light quark sector of them, I have used the values m, = my = m,
= 0.1 GeV, but we cannot measure the quark masses directly, i.e., we do not know if
these values are correct ones. For example, M{y’ decreases about 0.1 GeV if current quark
masses m, = 4.2 x 10-3 GeV, my = 7.5%x10-® GeV and m, = 0.15 GeV (and m, = 1.15 GeV)
are used [10]. So, we must recognize that the My — M relation in Table 5.1 includes light
quark mass ambiguities.

Furthermore, these calculations have been done in the framework of the free quark
picture, i.e., the QCD effects have not been taken into account. Non-negligible terms
may have been dropped through this approximation since Z}} is derived from ITfy,(g?)
at g2 = 0 where the QCD effects are not necessarily small. .

Therefore, we have to find a way to estimate the size of quark contributions to the
photon self-energy unambiguously. One of the most effective approaches is to use the data
of the total cross-section g(ete~ — y* — hadrons) with a help of the following dispersion
relation [20, 26a, 27-29],

(o)

s J‘ o(s';e*e” — hadrons)

Re [nA(S)]quark =‘47I206
4mz?

- ds’. (5.6)
s'—s

(1%s) = —s1(s))

Then the quark contribution to Z) can be estimated as follows by taking some large

s (e.g., M%) where the QCD effects are un mportant (ocQCD(M&,) ~ 0,12 [30)):
[Z}\{Az]quark = _% [n?U)(O)]quark
= % Re [7*(s) = 7(ty(5) Jquartc (5.7

That is, the second term can be evaluated in the framework of the free quark picture, while
the first important term depends (through Eq. (5.6)) only on the experimental data. Of
course we have to use some values for quark masses to calculate the second term, but they
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are unimportant:

A (ag2 « E m?
Re [n(U)(MW)]quark = ;-t Qq {Cuv‘i' +0 <M2 >}
w

q

As a matter of fact, m, = my = m, = 0.1 GeV have been derived by fitting the free
quark model to the numerical result obtained from the above procedure [31], i.e., they
are “effective” quark masses which include the full QCD effects.

This problem on the quark loop contributions has recently been studied also by other
non-perturbative methods [32]. By taking these investigations into account together, the
corresponding ambiguity in MY is estimated to be, at most, ~ +0.05 GeV.

(ii) Higher loop effects

We are now allowed to make calculations in the framework of free quark picture with
“effective’ masses concerning the strong interaction effects. Then, as a next study, we should
examine the electroweak two (and higher) loop contributions.

The bulk of the large one-loop effects comes from « In (m/M) term, so let us estimate
the size of [x In (m/M)]" (# > 2) contributions. Fortunately we are familiar. with such log
corrections in perturbation calculations of QCD, GUT etc., and have a well-founded tech-
nique to treat them: the renormalization group technique [33, 34]. Since it is not possible
to give detailed explanations of this technique here, I only give the result: By the inclusion

of [a" In"] effects, -;— Y 0} In jn;_ in Eq. (5.4) is replaced by & {1 — Q} as [11],
T ¥

Mo = l:M Mw(M% M3) <1__ O‘(Mw)>:| (5.82)
v v 2(2Mw M3) & Mw<o>’ ’

where a(y) is the running coupling constant

24 : : me\) !
a(y) = o {1 + — Q? In <—>} . (5.8b)
In U
T

Consequently, the value of the W boson mass decreases slightly; ~ 0.07 GeV. In addition,
O(e? In) contributions have been found negligible in [35].

In Table 5.2, I again give numerical results in more detail to show the O(x), O(x In)
and O(x+ Yo" In") effects.

TABLE 5.2

M@Ple), M@[x+x In] and My[o+Za™ In"] represent the values with the O(@) (non-leading) effects only,
w1th the full one-loop effects, and with the full one-loop correction plus ali the leading logarithmic effects

respectively
My M MGla] M{[x+21n] M le+2a" In"]
90.0 (GeV) 79.49 79.54 78.49 78.41
92.0 81.92 81.97 80.99 80.92
94.0 84.31 84.35 83.43 83.36
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(iif) Top quark and Higgs boson mass effects

1 have used the value 30 GeV for the top quark mass. If a larger value is used, M{}’
increases. For example, it increases about 0.2 GeV for a change m, = 30 GeV - 100 GeV
[10]. Of course, this ambiguity disappears if m, is fixed experimentally as the preliminary
UAI report says [36].

