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THE NEW DIAGONALIZATION PROCEDURE IN THE
INTERACTING BOSON MODEL AND ITS APPLICATION*
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The recently constructed complete basis of states in the Interacting Boson Model
has been adopted to the calculation of matrix elements of relevant physical operators. The
new numerical program has been written for the IBM analysis. The program has been tested
by the calculating energy levels and boson eigenstates of Gd-Xe isotopes. The boson states
have been used to calculate transition probabilities E2 for the same isotopes. Only one-
-parameter calculations fairly well reproduce experimental data.

PACS numbers: 21.60.Gx

1. Introduction

Interacting Boson Mcdel (IBM) had been introduced by Iachello [1] and then devel-
oped by Arima and Iachello [2-5] in the field of nuclear low-energy phenomena. The model
has already gained a significant success in both single-particle and collective behaviour
of nuclei. ]

In special, although important, cases like rotational and vibrational limits of the IBM,
the model provided final analytical formula for energies and transitional probabilities.
Some other approximate methods to calculate the boson operator matrix elements are
also known [7-8]. However, general application of the IBM needs a large computer code
to deal with physical observables in a specially suited basis and such program developed
by Scholten [6] is referred to as PHINT.

The aim of the paper is to adopt the alternative scheme recently considered [9-10]

for the diagonalization of the boson physical operators including the general boson Hamilto-
nian (IBM-1)

H = H1+H2+H3, (1)
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where s5;-o = s* and 4, 2m = d; are the creation operators of monopole and quadrupole
bosons with their annihilation operators s and d,, = (—1)"d_,,. H, is a constant part
of a nuclear core. 4

We have taken into consideration only one kind of bosons but the method presented
here can be easily extended to the IBM-2 version of neutron and proton bosons. The
method can be regarded as an alternative way, in a way simpler, for boson numerical
calculations.

The presented procedure is based on the results of the works [9-10] whose formulas
are slightly extended for numerical application. We will not repeat the proofs of the results
given in [9-10].

In the following three sections we present the construction of the boson complete
and orthonormal vector-basis essentially equivalent to the results given in [9-10], the
results of calculation of matrix elements of boson physical operators, and we give the test
of a new numerical scheme for the IBM calculations.

H {[(d*d*)(ds)*1° +[(d*s*)*(dd)*]°,

2. The basis for a numerical boson program

The 36 boson second-order operators
biby; 1=0,2; m=—-1.,1 03]

are known [2] to form generators for the transformation group U(6). We adopt here the
chain of subgroups of the vibrational limit of the IBM [2]

SU (6) o SO (5)x SU (1,1) = SO (3) 3)
[N] in] [e] [L1

with the physical numbers which distinguish irreducible representations of the relevant
subgroups: N — being the total number of bosons; n — the number of quadrupole bosons;
v — the seniority number of quadrupole bosons; L — the total angular quantum number.



1111
The complete orthonormal vector basis reads-

[NnoxLM) = S (Y " noxLM )y, )
V(N —n)!
where |noxLM>, is the complete orthonormal quadrupole-boson basis and x —is the
additional quantum number for a complete classification which is taken here as a maximal
number of scalar quadrupole-boson triplets (d*+d+d+)L™° in the state (4).
For a given symmetric irreducible representation [N] of the group SU(6) the rest
of quantum numbers follow the changes

n=01..,N
v=nn-2,..,0 or1
x=0,1,..,93
(v-3x) <L <2(v-3x) but L +#2v-3x)—1. ©)

The construction of the basis |noxLM >, for quadrupole bosons has been done in

several steps [10].
{i) First, we take n = v and construct the complete but non-orthogonal vectors [voxLM)

looxLM) = ¥ (n_y ... nyloxLM) (d¥,)"* ... (d3)™(0). (6)

We adopt in (6) the non-normalized initial basis (d*,)"">... (d3)"[0) contrary to the formu-
las (15)<(16) of [10] and hence the transformation coefficients (n_,, ..., n,|lvxLM) are
changed by a numerical factor (n_,! ... n,!)'/%. We use also the recurrence formula (27)
of [10] to get the analytical expression for the general transformation coefficients in (6)
which reads

(n_, ... nyloxLM) = 2L +1) (JO[(L + M)Y(L—M)!]'"?

. _ 1/2 v=x
x [(L—=v+3x)(L+v—3x)!] Z (Pl ...pg)x!

k,p1.....pe

k+pi—ps~pstpr+n-1+tn +p3s—pa—pstpstpstn_i+n
X("I) Pt~ P4~ P& PT 1 121’1 P3-pa—pstpsetps 1 1

N (k+p2+p3+2ps+p;+3ps)!
(n_2—p)(n-y~p3—pa)(no—p2—p7) (ny—ps—pe)(n2—ps)!
9 (L—M+k+py—ps—pa—3ps—2ps—P1—3Ps+n_y+2no+3n,+4n,)!
KL —M —K)(L+3%—0—K){(M+0—3x+Kk)!

