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It is shown that the motion of an atom is given in a good approximation by Mathisson-
-Papapetrou equations if we put as a classical angular momentum of the atom the expectation
value of the operator of the full angular momentum (including nuclear and electron spins
an orbital momentum of the electron).

PACS numbers: 04.50.+h, 11.10.Qr

1. Introduction

There are two main reasons for interest in the problem of atom motion in external
gravitational fields: first — an atom is an extended quantum system with inner structure
(for motion of extended bodies in general relativity see e.g. [1]), second — the knowledge
of the law motion for the atomic systems is necessary to account influences of gravitational
fields on atomic spectra. This, indeed, will become critical only in extremely strong gravi-
tational fields with characteristic radii of curvature < 10~ cm [2], or in not very strong
gravitational fields, e.g. outer range of macroscopic black holes with r, 2 10° cm, but
for ultrarelativistic motion of atoms [3]. Apparently, in both cases the motion of an atom
cannot be considered a priori as a geodesic one. Subsequently we shall assume an atom
with quasistationary guantum states.

Because of the negligible mass ratio of electron mass m and nucleus mass u the motion
of a classical mass point will be a good approximation for the motion of the nucleus
x' = F(1), where 1 is the proper time (dr> = ¢-* ds?)!. The motion of the electron is de-
scribed by quantum mechanics, assuming only one-electron atom for simplification.
Moreover, the assumed identity of atom and nucleus masses permits the consideration
of the atomic motion as a nuclear one. One can obtain the equation for &(7) from the
following suggested model.

! Latin indices run from 1 to 4, Greek ones from 1 to 3. The signature of the space-time metric is
( +, + ’ +, = )
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The nucleus, in the classical mass-point approximation with intrinsic spin, is moving
in an external gravitational field and interacting with the electromagnetic field of the
electron. The electron which for his part is moving in the external gravitational field
and in the nuclear electromagnetic field, is considered in a quasistationary bound quantum
state. It was shown by different authors [4] that the expectation values of the position
and spin operators for a Dirac electron fulfil Mathisson-Papapetrou equations. Applying
these results (valid for any Dirac particles) to the nucleus, we describe its motion in our
model by the system of Mathisson-Papapetrou equations [5]. To the first equation of
this system we have to add a “Lorentz-force” term which describes in first approximation
the interaction with mean electromagnetic field of the electron. This leads us to?

Du
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T)—r—z?ub,r—.;, u"S, =0, (1b)
where g, ' = d¢'/dr, and §* denote the charge, the 4-velocity and the classical spin of the
nucleus respectively. We shall regard the expectation value of the nuclear spin operator
as classical spin. é/™ denotes the Levi-Civita pseudotensor with &'23* = (—g)~*/? and
g = det (g;;), R’y is the Riemann curvature tensor and F is the tensor of the electro-
magnetic field of the electron. Here, we have only to calculate the tensor F*/ to obtain
an equation for &(1). In order to simplify calculations we shall deal with a special, comov-
ing reference frame.

2. Choice of the reference frame

We use the frame of the single observer [7] as a comoving one. This reference frame
is determined by the motion of a single mass point. The world line of this mass point
(“single observer”) is named basis. Using the world line &(1) of the nucleus as basis,
we obtain a convenient comoving reference frame for the atom. Along the basic line we

. . 1 .
establish an orthonormal vierbein f,,, defined by A4, = — «'. The introduced vierbein
¢

is determined with exception of three-dimensional rotations. The three-dimensional
physical space is given by a geodesic spacelike hypersurface f (related to t), which lies
orthogonal to the basic world line. In order to arithmetize the hypersurface f, at each
point Pe f we fix a set of three scalars X® = oAV k", where op is the value of the canonic
parameter ¢ at P, defined along a spacelike geodesic in f and going through the point P,
k' is the tangent unit vector to that geodesic, defined at the point on the basic line (6 = 0).

2 5 . D*P
— r
We neglect —c2e,8,u, Dot
and the nuclear magnetic momentum (these terms can be found in [6]). Numerical calculations show that
they are smaller than all other terms in (1).

and also terms which describe interaction between the field F¥/




113

For a nonrotating frame (i.e. the vectors h(,,)i are displaced along the basic line &'(7) accord-
ing to the Fermi-Walker transport) the quantities ((X*, ct) correspond to the Fermi
normal coordinates [8]. Analogous quantities X7 = X®, X% = ¢ we treat as rotating
Fermi coordinates. In these coordinates the metric tensor g;; becomes