On the other hand, MY’ decreases about 0.1 GeV for a change my, = 10 GeV
— 100 GeV [10].

Presently inevitable ambiguities are those from the light quark loops and the Higgs
mass, and fortunately both of them have been found small compared with the size of the
one-loop effects |MG—MP| ~ 1 GeV. So we have now obtained the result with quite
satisfactory precision®.

Let us proceed to a more concrete analysis. How precisely must My, and M, be meas-
ured for an unambiguous test of the loop effects? This has been assessed in [37], and a the-
oretically more detailed argument has been given in [38].

Suppose we get data on the Z boson mass as My = M7®+A4AM3®. Then, correspond-
ing ambiguity appears in the calculated My, as

oM™
M® = prpgexe 4 w
w W[ z ]-— BMZ

AMS® (n = 0, 1). (5.9)

Since we can expect My% > AMZ®, we may set

My oMY [Mw+ naM g ]
oM, M, Mz 2 GeMyQMy—M2) fpg= s

(5.10)

Next, let us assume that W* boson mass is determined with an error AM$®. Then, we can
reject (at least) one of the results M{", e.g., at the 68% (95%) confidence level if the
following condition is satisfied,

IMP[MFP]~MP M) > 20(40), (5.11a)
where
IMO\?
= \/< w) (AM5®)? +(AMZP), (5.11b)
oM, ,

since this assures that there is no region of My® simultaneously belonging to the 68 % (95%)
confidence territories of M’ and M{}. For example, for M3® = 93 GeV, AMy" has to be
less than 0.47 GeV (0.21 GeV) for AMS® = 0.1 GeV. (0M{’/oM; ~ 1.19).

This numerical result is interesting since My, and M, will be measured within the error
of 0.1-0.2 GeV in the near future. Therefore we will be able to make a clean test of the
electroweak theory as a renormalizable field theory by the use of the My — M, relation.

¢ In this lecture, I did not mention an ambiguity from the choice of renormalization scheme since
it is considered to be small. Recently, a paper on this problem has appeared [17], in which the scheme
dependence of the Mw— M3z relation is shown to be in fact weak.
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Finally some arguments should be made on the meaning of “test of the electroweak
higher order effects”. As was repeatedly mentioned, o In (m/My) is the major source
of the one-loop effects, and it can be expressed very simply by using the running QED
coupling constant a(My) (see Eq. (5.8)). So, some people assert that it is essentially a pure
EM effect, and experimental confirmation of it is insufficient as a test of the electroweak
higher order effects. However, it is too much to say, I think, that « In (m/M) is a pure EM
effect. As T have explained, the pure EM correction to the p decay width depends only on
a, not a(My), and the existence of a(My) in the result can be properly understood only
when the whole electroweak effects are calculated. Of course, it is desirable to avoid such
aproblem, and it will be possible when the O(x) (not O(a In)) effects are observed. However,
it seems quite difficdlt since they are very small (see Table 5.2), and comparable with the
theoretical ambiguities studied in this subsection.

5.2. Heavy particle search

So far I have assumed that all particles are not so heavy (less than ~ 100 GeV). How-
ever, we do not know the value of m,, and have only preliminary information on m, [36].
Furthermore there may exist heavy fermions of the fourth, fifth, ... generation. Teherefore,
it is interesting to study how the My — M, relation is affected by particles heavier than
100 GeV.

First, let us give some general remarks on heavy particle effects. Heavy particle effects
are suppressed by inverse powers of its mass if the size of the coupling constant in a theory
is kept small. This fact is known as the decoupling theorem [34, 39]. In the following,
1 show a simple exampie in QED. A fermion (with mass m and charge e) contribution

to the photon self-energy I1/}’(¢?) is

kg™ = - —(g“"qz—q '9)

x[Cyy—6 jl' dxx(1—x) In {m?*—g*x(1—x)}]

s 44
= <g = qz ) (u)f(q ), (5.12a)

and the corresponding counterterm is
¢ = —(g%q* - 44"z, (5.120)

According to the on-mass-shell renormalization procedure, we obtain the renormalized
one as
. 2
2
magd) =2 g jdxx(l _x)In (1— 2_xa —x)) . (5.13)
n m

0



1074

In the case of m? > |g?|, this formula becomes

2 2
a a g
—_— 1+0(—= )¢,

so heavy fermion effect is in fact suppressed.