1
X s
(L+20“p4—p5+1)!

@)

where
Sm=v Tim=M; Fp=v-x
3 3
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It was also proved [14] that the basis (6) can be alternatively expressed by the Hill-Wheeler
type of an integral [12], namely ‘

looxLM) = 2L+1) | Dif.—, (QR(RQ) |vx), 8)
S0O(3)

where ﬁ(Q) is the rotation operator with Euler angles Q = (afy), Dﬁ‘}k(Q) is the usual
Wigner spherical function and [11]

2n

1 T
= P fdoz Jsin Bdp f dv, )]
0 0

0o

n

S0(3)

while
lox) = (dX,)°""X(d3)"10). (10}

(i) The basis (6) is complete but non-orthogonal. Hence, the numerical standard procedure
-has been used to get the orthonormal basis of state-vectors

X

loxLMYo = Y, Ciilowx'LM), | (11)
,_fv=L+2
¥ _[ 7]
where the transformation coefficients C°% are numerically calculated.

(iii) To get the vector state with a given number of quadrupole bosons n > v, one needs.
only to apply the quasi-spin boson operator to the state (11)

. 5 -
At = %— @rahr=° 12
what changes a number of quadrupole bosons. Then, final normalizing factor 4" is also-
needed. Hence,

n—v

InoxLMDe = N'(n, v) (£F) % [voxLM). (13)

Formula (13) completes the construction of the orthonormal boson basis (4) where

_n-e _ "
W) =2 7 <n v>'(n+v+3)..

2 ) Qo+t

3. Matrix elements of the IBM Hamiltonian and an electromagnetic quadrupole transition:
operator '

In the Hamiltonian (1)
H = H1+H2+H3.

H, is already diagonal in the basis |NnoxLM), H, has non-vanishing matrix elements.
only for n’ = n+2, and H; —only for n = n+1.
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The diagonal part of H reads:
{NnvxLM|H|NnvxLM} = {NnvxLM|H,|NnvxLM)

= g(N—n)+gmn+ %\(N—n) (N—-n-1)

304 - 1062 + 700

e (n—v)(n+v-—1)

+ %n(N—n)+

+-6—c—“-;& n(n—1)+ 22 [L(L+1)—6n]. (14)

The non-diagonal parts of H reduce to H, and H, only:
{Nn+2vx'LM|H|NnoxLM}) = {Nn+2vx'LM|H,|NnvxLM) (15)

and »
{(Nnx1v'x’ LM\H|\NnvxLM ) = {Nn+ 1v'x'LM|H;|NnvxLM. (16)

We proceed to sketch the calculation of the matrix elements (15)-(16). We notice in (15)

that the operators (d+d+)° and (dd)° are the generators of the quasi-spin boson group SU(1, 1)
and by the Wigner theorem we get:

(Nn' = n+2v0xLM|H|NvxLM) = 5[(N nF1)(N—n+28,,_,)]"?

2y
x[(n—v+1+1) (n+o+4£1)]Y2 a7n

The s-part of the matrix element (17) has been simply fixed because s*(s) boson operators
are the phonon creation (annihilation) operators of one-dimensional spherical harmonic
oscillator.

In the matrix element (16) the quadrupole operators are scalars in the rotational group
SO(3) and tensors of the rank 3/2 in the quasi-spin group SU(L, 1)

[d*(ddy]° = \/— T,

~ 1
[(@*d*)d]° = N T, 18)
Hence, in the first step, we apply the Wigner-Eckart theorem to operators (18) and replace
the s-operators in H; by their simple matrix elements, which gives

{Nn' = n+1v'x’LM|H|NnvxLM)

6(N n—36,,-1)"*(KKo 3, +1 |K'Kp)

Y

x ')’ LM || T || oxLM gy, 150 (19)
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where
K =L1@w+5/2), Ko=5n+5/2) (20)

are the quasi-spin quantum numbers in the Clebsch-Gordan coefficient of the group
su(, 1y 113].
In the second step, using the formula (8), we get:

(o' x' LM\ TEOloox LMy = {nv'x'L3x —v| TV vx) (21)

and after straightforward calculation we obtain the final analytical matrix elements reduced
in the SU(1, ):
Co+3x'LM || T®*% || oxLMDgys,1)

3 [ 32v+3)

