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SOLITON SCATTERING IN NUCLEAR MATTER IN ONE
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We have considered a model Hamiltonian system in one dimension with higher order
nonlinearity to simulate the excitations of nuclear “drops” or “solitons” in the background
of the usual vacuum. The theory is usually referred to as y*—y° theory and has been already
used in many different physical contexts. Essentially we have considered the interaction
of two such solitary excitations and their subsequent evolution regarding. amplitude and
phase.

PACS numbers: 21.90.+f

1. Introduction

After more than ten years of explosive growth the interest for nonlinear models sustain-
ing soliton solution is still increasing. Researchers find more and more physical situations
where the concepts of solitary wave can be applied profitably. One of the most popular
models is the nonlinear Schrédinger equation [1] which really describes a many-body
system with a repulsive or attractive delta-like potential [2]. In the attractive case, the
stable ground state is very simple — it is the state where y is identically zero. The excitations
over this vacuum are either plane waves or droplets — that is solitons. In the case of repul-
sive potential the ground state is the state of the condensate of infinite number of bosons.
One way to achieve both types of excitations in the same U(1) invariant model is to increase
the nonlinearity. Such a model is the usual NLS equation with a y|y|* term added, represent-
ing a y° type [3] interaction. Such a model has been discussed by Friedberg et al. {4]
for the soliton model of hadrons. The model is also useful for studying heavy ion collisions.
Here we have not deduced this model because such calculations have been done quite
recentlyl. We have analysed by a variant of reductive perturbation technique the collision
of two such “droplet”-like (soliton) excitations and studied their subsequent dynamics
in the y*—y° theory.
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2. Formulation

The nonlinear Schrédinger equation with a higher-order nonlinear term added,
reads:
i+ Yo +alpl’y+Blyl*y = 0, )
or
Y+ yactV(y) =0,
with
V(y) = alylPy+plyl*y.

To analyse the scattering of two droplets w> choose the multiple scaled variables

n

K, = &K and " = &',

¢ being a parameter having the smaliness of the bandwidth of the wave travelling in the
position x direction. The wave travelling in the negative x direction is assumed to be of
the order of £2. Let us consider the following expansion of y [5] in ¢;

Y =) &YKo, K1, Kz, K3y ovy Loy L1y Lag B3, -.0). 2)

0 0 i) 0
— = — and -— = & —,
ot at, 0k 0K,

and equating the same powers of ¢ we get

Substituting in (1)

0e): Ly, =0,
0(32) 1 Ly, = Y1, =2
0 : Lys = —allp: Ppi ] —ilwa, + 1, 1= 2[W2r s + V1o +291., )
0" 1 Lya = —al2ly; Py, + pivi]

- i["/)3q + 1/’2:, + '/’1:,] _2[2y’3kok1 + wzklkl

+21/)2an2+2'(/)1)€01¢: +21p1 xzm]’ (3)
where .
62
L o= —
Yo, T o

The solution of the lowest-order equation in (3) is given by:
Yy = A(Ki, Kay oony Ky by By ooy B5)E00

+B (K35 K35 vvs K5, als, ..., £5)€°07, 4
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which represents two waves of amplitude 4,, B, and phase ¢, and ¢.. given as

¢ = kikg—wty, ¢_ =k_k,—wt, )
along with
ki = —k = Jo.

In equation (4) we have assumed that the two-band widths of the spectra of 4, and B,
are of the order of £ and &* respectively, so that while 4, is assumed to depend
on (K, Ky ..., Ks, 3, I3, ..., ts) the amplitude B, is considered to depend on (x,, ..., ks,
t5, ..., ts). Plugging v, from (4) in the second equation of (3) we get;

2z M giyi 2L oo 6
=|—i—— - i —)e*".
2 oty * 0K, ©

Imposition of nonsecularity condition leads to

04, , 04, ’ v
+¢ =0,
o, ‘s oK, 7

dow ) . .
where c; = 7 = 2k, is the group velocity of the wave in the positive x direction.
+

The second-order solution, which is the homogeneous solution of (6) is given by
Vo = Ay(Kiy oor Ksy byy ooy 15)€ P+ By(Ky, ..., K5, by, ...y 15)€® . (8)
Substituting v, from (4) and p, from (8) the next-order equation in (3) yields;