On the other hand, some couplings are proportional to m; or m, in the electroweak
theory, so the condition on the size of coupling is not satisfied when we consider the large
m; or m, limit. Consequently their effects are not necessarily suppressed. Conversely
speaking, once My , are precisely determined, we may obtain useful information on
unknown heavy particles {12, 13, 29, 40]. This is the reason why studies of heavy particle
effects in the My — M relation are important.

The m¢ and m, dependence of A°C, from which the My, — M, relation is derived, comes
from
a) W boson self-energy,

b) VIW*(l = e, p) vertices because the corresponding counterterms 1nclude oMY, OMZ,
Zy and Y.

However, a) is not important due to the same reason as the above-mentloned example,
and also it is not difficult to confirm that the m;, dependence of Zy (and Y) is at most
logarithmic. On the other hand, the contribution of, e.g., a fermion doublet with masses
m; and m; to the unrenormalized W* self-energy (except for Cyy and the over-all factor) is

(%) ~ jdx{m,(l x)+m x—2q x(1 x)} In {mi(1 —x)+m}x—q*x(1—x)}. (5.14)

Remembering that M2 = —Rell (U)(M &) (and M2 = —Rell (U)(M z)), We can recognize
that M3 w,z have the possibility of producing unsuppressed large mass effects. So, I examine
SMi w,z parts in the vIW®E vertex.

Let us first study heavy fermion effects. §My; ; contributions to A°°(= 4,+4,) are

naM? oMZ M3
Aq(ot, My, Mz, mg, m 2 = - , 5.15
LA, M, 3z e, ) e 2(M%—M%V)Z(M% My, 1)
and mfz dependent parts of 5M&,,Z are
. 1
aMzC
OM2pe = ———20 2 | g In {mZ—MZx(1—x
[ z] £2 SRM@(M%—M%V) f { f zX( )}
]
M;Ccolor 2
mgInme  (me > My,z), (5.16)

T AnME(MZ—M3)

1

M7Ccotor
V2% col I:mf dex In {m}(1—x)+mx—Mgx(1—x)}
0

M ez = ———o
[ W]mr 47t(M%_M%1)
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1
+m§fdxx In {miz(l—ex)+m§x—M‘2vx(1——x)}:|

0

“M%Ccolor 2 ) 2 mlz + m% mxzm% m;
- 2 Z<\ mi lnm;+mpInm;— - ———In—]),
47t(MZ—Mw) 4 ml-mi mI
(Case A:my, m; > My z) (5.17a)
aM3C o0
2ot mi(n me—3), (5.17b)

~ an(ME—M2Z)
(Case B:my(m;)) » my(mp), My z; m;= max [my, mi])

where C,o, = 3 for quarks and = 1 for leptons, and the 6M 2 formula is given for a doublet
(¥1, v whose masses are m; and m;. If m, is very large, we have to use Eq. (5.17b). In
this case, the m”> dependent part of the My— M relation is given as

3aMyMZ 2}
m .
32n(M}—M3) @My —M3) " sy = s

M2 = {MW+ (5.18)
‘We can see that precise measurements of My, ; will really give us useful information on
heavy fermions.

Before making more concrete numerical analysis, I study large m, effects. In this
case, we have to examine some terms independent of VIW* vertex too, which I explain
later.

First, the mz dependent parts of 5MVZV,Z are

1

—aM?
[5M%]m¢2 = San(:/IziMz) my |:1n my— fdxx In {mdz,x+M§(1—x)?}:|
w z W ‘
—aM3 ) .
-— 327-5M2(M%——M%v) m¢(m¢ > ]\’Iw’z), (519)
w
2 1
—aM
[5M%V]m¢2 = m m} [ln my— fdxx In {mix+Mv2v(1—x)2}:]
0

LMz mi(my > My.2) (5.20)
RaMi-MZ) & Wz :
As is easily seen, the mﬁ terms cancel out in the combination dM2/M %—6MVZV/MV2V. That
is, concerning the 6M vzv’z parts, we can say that the m, dependence of the My — My relation

is weak.
Next, let us explain the above-mentioned additional m, dependence. It comes from
the Nambu-Goldstone boson, y, exchange which has been neglected in the calculations
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in Sect. 3 because of the suppression factor ~memu/M€V,z. For example, the yx¢ vertex
is proportional to mi, so the diagram with thg y¢-loop-corrected y, propagator seems to-
produce a m: dependent part! After some explicit calculations, however, we can again.
find that all mf; and mz dependent terms completely cancel out (see e.g., [13]), and there
remains, at best, In m, dependence in the final result”.