8317 = Nww tewmuy @)

with 73, = diag(1, 1,1, — 1) being the Minkowski tensor and

_ ~(1) (v 3
E® = —F RowmmX X" +0(0%), (3a)
£ = i e X®w®™ 49 3b
@& = T C@uom (@» (3b)

1 -(a
Eayay = —2 <9+ P WX ¢ )>§ 39
0 = 3R X®X™+0(0%) 4

@ = 5 R@ywm@ 2%)s (4a)
0 = 3 (Resym@wm =3 RaymarmmX XX +0(e%). (4b)
D Dhyy'

Here, we used the following notations: W@ = A, —— and 0@ = 1 "
Dt 2 © " pe

are the acceleration and the angular velocity of the reference frame respectively, e/®®*)X?
is the three-dimensional Levi-Civita symbol, R mam ?nd R® iy = Hubimy’
X My By® Bay Royep; » are the vierbein-components of the Riemann curvature tensor and
of its covariant derivative respectively. Because ¢ = /X ,,X® is in order of the atomic
radii, the condition &, ;) <1 is valid even for extremely strong (from a macroscopic
viewpoint) gravitational fields, and without much loss of accuracy one can keep only
linear terms in the &g, ;. For further calculations we write down the system (1) in the
1
. . . A X
rotating Fermi coordinates. From u! = (0,0, 0, ¢), 27;(0) = 1)), and <—(7—?_> = h;
xi )=
it follows that

— ) S .
W,y = —ce RiaymymeSe T aF )y (52)

d e
an S@ = e@umm®”8",  Suy =0. (5b)

In equations (5) all quantities are taken along the basic line (X = 0).

3. Calculation of F,ya,

We shall calculate the vierbein-components of the mean electromagnetic field at the
point X = 0, generated by the atomic electron in the following way: first, solving Max-
well equations we determine the field of a stationary point charge e, which is located
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at the point X®. After that, we calculate the expectation value of that field, using the
assumption that the electron is in a quasistationary state, and neglecting both the interac-
tion of the electron magnetic field with the nuclear magnetic momentum and the effects
of the retardation. It is clear that those retardation effects will become small enough
because of the small velocity of the electron within the atom (v/c < 1). By means of the
Maxwell equations we find that in a certain neighbourhood of the nucleus the ¢lectro-
magnetic field will be quasistationary (for the same limitations as made above to the space-
time metric and to the law of motion for the atom, which guarantee the existence of qua-
sistationary states). At the point with the coordinates {* the electromagnetic field is given
by

" [ 1 . K)e(t T
(™) = R [1 + 2_62 W(K)R(K)‘*'% R(4)(K)(4)(r)(:( ((ESD G

1
v{K v T 3
toR? Roomant EVX XY+ 0(o )], (6a)
e 1 . o
A (™) = 7{[_ . e@ymX 0 +5 Rsymmat
+7 RaymmmX 07 +1 RaymmmX VX @+ 0(03)] (6b)
with ¢ = — A3, A, = A® = A; the scalar and vector potentials and R = (V- X®,

R = /R®R,,. To deduce Egs. (6) we assume that the gravitational field is a vacuum
one (lLe. R;; = 0) within the atom, a restriction which is always valid since the curvature
appearing here is that of the background geometry, and not that generated by atom itself
or by an external electromagnetic field. From Egs. (6) we obtain the following expansions
for the electromagnetic field tensor

Fiayay = <F(a)(4)>s (7)
where
. il ) eXy e ( , 1
Foya 2 — | = >y - 2@ LR XO4 W) )
@ (agw -0 2 o \FRowwe 502 V@

In order to determine the expectation value in Eq. (7) we notice that the covariant Dirac
equation can be interpreted as a special representation of the traditional quantum-mechani-
cal law of motion in Hilbert space, which allows one to build quantum mechanics in
arbitrary reference frames and under consideration of external gravitational fields [3]
(for details see the book [9]). In particular, one can show that in quasirelativistic approxi-
mation the electron can be always described by a two-component Pauli-type equation

i 2 g ©)
0t
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(with
;¢+¢d3x =1, (10)

and d*X = dX‘VdXPdX®) in the reference frame of a single observer. The complete
expressions for the two-component Hamiltonian H one can find in the papers [3, 9] (see
also [2]). A discussion of the complete operator H shows that the influence of external
gravitational field will always be more significant than effects caused by the non-Coulomb
participants of the nuclear potentials®. Therefore, in a good approximation the Hamil-
tonian is given by

H = Hy,+H,, 1)
with Hy = P?/2m—ge/o+0(1/c?) — the Hamiitonian of a non-disturbed electron which

is bound by a nucleus and H, describing the interaction with the external gravitational
field

[
Hl g m02()+ ‘5 (e(ﬂ)(a)(r)()(a)‘(z)s(t)__{9(1), P(u)})
— 0Lz +Se) + MWy X @ +0(1/c%. (12)

h
In the last equation we introduced the following notations P,,, = " SfoX ™, Ligy = €y

h ) )
x X ""Pm, Sy = 70(,), where ¢,, are the standard Pauli matrices.