04, 04, 04, 04, *A,
Vs { l(@tl 6t2> : +(6K2 T ) T ae

-—a(|A1|2+2|Bl|2)A,}e"¢++ )

So that third-order nonsecularity condition reads:

04, 04, 0A, 04,\ . 0°4, 2 2
~i\50 + — Py —2ik Ew + ) T e a(lA;]1"+2|B,|)4,. (10}
2 1 2 1

1

The other wave is governed by the equation

0B, 0B, 0B, 0B,
- + —2ik_ = a(|B,|*+2{4,1)B 11)
<6t2 0t1> <6K2 + o, a(|By|* +2{4,|°)B, (11}

Similarly, the fourth-order nonsecularity condition reads:

0A 04, 04, 04, 04, 04, 04,
—i + — + —) —2ik, + +
6t3 ot, ot 0K, Ok, Oy
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04, %4,
—_ = 2A A 2 B 2
( 51&‘% aklﬁxz) a[24,(14,1* +1B,[%)
+A,(A3A,+2B,B} +2B3B))] 12
and
8B, 0B, 0B, 0B, @B, 0B,
—i|— + ==+ — ] —2ik_ +
‘(atg at, ot, : Ok, 0K, + ax,)
62BZ 2 2 * * * -
bl axz = a[sz(lBll +|All +Bl(B2B1 +2A2A1 +2A2A.1)]. (13)
1

The actual amplitudes 4, B may now be represented as
Ar= 8A1 +82A2+€3A3+84A4+ cen
B = SBI +8ZBZ +83.Bs +8‘B4+ wes (14)

Now, by using the expansions noted in (2a) we can deduce two separate ¢quations for 4 and
B which are written as follows:

(04 - 0A _62A__ A2 21B A
_I(EJF E?) = a(A 4218, )
+B(|BI* +3]4]* +6|B|*| A1) 4, (15)
_i(% 2k 35)— B = o(|B|2+2|4|*)B
1(5;+ R~ L V5
+B(|A|* +3|B|* +6|B|*|A|*)B. 16)

It should be noted that though (15) and (16) are of the same form, yet each term in them
has different order of magnitude. So in general, we have the following equations:

(04 0A 4
z(w +c, _a?) + o7 = [q141%+7|Bi* +s|4|* +1|B|* +u|B*|4]*]4
and
(0B 0B &*B , .
1(3; —C EK_-) + o7 = [q!BI>+7lA* +s|Bi* +1|A|* +u|4]*|B|*]B. an

Now, we search for steady wave solution and define £ = x—Az. Substituting 4 = R+
and B = R.¢”~ we get (here Ry, R-, ¢+, ¢- all are functions of &)

o’R, 10¢.\? . 00,
R, ( aé) “Ro(-ire) 2

= [qR% +rR% +sR% +tR* +uR%ZR2]R, (18)




and

OR., 0. 3¢,
o [( Ate)+2 a£]+R+ e =0

From (19) we deduce

d (02 34\ _
—3(—ite) 7 (R )+ Q(R+ ac)"o'

Integrating we have

06+
L(=i+c)RE+RE — 5 =1,.

I, is a constant of integration.
0
Eliminating—ggbetween (18) and (21), we get

d’R, I} +(—/1+cg)R+
dg? R 4

with
o = qR% +rR% +sR% +tR* +uR%R2.

dR
Multiplying by 2 7€fand integrating (22) leads to

2

dR+>2 :
l_ T _ R6 + R4+ 2R2
2<d¢ TR

2 i 2- 4__d_ 2
+')’1J‘R— dé(RUdf“'?z R dz (R3)d¢

JRZ —E(R *)Ydé = C,.

Similarly we deduce:

dR_ &%
1 R6 R4 2R2
2( d¢ ) TURSApR-TY R
d d .,
71 J-Ri & (RY)dé+y, JRi dz (R%)d¢

d
+73 jRi 2 (R2)dE = C,,

—o(R4+, ROR, =0,
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(19)

(20)

(21)

(22)

(23)

29
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where
#:.._b- Il:—..g. u=—‘];‘“(+A+C)1/2
1 127 4’ 3, 22 £
I r t u
52__3’ = - —, = — —, = - —,
5 "1 ) Y2 2 V3 3

Adding these two equations we obtain

1 dR.\’ dR-\* UR,,R)=E
(&) i e

Equations (23) and (24) are two simultaneous equations describing the evolution of the
amplitudes of the solitary excitations, and equation (25) may be interpreted as the energy
equation for a particle with two degrees of freedom. The first term in square bracket is the
analogue of kinetic energy while U (R4, R-) represent the potential energy given as

U(R4, R_) = p(RS +R%)+pu(R% +RY)
1 2

S L4
HR +R) ¢ (R + 77 ) PR RL AR, (9
3+ 3- -

(taking y, = 73).