Therefore, now, we can conclude that the role of the Higgs scalar in the My— M,
relation is unimportant unless m, is extremely large, and the dominant contribution of’
heavy particles comes from the m? terms. I show the M\’ —m, curve in Fig. 5.3 for inputs.
m, = 10, 100 and 300 GeV, and M, = 91.6 GeV [12, 13]. (This seemingly odd value,.
Mz, has been taken in order to make the My, — My relation hold for My, = 81 GeV and

= 150 GeV as an example.) We can observe that the m, dependence of the result is in
fact weak, and the top quark search will become possible once precise My’ are obtained.

My, (GeV)
82} Input : M, =91.6 GeV
‘_)_H_ﬁ ( Assumed value) L=
R ERRE ez

RESEEREp>==dl

81 - -

]

== NN
| 17 { I\ 10.

1 100 (GeV)
S
sof | | | | .
100 200 m

(GeV)

Fig. 5.3. The Mw—my plot for assumed values Mz = 91.6 GeV and my = 10, 100 and 300 GeV

So far, a similar analysis has been made through the g-parameter [43, 44]. However,
we have at present only an upper bound on m, (5310 GeV) [44] due to a non-negligible:
“uncertainty in ¢**P. Therefore the use of the My — M relation will be more effective in the
near future®.

Finally I wish to comment on the usual separate predictions for My, , in relation
to the heavy fermion search. As an example, I take the frequently referred one [46]°:

MY = 83.0739 Gev,

M(Zl) — 93.8723 GeV. for m, = 18 GeV (5.21)

7 Such a cancellation is known to occur always in one-loop analysis [41], but it does not hold at
more than two-loop order, and perturbation breaks down for my 2 a few TeV [42].

8 1t should be mentioned that we will not see any interesting effect when my ~ m;, e.g., in the fourth.
generation even if myand m; > My, z, although such a mass pattern is considered rather unplausible judging
from those of the known fermions. One interesting possibility in such a situation is to study processes with.
external Higgs legs [45].

® These values are somewhat different from those of Eq. (4.14), One reason is: the YN — vX and the
vN — pX processes have been used instead of v(v)e — v(V)e.
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If we get experimental data, e.g.,
My = 84.0GeV, M7® = 92.8 GeV,

what can we conclude? At first sight, the agreement of My}, and My%, seems good, and
one may conclude naively that the higher order effects have been clearly observed. Actually,
however, this is not true: The difference M5®— MyP = 8.8 GeV is too small to be con-
sistently fitted by the theory if m, = 18 GeV. As a matter of fact, we need m, ~ 325 GeV
in order to make the My — M, relation hold at one-loop level for My, = 84.0 GeV and
M, = 92.8 GeV in the framework of three generations and m, = 10 GeV.

The reason why such a confusion occurs is apparent: The ambiguities in Eq. (5.21)
come from only one origin, i.e., 4 sin? Oy®, and are correlated with each other. So, we are
not allowed to consider a situation My = 83.04+1.0 GeV and M, = 93.8—1.0 GeV.
Such a trivial point is, of course, known by the authors, and I have no mind to find fault
‘with their work. My aim here is to stress that heavy fermion effects are unclear in the ordi-
nary presentation of the higher order effects, and this defect dies down if we use the My, — M
relation.

6. Discussions and summary

Studies of the electroweak higher order effects are very important for making precise
tests of the theory. As a matter of fact, many authors have made efforts to calculating those
effects in various processes. As a result, it is known not so easy to see the higher order
effects clearly since corrections for various tree cross-sections have been found very small.
Of course, it is not a negative result for the theory since those tree cross-sections are in
excellent agreement with the experimental data. However, a more clean, active test is
desirable.

As one of the most effective possibilities, I have examined the My — M; interrelation.
I have shown that the loop effects are significant while various ambiguities are small, and
consequently a clean test will be possible once My ; are experimentally determined within
an accuracy of 0.1-0.2 GeV. It has been also shown that the My, — M, relation is sensitive
to the existence of heavy fermions (precisely speaking, to large mass splitting in an SU(2)
doublet), and another interesting analysis will become possible: If the difference M, — My,
is found very small, it will be interpreted as an indication of new heavy fermions. Con-
versely, however, if M, — My, is too large, it is quite difficult to explain it consistently in the
framework of the standard SU(2) x U(1) electroweak theory. It may, for instance, be an
indication of SU(2) triplet Higgs scalar. A great advantage of this method is that the
My — M, relation is derived only from the muon decay width. That is, it suffers least
from complicated strong interaction effects.