1/2
M(U—x +1)‘(x—1)!] X'(v—x+3)

x(—-x"+1)(0,v—x"+1,0, 0, x'—1joxL3x'—v—3) (22a)
o+ 1X'LM || TO* || oxLM sy 1y

(2v+1) Qv+3)

=3=x'+1) [35(2v+5) Quv+7)

12
x'!(v—x')!] [2./x

x(0,v—x",0,1, x—llvxL3x'—v—1)—\/v—x’
x(1,v—x"—1,0,0, x'[vxL3x'—v—1)] (22b)

o—1xLM || T®*? jj oxLM gy, 1,

20—1 vz
= —3(v—x)|:35(vzv-—_'_‘5x!(v—x—1)!] [2.J%

x(0,0—x—1,0,1, x—1jp% 1x'L3x—v) —v—x—1
x(l,v—x—2,0,0, xlv—1x"L3x—v)] (22¢)
v=3x'LM || T®*® || oxLM gy,
= —3[3(v—x—-2)!(x—1)Y/35]"*x(v—x) (v —x—1)
x(0,v—x—2,0,0, x—1jv—3xL3x" —v). (2249)

The formulae complete all non-vanishing matrix elements which can be used to solve
any eigenvalue problem within the IBM model for given even-nuclei. The number of bosons
(N) is the half of the valence nucleons and the set of Hamiltonian-parameters.are chosen
to fit the experimental excited levels. Hence, the vector-eigenstates of an energy & are
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obtained in the form:
INeLMY = ¥ &P |NaLM ), (23)

a

where a stands for (nvx) and C¢Y are numerically fixed.
We proceed now to evaluate the matrix elements of the electromagnetic quadrupole

operator which in the IBM approximation reads:

T(E2)p = By(s" dp+dms)+B2(d A 4
The reduced transition probability between the siates (23) is usually defined as
B(E2: Le — Le') = QL+1)""| (N&'L || T(E2) || NeL). (25)

To calculate the reduced matrix elements in (25), we transform the quadrupole transition
operator (24) to an explicit tensor form in both groups SU(], 1) and SO(3)

1
T(ED), = Br(s* TG0 +sTED) + B2 — To (26)

\/i O,m
The reduced transition probability is then calculated in the basis (23) in which the further
reduction in the group SU(1, 1) is performed:

B(E2:Le » Le¢') = QL+1)7! {Z cebeet

aa’

X [B104,1/2(046,1/2 \/N—"+5qo.—1/2 \/N""’)

1 ’ !
+B, ﬁ 5%1540_0] (KKo, 9, 90l K Ko)suc1,1)

2
x{o'x'L | T@ | UXL>SU(1,1)®50(3)} s 27

where
s 0’

=

g=3.1; q=+=

a=(nuox); o=@, x’),
K=30+d: K =4+,

Ko=%5(n+3); Ko=3('+3).

The reduced matrix element in (27) is then evaluated in two steps. First, with the help of
(8), the matrix element of the transition operator is transformed:
r 17! t ’ ! 2L+1 1/2
{(mv'x' LM IT;?,;f,,)lvvxLM) = (LM2miLM )(_ZLTFT> E (—-1)*
"

x(2, —pt, £3x —v+p|L3x —0){nv'x'L3x —v+p| T Dlox). (28)
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Then, on the left-hand side of (28) we perform the reduction in two groups SO(3) and
SU(1, 1) and on the right-hand side we explicitly evaluate the simplified matrix element
of the operator T'*?. The sum over u in (28) is then taken and all the needed reduced
matrix elements of the operator T can be put in the explicit analytical form with the
known transformation coefficients:

Co—1xL [T 1 exLysy,1yes003)
= [CL+1) (0—x)x ] [Vo—x (2, —1L3x—v+1{L3x—1)
%x(0,v-x—1,0,0,xjv—1, x'L3x—v+1)+./x (22L3x —v~-2!L3x —v)
x(0,v-x,0,0, x—1lv—1x"L3x —v-2)]. (29a)
o+ 1xX'L | T2 ) oxLsy,1yesos)
= (—D**"F Qo +3) QL +1) (v—x" + 1) Ix"1/(20+5)]"?
x [Vo—x"+1(2, —IL3x'—0|L3x' —v—1) (0, »—x’, 0, 0, x'[vxL3x" —0)
+/%" (22L3x'—v—3|L3x"—v—1) (0, v—x"+1,0, 0, x— 1joxL3x'—v—3)].  (29b)
(=2, x'L | T || vxL)sy1, 1785003
= (v—x) 3QL+1) (v—x—1)Ix/7]"*[2 /x
x(21L3x—v—1]L3x—0) (0, v—x—1,0,0, x—1|o—2x'L3x —v—1)
~Vo—x—1(2, =2, 3x —0+2|L3x —1)
x(0,v-x-2,0,0, xjv—2, x'L3x—v+2)]. (29¢)
o+2, XL || T"® | 0xL)sy(1,1)85003)
= (= )30 +3) QL +1) (v—x' + D)X Y [T+ 1]V}
x[2 \/56_' QIL3x'—v-3|L3x—v-2)
x(0,v—x"—1,0,0, x’—llvxL3x'—v-—3)—-x/1:—x—'+-1
x(2, —2, L3x'—v|L3x'~v—2) (0, v—x', 0, 0, x|vxL3x'— )] (v—x"+2). (294d)
ox'L || T || oxLsycr, 1yes0(3)
= —{2Qu+1) QL+1) (v—x)!x[7Quv+ 5]}/
x [/2x (22L3x —v—2|L3x~v) (0, v—x, 1, 0, x— 1|ox'L3x —v—2)

+V3(v—x) (21L3x—v—1|L3x—v) (1, v—x—1, 0, 0, x|vx'L3x—v—1)
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- /3% 21L3x—v—1|L3x—v) (0, v—~x0, 1, x—1|ox'L'3x —v—1)
3x—v , ryr
+ —\75— (20L3x—v|L3x—v) (0, v—x, 0, 0, x|vx'L'3x—1v)

—\/(v—x)/2 (2, =1L3x—v+1|L3x~-v) (0, x—v—1, 1, 0, xjox'L3x—v+1)
+\/3(v—x) (2, —2L3x—v+2|L3x~2)(0,v—x~1,0,1, x|vx'L3x~v+2)].  (2%)

The evaluation of the matrix elements of physical operators under consideration is now
completed.

4. Applications

At first, we want to test the invented new numerical program for the IBM analysis.
We have chosen the examples of Gd and Xe isotopes for which the IBM energy calcula-
tions were already done [15]. We adopt the Hamiltonian parameters as in [15], i.e. Hy = 0,
g, =0, uy = 0.112MeV, &4 = 0.818 MeV, ¢, = —0.055MeV, ¢, = —0.325 MeV, C4
= —0.059 MeV, u, = —0.0109 MeV, v, = 0.472 MeV, v, = 0.414 MeV for Gd isotopes
and Hy =0, =0, u,=—0.009MeV, g =259 MeV, ¢, = —0.668 MeV, c,
= —0456 MeV, ¢, = —0437MeV, u, = —0.578 MeV, v, = —0.074 MeV, v, =
—0.102 MeV for Xe isotopes. With the above parameters, within our numerical
program, the energy levels with exactly the same accuracy as in [15] have been obtained.

The tested boson-eigenstates of the Gd-Xe isotopes have been then used to calculate
the transition probabilities E2. We face the problem of fixing the two free parameters

B(E2:21-0;) B(EZ:4)~23)
(e?b?) (e’ )
Tr t
1E
osf Gd Gd
{ 0.5+
A A
0. s s L L L 02 4 I L i A 1
150 152 154 156158 160 150 152 154 156 158 160
BIEZ.6,=4)) B(E2:8, 6]
(e’ b7) (e?b?)
1.5r {
% 15
1 r 1
Gd | T Gd
= A A
N i 1 1 1 e 05 1 Il i 1 i 1
150 152 154 156 158 160 150 152 154 156 158 160

Fig. 1. Reduced theoretical (IBM-1) and experimental [16-18]} E2 transitional probabilities in Gd isotopes
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B(E2:2.=0;)
(e?b?) v Xe
0.4
03}
0.2

01k

T
e

——
[ o

A

1 1 1 1 1 I
118 120 122 124 126 128 130
Fig. 2. Calculated and experimental {18-20] B(E,: 2} — 2“_5_) in Xe isotopes

B, and B, of (26). The parameter §, can be related to f, by symmetry consideration.
Namely, in a so-called quadrupole approximation we want the transition operator (26)
to be the generator of the group SU(3). It is the case, if:

B = — }‘/21131 (30)

Hence, we deal only with the one-parameter (8,) transition model. The parameter §, has
been then chosen to well reproduce the transition B(E2: 27 = 0;,) for 156Gd, and hence

B, = 0.0149 e2b2. (31

The results are given in Fig. 1 for Gd isotopes and in Fig. 2 for Xe isotopes. It is seen
that the one-parameter model quite well reproduces the transition probabilities for Gd
isotopes as well as for Xe isotopes.

In such a way we have completed the introduction and testing of the new basis for the
IBM calculations’
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