3. Solution for Ry and R-

For obtaining explicit solutions we initially consider the case 6+ = 0, 6~ # 0 whence
from (23) and (24) we obtain:

dzR 3 2 2 p2
d’z +6yR +4uRy +2u°R, 42y, R_R}
2 3+

+2y,R*R, +49,R%2R3 =0, QN
d’R._ s 3 2 262 )
+6uR +4ﬂR +2u"R_—~ —5= +2y;RIR_
de 3- RZ
+2y2R1R_+4y2R2+R3_ =0; (28)
integration is not possible unless we neglect the interaction term between R, and R- which

introduces an error of the order of £5. Then, we can obtain R, by solving:

dR
— +6uR5 +4uR% +24°R,, = 0. 29)
de* 2 34
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Setting R% = g+ we get

g+

dg.
¢ = %‘ J‘ T,
j \/V(g.;.)

4]

with V(g;) being a fourth power polynomial in g;:
V(gy) = cg. ~23uzgi —2/21g-3+ —2111g1- (30)

The integral written above is usually done with the help of elliptic functions and we can
write a special solution in the form [6]:

_ 8284(1 "an(fo, K))

+ ’ 31
[g4a—22 an(fo, K)] 1)
where
$o = \/él(g‘t_gz)zi" [
K= (81— 8482 (32)

g1(g2—84)"

and g; (i = 1, ..., 4) are the roots of the biquadratic relation V(g.) = 0 and it is assumed
that g; = 0. When g, = g, # g, the modulus of the elliptic function reduces to unity
and we obtain

: -
g2 — —28, | —g, | — —28, | sech®é,
§ i
g+ = . (33)
i

-Z— —2g, )} —g, sechzéo

1

In the case g, = g, # g, the modulus K of the elliptic function tends to zero and then
cn function becomes the sine function. Thus we get

_ 8284(1—sin* &)

e T (34)
84— 82 sin® o

+
Next, we proceed to determine the solution for R.. The equation for R- reads (neglecting
terms of order £%): '
d’R_

e +6uR® +4uR> +2u*R_+2y,RZR_+2y,R4R_ = 0. (33)
1 2 3,
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Without any loss of generality we assume the following values for the constants:

2 = .5

s B = —37.
3-

N
»fo

”:— =——ﬂ, ’y1=2’ ‘)}2=’y3=—
1 2 ’
First, we consider the reduced equation for R-, obtained through the above sets of
values of the constants:
dzR‘ : 5 3 5
If we can obtain two independent solutions R, and R, of (36) then the solution of the full

inhomogeneous equation (35) can be obtained through the technique of variation of param-
eter and it can be written in the form

R_ = VlRl + V2R2,

with
v R,  (1—sin® &) (1+7sin’ &) a
te A(Ry, Ry) (2—4 sin? &;)? o
[ Ry (1-—sin® &) (1+7sin’ &)
2T j 4(Ry, R,) (2—4sin® &) 4Co- @GN

A(R;, R,) being the Wronskian of R, and R,. Two independent solutions of the reduced
equation (36) are found to be

) 2 '
R, =\/ l—sm' 250 . R, = / 1—cos 250 ’ 38)
2(1—2sin® &) 2(1—-2 cos® &)

and so we can compute A(R;, R,) which comes out to be equal to

(1~2 sin? &)?
(2—4 cos® &o)*/% (2—4 sin’ £o)**

A(Ry, Ry) = (39)

Substituting these in formulae (37), we can obtain by actual quadrature the final forms
of ¥, and V,, but their detailed structure is too complicated to be reproduced here. On the
other hand, one may study numerically their graphical behaviour.

4. Discussion

We have discussed in a model the intzraction of solitary-wave-like excitations in nuclear
matter. Qur method is essentially a variant of singular perturbation analysis, done through
a scaling of space-time variables. The perturbation is essentially done in the scaling var-
iable &, to depict in a clear way the collision of two such excitations.
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