Recently, the ete~ processes near the Z pole are also studied extensively in relation
to high energy accelerators under construction: TRISTAN, SLC and LEP ([4, 47} and
references therein). Further precise tests of the electroweak theory are expected to be
possible since a sizable deviation from the purely electromagnetic (QED) loop effects
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is predicted on the Z resonance in addition to the possibility that accurate determination
of parameters, e.g., sin? 8y will be made. ‘ ;

In comparison with the preceding analysis with the My — M, relation, however,
these e*e~ processes have some theoretically unclear points although, I think, there will
not be any severe difficulties in phenomenological arguments. That is, we do not know
how to make systematic (well-defined) computations on the Z pole. Usually, the width
I, is introduced to the Z propagator by hand otherwise we cannot make calculations,
and its value is set to be I'; ~ 2.5 GeV. However, this input is redundant since all inde-
pendent parameters have already been fixed, and I'; is a quantity which should be calcu-
lated in terms of them. Then, should the calculated I'; be used ? However, it is an O(x)
quantity, so the perturbation expansion is broken if I'; is used in one-loop ampli-
tudes.

Furthermore, according to a recent work by Hollik and Timme [17], there are striking
renormalization scheme differences in forward-backward asymmetry calculations in high-
energy ete~ — urp- while the My, — M, relation receives only negligible influence. If their
statement is correct, we have another support for the validity of the My — M, relation,
while further detailed investigations become inevitable for ete~ analyses. 4

Finally, the electroweak theory so far explained is in fact a successful theory, but
we also have to recognize that it includes some theoretically unsatisfactory points, and
is not the final theory. As a matter of fact, a great deal of efforts have been made seeking
to go beyond the electroweak theory: Grand unification, Supersymmetrization, Composite
models, ... . We do not know the correct answer, but any model should reproduce the
electroweak theory effectively in the region <10* GeV. So it is almost impossible to distin-
guish various models by tree level analysis unless new particles characteristic of each model
are directly discovered. Therefore, it is after all indispensable to make higher order analysis,
and the techniques explained in this lecture are just important.

It is my great pleasure to thank the Organizing Committee of this School, especially
Marek Zralek for kind invitation and warm hospitality, and all the participants for valuable
discussions. I would like to thank also B. Grzadkowski for making my stay in Poland
memorable and pleasant. I am grateful very much to D. Bailin for careful reading of this
manuscript.

APPENDIX

A.1. Numerical check of the results

As was explicitly shown in the main text, we have to perform various complicated
calculations in the studies of higher order effects. Needless to say, what is most important
is to derive correct results. Unfortunately, however, it is fairly difficult to compare various
results (analytical formulas) with each other directly since those formulas are usually lengthy
and complicated, and several different renormalization schemes have been used. It is effective
and relatively easy to do a numerical check of the results although such a check is, of course,
less satisfactory than an analytical one.
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In the following, I will compare our results on the weak boson masses which take
very important role in the studies of the electroweak higher order effects as was explained
in this lecture.

A.1.1. Calculations by Veltman [48]

In his paper, the following values for quark and Higgs masses, and the condition have
been adopted:

m,=my =025 m=03 m =15 my=5 m=20
and m, = 200 (in GeV unit),
R(= o(v,e = V,0)/a(v,e > Vi), ;=s5aev = RYP (sin? Oy = 0.238)
T(p - evw) = I'™®, (A.1)
-So, I also calculated the weak boson masses under the same conditions:

My My MY My
Veltman 76.50 78.52 87.64 90.12
Hioki 76.50 78.61 87.64 90.22

A.1.2. Calculations by Antonelli et al. [31, 49]
Their conditions are
m, =my =0.137,. m, =025 m, =175, my=5m=20
and m, = 10(GeV),
lim R, =.Rf,"p(si112 Oy = 0.230), TI'(n- evy) =T, (A2)

E,5~0
MY MY MY MY
Antonelli 77.74 80.27 88.59 91.60
Hioki 77.74 80.15 88.59 91.34
A.1.3. Calculations by Bohm et al. [50]1°
They made the calculations with the same conditions as ours to do numerical check:
m,=myg =m, =01, m, =15 m,=47 m =30
and my = 10(GeV),
Rylg, 5=5cev = RYP(sin® Oy = 0.2336), I'(p — ewv) = I'*™. (A.3)

101 would like to thank W. Hollik for discussions.
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MY MY MY M§P
Bohm 77.14 794  88.11 90.7

Hioki 77.14 7940 88.11 90.76

There is a non-negligible discrepancy on M$" between the present one and the one
by Antonelli et al., but the agreement in the other comparisons is fairly good.