As the states of a non-disturbed atom are either even or odd, we have

. e
(Flayapo = — ﬁ Wa<ljede. {13)
The notation <...», means that the expectation values are calculated using eigenvectors
of H,. If one neglects “deformation” of the atom by gravitational field, Fyyay will affect
only renormalization of the mass of the nucleus u — u+Au with Ap = eq/2c?a, and
a = {0y, being the radius of the atom. Because of du/u < 1, we shall not consider this
renormalization. This means that we have to calculate only the expectation values with

the eigenvectors of the full Hamiltonian H to determine F{,) . Using perturbation theory
one can show easily that

Fayay = {—eX(y/e*> +terms quadratic in gy, (14)

Direct calculation of {—eXyle*)> is connected with several difficulties. Therefore we
act as follows.

3 The electromagnetic potentials of the nucleus are obtained from Egs. (6) by changing e — g, £(*)
== X(*), and then £{# - 0. Analogous results (without considering rotation and acceleration of the reference
frame) were found by Parker [2], unfortunately, with some inaccuracy in the coefficient at Riaycvy(uy)X VX
in the expression for ¢.
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If 4 is any Hermitean operator, the operator

i
A== —[H, A 15
(5) +yima (15)
will describe the observable “evolution of the observable 4™, since
d
7 4> = (4. (16)

If, besides, A does not depend on time 7 explicitly, the expectation value of 4 in a statio-
nary state (for which the state vector is an eigenvector of the Hamiltonian) will be identi-
cally equal to zero. In our case the Hamiltonian H, (12) generally depends explicitly on
proper time t along the basic line, because 6, 6, and both »® and W depend on time.
However, generally, the time dependence of the operator H will be sufficiently weak
(except of gravitational shortwave radiation). Indeed, even if the motion of the nucleus
is ultrarelativistic, the atom covers only a short distance during a characteristic atomic
time (~ 10-°cm). In these dimensions, gravitational fields are actually homogeneous.
Direct calculation shows that atomic states will be quasistationary and that the following
equations for the operators of the 3-velocity and 3-acceleration

X®y =0, (X x~0 an

will be a good approximation with high precision. Using explicit time-independence of
the operators X® and P, and the fact that the “gravitational potentials” 6 and 0,,, vary
slowly with time, by means of the above equations one finds

eqX(V) K)(t
<" el > = Ry L+ Sy —mWiy — me?<0 ). (18)

Note that we made use of the equality

Riaywoom{{X @, P = m(fy> = 0. (19)
By means of Eqgs. (4) and (18), equation (5) leads (up to terms quadratic in A
(u+mW, = —cRayumunl S +<{Sw+ Lgyoele®®
+3 M’ [Ruayw@mm + Rayo@mm + Romwmml <XPX,, (20)

where neglecting of quadratic terms in ¢, ;, allowed us to change from {...> to {...),.
From estimations made above, it follows that the second term on the r.h.s. of Eq. (20)
becomes actually small and negligible with regard to the atomic dimensions, if we assume
that full spin of the atom (nuclear spin + electron spin + orbital angular momentum
of the electron) is non-zero. The calculations of the expectation values of the operator
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L(,)+.S.‘(g) describing variation of the electron angular momentum, by means of Eq. (5b),
lead us to

d _ e
ZI‘T(S<1)+<L(a)+S(a)>) = ey 048y + <Ly + Sydo)- (21)

In this way we demonstrated that the motion of an atom is given by Mathisson—
~Papapetrou equations in a good approximation if we put as a classical angular momentum
the expectation value of the operator of the full angular momentum (including the nuclear
and electron spins and the orbital angular momentum of the electron).

We note that the consideration of external electromagnetic field ‘©F"/ yields additional
terms

1 (0) if, 1 i mnspM
" (e+q)" " Fu;+ ?Fm;,,e M, (22)

in Eq. (1a), where M; is the 4-vector of the atoms full magnetic moment. Particularly in
a comoving frame of reference one gets M* = 0, Moy = €/2medL iy +284))0 +(gg/2uc)
X8

Editorial note. This article was proofread by the editors only, not by the author.
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