A.2. Renormalization constants

I here present the explicit expressions for the renormalization constants used in the
main text. All of the constants shown below are the O(x) quantities in the perturbation
expansion like Z = Y Z®.

A.2.1. Gauge boson field renormalization constants

o N
Z4 = — —L(8ME —10MEM2+5M%)—
2z 6nM%V(M%_M€V)[3 ( w wiviz Z)
~3(18M3, +2M€VM%-M;>] Cov, (A.4a)
a N,
Z\7 = — e [’S—E (8My—5MP)—% (30M3v+M%)] Cuv, (A4b)
3aMy v ME— M2,
aM
Zy? = — — === (Cyv—2In My), (A.4c)
275 \/MZ—MW
o : :
Z}x/AZ = - Z_n [%“ sz(cuv"z In m;)-—% (Cyv—21n Mw)"%] » (A.4d)
. .
2
aMz 19
Zy = (Nt—-5)Cuvs (A.de)

© 3n(ME—-M3)

where the summation on f runs over all fermions and color degrees of freedom, and N, is the
number of generations. I have discarded all finite pieces in Z3/, Z37 and Zy, because
they are cancelled out when all the Feynman amplitudes are summed up and only diver-

gent pieces are necessary to get finite amplitudes in intermediate stages.

A.22. Gauge boson mass renormalization constants

aM?

ME= —
27 AnMy(M3—My)

[% Ne(5M3— 10M§M%v_+ 8My,)
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~1MZ E mi+3 (IM7+ 10M§M&—42M§)]CUV
f

o

. § 2
- 8TME (M2 — M3) l: M%{Mz(qf + 1)F(my, mg, Mz)—miF o(mg, my, M)}
f

Mz

- -—3—1 (ME—2MEMZ +4ME)+MS In M+ 2My(M3—4MIME, +16M%) In My,

+ MYME—4MIME 4+ 24M3)F(My, My, M3)

+ME(3M3— 14MIM — 16My)F o( My, My, M)
+Mg{2F0(m¢> MZ: MZ)_F2(nl¢a MZ9 MZ)}
—mIM3{F(Mz, my, Mz)—In m¢}] , (A.53)
MY = — wwﬁjzi%——f |U12(3m? +3m? —2M3) +31M3 —6M7 | Cyy
24n(M%i—M3)

r (i)

_ X oMz (ULRMEF(m, my My,)

—m}F(my, m;, My)— miF (m, my, My)}
—~M2IMZ(1—14In My)+M2(12M%+M3)In M,
+{(M2*20M%M&—8M&)F0(Mz, My, My) -
F(ME+16MEME, +4ME)F (M, My, My) — Ma(M%+20M3)F (M2, My, My)}
~4M3 (M3 —M3) {2F o(0, My, My)—F (0, My, My)+5F (0, My, My)}

+ qusM%{in my—F(My, my, My)}
+MIM{2F o(my, My, My)—F,(my, My, Mw)}] , (A.5b)
where n;, F, (n = 0,1, 2) and F are defined in Sect. 3.1.

A.2.3. Lepton field renormalization constants

aM?
16aM (M2 ~M3E)

z

{@MZ +M2) (Cyy— ) —4M3 In My —2MZIn Mz}, (A.6a)
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2
o
ZL = — Z’;{CUV-H‘ InA+4—6Iin m+ EZ'M—Q—Z—M%(CUV_%~2I'1 My)
(M3 —2M3)*
2 (Cyy—Lrt—=2In M .
4M%V(M%“‘M%v)( uvT 2 n Z) H (A6b)
a MZ—-M3
Z:{ = — *{Cuv+4 in )-+4-'61n ml+ '_z"z_!l(CUv_%_zhl MZ)}‘ (A'6c)
4n My

A.2.4. Charge renormalization constant

We have to evaluate first the one-loop-corrected eeA vertex. Then, by combining this
vertex at g2 = 0 and the corresponding counterterm (which consists of Z}2, Z7/2, Z; »
and Y), Y is detemmined through the on-mass-shell condition.

o E :
Y = — 4—1!:[% (Cyv—21In My)+3-4% Q¥(Cyv—21n m; ] . (A7)
T
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